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One of the most important components in hydraulic circuits is the pump
that generates hydraulic power supply. The performance and the
versatility of a variable displacement piston pump are, to a large extent,
determined by its controller. Upgrading of existing controllers is
considered one of the major means of improving the characteristics of the
pump. The dynamic performance of hydraulic systems with a demand
flow supply not only depends on the performance of the flow modulation
valve, but also on the performance of the pump. In this study, the
performance of soft computing methodology, trained Neural Network
(NN) based on the conventional PID controller, is used for the control of
a swash plate displacement while the compensation of the effect of the
back up pressure is implemented by inverse NN model. The feasibility of
system is simulated and issue of implementation such pumps control is
established. It is seen that the use of the proposed methodology results in
some desirable characteristics.

KEYEORDS: Flow Rate Control, Neural Network, Variable
Displacement Axial Piston Pump, Inverse Model.

Nomenclature

Area of the piston, (8305x10° m?) Jp,  Average moment of inertia of
Viscous damping coefficient, swashplate yoke assembly,
(1.43 x 10° Nm.rad™s) (1.06 x10° Nm.rad™s?)
Damping coefficient of the Ky Back EMF constant of the DC
swashplate yoke assembly, motor, (2.27 V.rad™s)

(0.28 Nm.rad™s) Kqg Derivative gain

Total leakage flow coefficient, Ki Integral gain

(4.3 x10""° m%™.pa™) K, Proportional gain

Displacement of the pump, Kp1 Pressure torque constant, (7.46

(1.95 x10® m®.rad™) x10" Nm.Pa™)

Armature current, (A) Koz Pressure torque constant,
Moment of inertia of the motor (8.3x10”" Nm.Pa™.rad™)
rotator, (1.4x10°° Nm.rad™s®) K Motor torque sensitivity, (2.27

NmA™)
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L Terminal inductance of the DC Tas Static friction torque, (Nm)
motor windings, (0.0332 H) Te Motor electrical time constant,

N Number of pistons, (9 pistons) (6.87 x10°° sec)

Py Pump pressure, (Pa) Tt Torque produced by the

Qep External leakage flow of the coulomb friction force, (0.36
pump, (m3s™) Nm)

Qip Internal leakage flow of the T Motor mechanical time
pump, (m3s™) constant, (1.3 x10° sec)

Qp Output flow of the pump, (m3s™) \Y Input voltage, (V)

R Terminal resistance of the DC Vems back EMF voltage, (V)
motor windings, (4.83 Q) Vo Volume of the pump forward

Rp Radius of the piston pitch, chamber, (3x10° m?)
(0.0224 m) Be Bulk modulus of the fluid,

S Simplified pump model (1.45x10° Pa)
constant, (0.096 Nm) 0, Angular position of the DC

S, Simplified pump model motor shaft and pump
constant, (2.36 Nm.rad™), swashplate, (rad)

Tq Torque applied to the yoke by ®p Pump rotational speed, (183.3
the DC motor, (Nm) rad s™)

Tac Coulomb friction torque, (Nm) Y Damping factor.

Ta Load torque acting on the DC
motor shaft, (Nm)

1. INTRODUCTION

Variable displacement piston pumps have found widespread application in the field of
fluid power industry. The most common way to vary the flow rate of a pump is to vary
its “displacement” or “piston stroke” when it is operated under a constant rotational
speed. A variable displacement pump is designed such that the displacement can be
varied from zero to some maximum value while the pump is operating. The variable
displacement axial piston pump which is shown in Fig.1 has many applications in fluid
power systems. Changing the angle of the swashplate can change the piston stroke.
Since the displacement of the pump is proportional to the piston stroke, the
displacement can be changed by varying the angle of the swashplate, [1].

