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One of the most important components in hydraulic circuits is the pump 

that generates hydraulic power supply. The performance and the 

versatility of a variable displacement piston pump are, to a large extent, 

determined by its controller.  Upgrading of existing controllers is 

considered one of the major means of improving the characteristics of the 

pump.  The dynamic performance of hydraulic systems with a demand 

flow supply not only depends on the performance of the flow modulation 

valve, but also on the performance of the pump.  In this study, the 

performance of soft computing methodology, trained Neural Network 

(NN) based on the conventional PID controller, is used for the control of 

a swash plate displacement while the compensation of the effect of the 

back up pressure is implemented by inverse NN model.  The feasibility of 

system is simulated and issue of implementation such pumps control is 

established.  It is seen that the use of the proposed methodology results in 

some desirable characteristics. 

KEYEORDS: Flow Rate Control, Neural Network, Variable 

Displacement Axial Piston Pump, Inverse Model.  

 

Nomenclature 

Ap      Area of the piston, (8305x10
-6

 m
2
) 

Bd  Viscous damping coefficient, 

(1.43 x 10
-3

 Nm.rad
-1

s) 

Bp  Damping coefficient of the 

swashplate yoke assembly, 

(0.28 Nm.rad
-1

s) 

Ctp  Total leakage flow coefficient, 

(4.3 x10
-13

 m
3
s

-1
.Pa

-1
) 

Dp  Displacement of the pump, 

(1.95 x10
-6

 m
3
.rad

-1
) 

i  Armature current, (A) 

Jd  Moment of inertia of the motor 

rotator, (1.4x10
-3

 Nm.rad
-1

s
2
) 

J p        Average moment of inertia of 

swashplate yoke assembly, 

(1.06 x10
-3

 Nm.rad
-1

s
2
) 

Kb  Back EMF constant of the DC 

motor, (2.27 V.rad
-1

s) 

Kd  Derivative gain 

Ki  Integral gain  

Kp  Proportional gain  

Kp1  Pressure torque constant, (7.46 

x10
-7

 Nm.Pa
-1

) 

Kp2  Pressure torque constant, 

(8.3x10
-7

 Nm.Pa
-1

.rad
-1

) 

Kt  Motor torque sensitivity, (2.27 

NmA
-1

) 
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L  Terminal inductance of the DC 

motor windings, (0.0332 H) 

N  Number of pistons, (9 pistons) 

Pp  Pump pressure, (Pa) 

Qep  External leakage flow of the 

pump, (m
3
s

-1
) 

Qip  Internal leakage flow of the 

pump, (m
3
s

-1
) 

Qp  Output flow of the pump, (m
3
s

-1
) 

R  Terminal resistance of the DC 

motor windings, (4.83 Ω) 

Rp  Radius of the piston pitch, 

(0.0224 m) 

S1  Simplified pump model 

constant, (0.096 Nm) 

S2  Simplified pump model 

constant, (2.36 Nm.rad
-1

), 

Td  Torque applied to the yoke by 

the DC motor, (Nm) 

Tdc  Coulomb friction torque, (Nm) 

Tdl  Load torque acting on the DC 

motor shaft, (Nm) 

Tds  Static friction torque, (Nm) 

Te  Motor electrical time constant, 

(6.87 x10
-3

 sec) 

Tfc  Torque produced by the 

coulomb friction force, (0.36 

Nm) 

Tm Motor mechanical time 

constant, (1.3 x10
-3

 sec) 

V   Input voltage, (V) 

Vemf   back EMF voltage, (V) 

Vp  Volume of the pump forward 

chamber, (3x10
-5

 m
3
) 

βe Bulk modulus of the fluid,     

(1.45x10
9
 Pa) 

θp  Angular position of the DC 

motor shaft and pump 

swashplate, (rad) 

ωp Pump rotational speed, (183.3 

rad s
-1

) 

γ Damping factor. 

 

1. INTRODUCTION 

Variable displacement piston pumps have found widespread application in the field of 

fluid power industry.  The most common way to vary the flow rate of a pump is to vary 

its “displacement” or “piston stroke” when it is operated under a constant rotational 

speed. A variable displacement pump is designed such that the displacement can be 

varied from zero to some maximum value while the pump is operating. The variable 

displacement axial piston pump which is shown in Fig.1 has many applications in fluid 

power systems.  Changing the angle of the swashplate can change the piston stroke. 

Since the displacement of the pump is proportional to the piston stroke, the 

displacement can be changed by varying the angle of the swashplate, [1]. 

A DC motor is directly coupled to the pintle of the swashplate as shown in Fig. 

2. It is anticipated that a DC motor should provide a rapid dynamic response to the 

pump swashplate. The reason for this anticipation is that the maximum torque provided 

by the DC motor is about 60 Nm [2], which is much higher than the torque generated 

by its hydraulic counterpart (13 Nm to fully destroke the pump).  Then, the dynamic 

response of the pump flow rate should be increased.  Further, it is much easier to 

integrate a DC motor to an electronic feedback circuit. This design strategy enables 

sophisticated electronic control algorithms to be applied for the DC motor controller. 

Since a DC motor can initially locate the swashplate at any angular position, even at 

zero position, it is much easier to control the initial flow rate of the pump and to build 

the system pressure using this design.  Because there is no return spring in the pump, 
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the torque generated by the DC motor is mainly used to overcome the friction torque 

and the “back” torque [3] produced by the pump pressure.   

 

 

 
 

Several investigators [4, 5] have applied research about the dynamic properties 

of a variable displacement piston pump.  Most of these investigations are based on a 

linearized model of the pump dynamics.  In industrial application, the dynamic 

characteristics of the variable delivery pump are always complex and highly nonlinear, 

[6].  Moreover, there are too many uncertainties in it; as the viscosity of the oil, the 

bulk modulus, leakage coefficient, equivalent torque coefficient, volumetric 

displacement and others.  So, the design of such pumps control flow at different pump 

pressure levels needs various controllers that cause the pump output to match different 

load characteristics more efficiently and effectively.  The design of these controllers, 

however, is often based on compromise and thus their performances are very operating 

condition dependent. 

Neural Network (NN) methods have become very popular recently involving 

mapping of input-output vectors for cases where no theoretical model works 

satisfactorily. An artificial NN [7-9] is an information-processing paradigm inspired by 

the manner in which the heavily interconnected, parallel structure of the human brain 

processes information. They are collections of mathematical processing units that 

emulate some of the observed properties of biological nervous systems and draw on the 

analogies of adaptive biological learning. NNs are trainable systems whose learning 

abilities, tolerance to uncertainty and noise, and generalization capabilities are derived 

from their distributed network structure and knowledge representation. Learning of a 

NN typically implies adjustments of connection weights and biases so that the square 

error (between NN output and desired output) is minimized.  In this study a NN 

controller technique is examined as applied to control the pump flow rate and 

compensate its back pressure effect. 
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2. MATHEMATICAL MODEL OF THE DC MOTOR 
CONTROLLED PUMP 

One approach to model a dynamic system is to use linear or small signal analysis. The 

linear analysis method is based on the assumption that a linear transfer function can be 

used to describe the behavior of the plant over the complete operating range.  On the 

other hand, the small signal analysis method assumes that the plant behavior is 

nonlinear but the model can be linearized over a small range near an operating point. 

Both methods are very powerful analytical tools but have limitations, especially for a 

highly nonlinear dynamic system such as the DC motor controlled pump.  In this study, 

the pump is modeled using nonlinear large signal techniques which are represented by 

a series of differential equations. Although it is difficult to analyze the dynamic 

performance of a nonlinear model using conventional control theories (transfer 

function approaches), it is feasible to do this using a simulation program. 

The flow rate is determined by the angle of the swashplate which, is controlled 

using a permanent magnet servo DC motor, [2]. From the viewpoint of the pump 

control, the DC motor can be considered as a part of the pump.  Hence, the model of 

the DC motor is also a part of the pump model.   

The mathematic model of a DC motor can be derived using a schematic 

diagram of the motor circuit shown in Fig.3. The DC motor is assumed to consist of 

inertia, Jd, with damping, Bd. The torque developed by the current in motor windings 

not only overcomes the friction in the DC motor and load torque, Tdl, on the motor 

shaft but also accelerates the rotor, [10]. 
 

 
 

The electrical circuit of the motor can be simply described by: 

dt

di
LRiVV

emf


            (1) 
.

pbemf
KV 

             (2) 

The torque developed at the shaft of the motor is proportional to the armature current 

and given by: 

dldcdsppdpdt
TTTBJiK  ))(sgn(

....

         (3) 

The friction torque consists of three terms: static friction, coulomb friction, and 

viscous damping. Normally, the static friction and coulomb friction of the DC motor 

are negligible compared to that of the pump swashplate.  This is evident by the 

effortless torque that is required to manually turn only the shaft of the DC motor. 
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Neglecting the static and coulomb friction and taking Laplace transforms of 

equations 1 to 3 yields the model of the DC motor as described by the following 

transfer function. 