A DC motor is directly coupled to the pintle of the swashplate as shown in Fig.
2. It is anticipated that a DC motor should provide a rapid dynamic response to the
pump swashplate. The reason for this anticipation is that the maximum torque provided
by the DC motor is about 60 Nm [2], which is much higher than the torque generated
by its hydraulic counterpart (13 Nm to fully destroke the pump). Then, the dynamic
response of the pump flow rate should be increased. Further, it is much easier to
integrate a DC motor to an electronic feedback circuit. This design strategy enables
sophisticated electronic control algorithms to be applied for the DC motor controller.
Since a DC motor can initially locate the swashplate at any angular position, even at
zero position, it is much easier to control the initial flow rate of the pump and to build
the system pressure using this design. Because there is no return spring in the pump,
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the torque generated by the DC motor is mainly used to overcome the friction torque
and the “back” torque [3] produced by the pump pressure.
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Fig.l Schematic of variable Fig.2 Direct swashplate

displacement piston pump control with a DC motor

Several investigators [4, 5] have applied research about the dynamic properties
of a variable displacement piston pump. Most of these investigations are based on a
linearized model of the pump dynamics. In industrial application, the dynamic
characteristics of the variable delivery pump are always complex and highly nonlinear,
[6]. Moreover, there are too many uncertainties in it; as the viscosity of the oil, the
bulk modulus, leakage coefficient, equivalent torque coefficient, volumetric
displacement and others. So, the design of such pumps control flow at different pump
pressure levels needs various controllers that cause the pump output to match different
load characteristics more efficiently and effectively. The design of these controllers,
however, is often based on compromise and thus their performances are very operating
condition dependent.

Neural Network (NN) methods have become very popular recently involving
mapping of input-output vectors for cases where no theoretical model works
satisfactorily. An artificial NN [7-9] is an information-processing paradigm inspired by
the manner in which the heavily interconnected, parallel structure of the human brain
processes information. They are collections of mathematical processing units that
emulate some of the observed properties of biological nervous systems and draw on the
analogies of adaptive biological learning. NNs are trainable systems whose learning
abilities, tolerance to uncertainty and noise, and generalization capabilities are derived
from their distributed network structure and knowledge representation. Learning of a
NN typically implies adjustments of connection weights and biases so that the square
error (between NN output and desired output) is minimized. In this study a NN
controller technique is examined as applied to control the pump flow rate and
compensate its back pressure effect.
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2. MATHEMATICAL MODEL OF THE DC MOTOR
CONTROLLED PUMP

One approach to model a dynamic system is to use linear or small signal analysis. The
linear analysis method is based on the assumption that a linear transfer function can be
used to describe the behavior of the plant over the complete operating range. On the
other hand, the small signal analysis method assumes that the plant behavior is
nonlinear but the model can be linearized over a small range near an operating point.
Both methods are very powerful analytical tools but have limitations, especially for a
highly nonlinear dynamic system such as the DC motor controlled pump. In this study,
the pump is modeled using nonlinear large signal techniques which are represented by
a series of differential equations. Although it is difficult to analyze the dynamic
performance of a nonlinear model using conventional control theories (transfer
function approaches), it is feasible to do this using a simulation program.

The flow rate is determined by the angle of the swashplate which, is controlled
using a permanent magnet servo DC motor, [2]. From the viewpoint of the pump
control, the DC motor can be considered as a part of the pump. Hence, the model of
the DC motor is also a part of the pump model.

The mathematic model of a DC motor can be derived using a schematic
diagram of the motor circuit shown in Fig.3. The DC motor is assumed to consist of
inertia, Jq, with damping, By. The torque developed by the current in motor windings
not only overcomes the friction in the DC motor and load torque, Ty, on the motor
shaft but also accelerates the rotor, [10].

Relief
Valve
L
Fig 2. Schematic diagram of a DC motor Fig 4 lllmlp_uI!m.l:],]ﬁl system with
- - Relief Valve
The electrical circuit of the motor can be simply described by:
. di
V=V, +Ri+L—
dt (1)
Vemf =K b Hp (2)

The torque developed at the shaft of the motor is proportional to the armature current
and given by:

Ki=J,0p+B,0p+sgn(0,)T, +T,)+T, ©)
The friction torque consists of three terms: static friction, coulomb friction, and
viscous damping. Normally, the static friction and coulomb friction of the DC motor

are negligible compared to that of the pump swashplate. This is evident by the
effortless torque that is required to manually turn only the shaft of the DC motor.
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Neglecting the static and coulomb friction and taking Laplace transforms of
equations 1 to 3 yields the model of the DC motor as described by the following
transfer function.