)))(((

)()()(
)(

btdmdm

dlt

p
KKBsJRLss

sTRLssVK
s




          (4) 

The numerator of equation 4 includes two terms. One term is the input signal and the 

other one is the load, which can be considered as a “disturbance” input signal.  

In 1987, Kavanagh [4] developed a comprehensive model for a variable 

displacement axial piston pump which is used as the basis for modeling the pump in 

this study.  The pump model consisted of the torque model and fluid flow model.  The 

motion of the swashplate is described by the torque model; and the flow rate of the 

pump is described by the flow model. 

Some general assumptions are made regarding the pump model. They are: 

• Constant prime drive speed on the pump, 

• Zero suction and drain pressure, 

• Constant chamber volume  

• Constant fluid density and temperature. 

In Kavanagh’s study, the swashplate is controlled by a control piston and balanced by a 

return spring. However, in this study, the swashplate is actuated by a DC motor. Under 

these conditions, Kavanagh’s model can be simplified to yield 

ppp2pp1p

.

pfcp

.

p21dp

..

p
θPKPKθB)Tθsgn(θSSTθJ        (5) 

The displacement of the pump is defined as follows: 

 /tan
pPpp

RNAD             (6) 

Assuming that the rotational speed of the prime mover is ωp, the ideal flow rate of the 

pump is as follows: 

 /tan
pppppppidea

RNADQ                       (7) 

The actual flow rate of the pump is less than the ideal flow rate due to the fluid 

leakage and fluid compression. There are two types of leakage flows in the pump, one 

is the internal leakage flow between the suction port and the discharge port of the 

pump and the other is the external leakage from the high-pressure chamber to the case 

drain through the pump casing. From the continuity equation, the flow equation of the 

pump can be written as 

dt

dPV
QQQQ

p

e

p

pepippidea


           (8) 

Since the suction pressure is assumed to be zero, the leakage flow of the pump 

(including the internal leakage and the external leakage flow) can be approximated by 

ptpepiplp
PCQQQ             (9) 

Substituting equations.7 and 9 into equation.8, yields 

dt

dPV
QPCRNA

p

e

p

pptppppp


 /tan        (10) 

As shown in Fig.4, there is a two-stage relief valve (RV), worked as a constant 

“resistive” load.  It is used to adjust the backpressure on the system.  
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3. CLOSED LOOP CONTROL SYSTEM 

The feedback signal is the angular position of the pump swashplate, which is also the 

controlled variable. The closed loop system is including a controller, a power 

amplifier, a DC motor and a variable displacement pump. The purpose for controlling 

the swashplate angle is to control the flow rate of the pump.   Before designing the 

controller, it is important to determine the dynamic performance of the DC motor and 

pump swashplate assembly. As a result, a model of the DC motor and pump is 

attempted.  Based on this model, a motor controller is designed based on Ziegler-

Nichols turning PID rules, [11].  A typical PID controller has the following transfer 

function form, 

sK
s

K
KsG

d

I

pc
)(          (11) 

As the system gains changed with pressure changes, the critical gain and 

oscillation frequency are not the same under different loading.  It is interesting to note 

that at the same pressure level, the pump operation tended to be stabilized by 

decreasing the gain and destabilized by increasing the gain. On the other hand, at the 

same gain, the pump tends to be stable with increasing the pressure and unstable with 

decreasing the pressure. Thus, the pump demonstrates a highly nonlinear characteristic 

which is strongly dependent on the operating pressure and controller gains, [12]. 

So at every operating point a new PID gains setting is needed.  However, the linear 

PID is difficult to apply to this highly nonlinear plant.  Even with a perfect feedforward 

controller, a feedback controller is also required to correct for noise and unmeasured 

disturbances.   

The requirement for the controller design at this stage is to design a DC motor 

controller which could drive the DC motor and pump swashplate at any pressure levels 

with a fast dynamic response but without exhibiting any limit cycle oscillations. 

Many methods can be used to design the controller for a dynamic system; however, 

most of them are limited to linear systems.  As a proposed solution, a NN controller is 

designed using the linear PID as a teacher to it to control the system at any pressure 

level.   

However, NN is often called a black box, since, unlike fuzzy logic, it is 

difficult to interpret the knowledge stored by a NN.  Knowledge in a NN is represented 

in the values of the weights and biases, which forms part of large and distributed 

network. 
 

3.1 Back-Propagation Algorithm 

Back-propagation learning is one of the most popular types NN learning methods. It 

has two operational phases. In first phase, forwarding phase, we send input data from 

input layer to the output layer. In the second phase, back-propagation phase, we 

calculate the error (between target and output) and propagate the error backwardly to 

the input layer in order to change the weights of hidden layers by using the gradient 

descent method.  

The neural network is trained, using supervised learning, to develop an inverse 

model of the plant is shown in Fig.5, the network input is the process output and the 

network output is the corresponding process input. Inverse model are typically 
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developed with steady state data and used for solve the problem of finding the 

swashplate angle which will produce the required flow rate whatever the pressure 

level.  

Several studies have found that a three-layered neural network with one hidden 

layer can approximate any nonlinear function to any desired accuracy [13]. The 

network consists of input layer, hidden layer and output layer.  To explain the Back-

propagation rule in detail a 3 layer network shown in Fig.6 will be used.  The training 

phase is divided as follows: 

1. forward-propagation phase: X=[Qp; PP] is propagating from the input layer to the 

output layer Y=[θp]. 














 



m

j

jqiq XvfZ
1

          (12) 














 



q

l

q

iqi ZwfY
1

          (13) 

2. back-propagation phase:(14) shows the error between the output, y, and the target, d. 

 




n

i

ii
ydE

1

2

2

1
         (14) 

 

 
 

By using the gradient-descent method, the weights in hidden-to-output connections are 

updated as follows: 
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
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
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       (15) 

Following equations are the weight update on the input-to-hidden correction. Also 

chain rule and gradient-descent method are employed. 
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In Back-propagation learning rule, the two phases are iterated until the 

performance error decreased to certain small range.  

The proposed network consists of the three layers; the output layer consists of 

one neuron with linear activation function as shown in equation 19 and Fig.7.a. 

Numbers of neurons in the hidden layer are chosen by trial and error. We begin by five 

neurons but the network performance is not satisfactory. So, we increased the number 

to 20 neurons and the performance is improved. Increasing the number may enhance 

the performance, but we must bear in mind that the smaller numbers is the better in 

terms of both memory and time requirement to implement the NN. The activation 

functions in hidden layer neurons are tan sigmoid functions which are defined in 

equation 20 and shown in Fig.7.b. 

 

 
 

I) piecewise linear activation function 

 
















11

1

11

net

netnet

net

netf     (19) 

II) Tan Sigmoid activation function 

 
net

net

e

e
netf

2

2

1

1








           (20) 

Neural network can be trained to model existing controllers, a straightforward 

application of supervised learning. The neural network receives the same inputs as the 

existing controller, and the error between the neural network output and the existing 

controller output is back-propagated to train the neural network as shown in Fig.8. 
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A neural network is trained off line using the previous back-propagation 

learning rule to mimic an existing PID controller and then is further refined in 

conjunction with a process model. This work is one of the major commercial successes 

of neurocontrol.  Figure 9 illustrates how the proposed controller is trained and 

implemented.   

4. RESULTS AND DISSECTION 

The proposed NN is used to identify the inverse of system (D-C motor, amplifier, 

transducers, pump and load) dynamics, then we used this inverse model to generate the 

input voltage of reference swashplate angle to follow a pre-selected set point in flow 

and pressure.  

The capability of NN is trained by applying different set points of pump flow 

rates and pressures.  Fig.10 presents the space relation of the swashplate, pump flow 

rate and pump pressure.  As the swashplate angle is increased the flow rate is increased 

at the same pressure level.  If the back pressure level increases it will has opposite 

effect in flow rate at the same swashplate set point.  The resulted figure will be the base 

for training the inverse NN model.  It is clear from noticing the three dimensional plot 

that the relation is nonlinear.  Fig.11 shows the target swashplate angle and the trained 

NN output angle at different flow rates and pressure levels.  The error signal is 

illustrated in  

 

 
 

 

Fig.12.   It can be seen from the figure that the trained signal follows the 

desired signal very closely and the error nearly approach zero (4x10
-8 

m
3
/sec.) after 40 

samples.   