0,(s) = K.V (s)—(Ls + R)T, (s) @)
s((Ls + R)(J,,s+ B, )+ K.,K,)

The numerator of equation 4 includes two terms. One term is the input signal and the

other one is the load, which can be considered as a “disturbance” input signal.

In 1987, Kavanagh [4] developed a comprehensive model for a variable
displacement axial piston pump which is used as the basis for modeling the pump in
this study. The pump model consisted of the torque model and fluid flow model. The
motion of the swashplate is described by the torque model; and the flow rate of the
pump is described by the flow model.

Some general assumptions are made regarding the pump model. They are:

* Constant prime drive speed on the pump,

* Zero suction and drain pressure,

* Constant chamber volume

* Constant fluid density and temperature.

In Kavanagh’s study, the swashplate is controlled by a control piston and balanced by a
return spring. However, in this study, the swashplate is actuated by a DC motor. Under
these conditions, Kavanagh’s model can be simplified to yield

J,0p=Ty—=S8,-5,0,-sgn( 0, )T, -B O,-K_ P —K_ P&, (5)
The displacement of the pump is defined as follows:
D,=NA R, tan o /=z (6)

Assuming that the rotational speed of the prime mover is w,, the ideal flow rate of the
pump is as follows:
Qusea =@,D, =@ NA R tan 0 Iz (7)

The actual flow rate of the pump is less than the ideal flow rate due to the fluid
leakage and fluid compression. There are two types of leakage flows in the pump, one
is the internal leakage flow between the suction port and the discharge port of the
pump and the other is the external leakage from the high-pressure chamber to the case
drain through the pump casing. From the continuity equation, the flow equation of the
pump can be written as

Vp de

Qpidea _Qip _er _Qp =ﬂ_eT (8)
Since the suction pressure is assumed to be zero, the leakage flow of the pump
(including the internal leakage and the external leakage flow) can be approximated by

le :Qip +er :Clppp (9)
Substituting equations.7 and 9 into equation.8, yields

VvV _dP
a)pNApRptaan/;z—C[pPp_Qp:ﬂ_" dtp (10)

As shown in Fig.4, there is a two-stage relief valve (RV), worked as a constant
“resistive” load. It is used to adjust the backpressure on the system.
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3. CLOSED LOOP CONTROL SYSTEM

The feedback signal is the angular position of the pump swashplate, which is also the
controlled variable. The closed loop system is including a controller, a power
amplifier, a DC motor and a variable displacement pump. The purpose for controlling
the swashplate angle is to control the flow rate of the pump. Before designing the
controller, it is important to determine the dynamic performance of the DC motor and
pump swashplate assembly. As a result, a model of the DC motor and pump is
attempted. Based on this model, a motor controller is designed based on Ziegler-
Nichols turning PID rules, [11]. A typical PID controller has the following transfer
function form,

K
G, (s)=K,+—+Ks (12)
S

As the system gains changed with pressure changes, the critical gain and

oscillation frequency are not the same under different loading. It is interesting to note
that at the same pressure level, the pump operation tended to be stabilized by
decreasing the gain and destabilized by increasing the gain. On the other hand, at the
same gain, the pump tends to be stable with increasing the pressure and unstable with
decreasing the pressure. Thus, the pump demonstrates a highly nonlinear characteristic
which is strongly dependent on the operating pressure and controller gains, [12].
So at every operating point a new PID gains setting is needed. However, the linear
PID is difficult to apply to this highly nonlinear plant. Even with a perfect feedforward
controller, a feedback controller is also required to correct for noise and unmeasured
disturbances.