By using Ziegler-Nichols method the PID gains Kp, KI, and Kd will be [2100 

1.9091x10
5
 5.775], and it will produce an overshoot response of the swashplate and 

consequently of the pump flow rate as displayed in Fig.13 and 14.  As overshoot of the 

pump flow rate increases, the overshoot of the hydraulic motor output and the dynamic 

load also will increase.  So the PID control need to improve its gains setting to give 

minimum overshoots as possible.  The trail and error technique is considered to adjust 

manually the PID gains to get the accepted response of the pump flow rate. 
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The NN controller voltage will use the modified PID controller as a teacher to 

it as introduced in Fig.15. The trained signal follows the target signal very closely.  For 

testing the trained NN controller, a reference swashplate desired trajectory is applied in 

Fig.16. It is illustrated that the error in between of them is 0.07 Deg at steady state.  

with rise time of 0.1 sec. and no overshoot achieved. 

The corresponding response of the modified PID gains Kp, KI, and Kd of [900 

56 0.25], is shown in Fig.17 for the pump flow rate and pressure set point of [1.5x10
-4

 

m
3
/sec., 15MPa], it is noticed that the flow rate get steady state error as pressure is 

increased to 25MPa or 35MPa.  This is reasonable result for the fact of that the 

controller has not a pressure compensator for these disturbance to the nominal plant.  

The controller signal at the lower part of Fig.17 does not respond to the changes of the 

pressure levels.  In Fig. 18, the system response based on the proposal trained NN 

controller has a robustness behavior because of at every pressure level the inverse 

model repeat the calculation of the adequate swashplate angle to keep the flow rate 

constant regardless to the pressure level. 
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To improve the dynamic response of the pump, a DC motor is implemented to 

control the pump swashplate (and hence flow rate) directly. The pump and DC motor 

are mathematically modeled and their parameters are simulated via MATLAB 6.3 and 

SIMULINK 5.0 software.  By means of the DC motor’s quick dynamic response, the 

DC motor controlled pump demonstrated a fast dynamic response independent on the 

pump pressure. 

For precise control, an off-line learning algorithm is introduced. The strategy 

of design is also given.  It is important to note that the NN have the distinct advantage 

of not relying on the system parameters and it deal with system as a black box. The 

simulation results indicate the accuracy of tracking.  Also the effectively of the 

proposed controller with the inverse NN model is cleared.  It gave a robustness 

response, as the pressure changes, the pump does not affect to a great extent the output 

flow rate accuracy.   
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تعويضِ الضغطِ مع إزاحةِ متغيّرةِ يه ذات تدفقِ مضخّةِ مكبس التحكم فى  
إستعمال الشبكة العصبيةِ ب  

إإُ   لخخ ا ول لولكالطِقخخ  ال تخخنمإ إمخخ ا  حلخخأ منوخخِ مكوُنخخِ ا الخخ واالا الول لوللكلخخ ا  إحخخ أ مهخخ هخخ  المضخخةُ   
   بواسخط  حِكمتوخِ  لج  كبلخلةمإ لوج  بلمكإ  إزاح ا متغلُلةا  له ذا مضةُ  مكبسا لالأ اءَ وتع   الاستعمِلَ 

ي لكالأ اء الخ لنِم  تعتَبل إح أ الوسِالا اللالسخل ا لتَحسخلإ ةئخِااا المضخةُ ا  الحِكمِ  الموجو هتَلْقال  
ت فقا مطلبا لا لَعتمخَ  فطخط ىلخ  م اءا ئخمِ ا تحخوللا التخ فقَ  لكخإ الضمِإ إم ا  للأنظم ا الول لوللكل ا مَع 

بَ ل لُ بتخ ت  مطِوىخها منوج الحسخبِ  ال إستعمِلب اء الأ في هذه ال لاس ا     م اءا المضةُ ا ىل لعتم  ملضِ  
 ئخيلح  الخ فعإزاحخ   وقخ  اسختة م  للختحك  فخ     هالتطلل لخ PIDبملجعلخ  حِكمخه ( NNشبك  ىئخبلَ   

تخخخ   قخخخ النظخخخِ ا  واقعلخخخ َ  ق  نمخخخوذاا الشخخخبك  العئخخخبل ا المعكخخو ا  إإُ لَخخخطَبُ بت   تعخخخولتا تخخخالللا الضخخغطا  لخخخت  بلنمخخِ
 الطللطخخهل خخلأ مإُ إسخختعمِلَ  منخخه  و نظخخِ  الخختحك  لوخخذه الطلمبخخِ ل تطبلخخقا ال ممِللتوخخِ وكخخذلس تاسخخل  موضخخو 

 ل نُ ي إل  بَعْت الةئِااا الملغوب ا  هالم طتَلَحا 