The requirement for the controller design at this stage is to design a DC motor

controller which could drive the DC motor and pump swashplate at any pressure levels
with a fast dynamic response but without exhibiting any limit cycle oscillations.
Many methods can be used to design the controller for a dynamic system; however,
most of them are limited to linear systems. As a proposed solution, a NN controller is
designed using the linear PID as a teacher to it to control the system at any pressure
level.

However, NN is often called a black box, since, unlike fuzzy logic, it is
difficult to interpret the knowledge stored by a NN. Knowledge in a NN is represented
in the values of the weights and biases, which forms part of large and distributed
network.

3.1 Back-Propagation Algorithm

Back-propagation learning is one of the most popular types NN learning methods. It
has two operational phases. In first phase, forwarding phase, we send input data from
input layer to the output layer. In the second phase, back-propagation phase, we
calculate the error (between target and output) and propagate the error backwardly to
the input layer in order to change the weights of hidden layers by using the gradient
descent method.

The neural network is trained, using supervised learning, to develop an inverse
model of the plant is shown in Fig.5, the network input is the process output and the
network output is the corresponding process input. Inverse model are typically
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developed with steady state data and used for solve the problem of finding the
swashplate angle which will produce the required flow rate whatever the pressure
level.

Several studies have found that a three-layered neural network with one hidden
layer can approximate any nonlinear function to any desired accuracy [13]. The
network consists of input layer, hidden layer and output layer. To explain the Back-
propagation rule in detail a 3 layer network shown in Fig.6 will be used. The training
phase is divided as follows:

1. forward-propagation phase: X=[Q,; Pe] is propagating from the input layer to the
output layer Y=[6].
Zf[zx] (12)

v - f[ ZWJ (13)

q=1

2. back-propagation phase:(14) shows the error between the output, y, and the target, d.

n

E=§Z(di_yi)2 (14)

i=1

& Up Py

Plant

) Y-,

.

Fig.5 NN plant inverse model Fig.& NN for Back-propagation learning

By using the gradient-descent method, the weights in hidden-to-output connections are
updated as follows:

oE [oe T oy, 1 onet, |
Awgq =-7 =-n|— \ |
oW oY, || anet; || oWy | (15)
= —77[di - yi][f '(neti)IZq]= nd 4 Z g
Following equations are the weight update on the input-to-hidden correction. Also
chain rule and gradient-descent method are employed.
OE [ OE T enet q )

AVar =71 25— = _nLanet . JHL oV, | J (16)

:
) | (17)

r
i L
[ OE M ez, 1

_ a (18)
o oz, | oner, |
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In Back-propagation learning rule, the two phases are iterated until the
performance error decreased to certain small range.

The proposed network consists of the three layers; the output layer consists of
one neuron with linear activation function as shown in equation 19 and Fig.7.a.
Numbers of neurons in the hidden layer are chosen by trial and error. We begin by five
neurons but the network performance is not satisfactory. So, we increased the number
to 20 neurons and the performance is improved. Increasing the number may enhance
the performance, but we must bear in mind that the smaller numbers is the better in
terms of both memory and time requirement to implement the NN. The activation
functions in hidden layer neurons are tan sigmoid functions which are defined in
equation 20 and shown in Fig.7.b.

finel) [lnei)
1
|
. net i nel. @
-1
-1
(a) Piecewise Linear (b) Sigmoid

I1g.8 Training a NN to model an existing

F1g. 7 Activation functions i
N PID controller

1) piecewise linear activation function
(=1 net < -1
f(net) = J net |net|<1 (19)
+1 net >1
1)) Tan Sigmoid activation function
f (net ) = % (20)
1+ e

Neural network can be trained to model existing controllers, a straightforward
application of supervised learning. The neural network receives the same inputs as the
existing controller, and the error between the neural network output and the existing
controller output is back-propagated to train the neural network as shown in Fig.8.

Qpn'
_P. NN Inverse ] 0
A .“10('0' \N P“".p »
L. Controller

Angular position
Transducer

Fig.9 The NN pump control svstem with the NN inverse model
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A neural network is trained off line using the previous back-propagation
learning rule to mimic an existing PID controller and then is further refined in
conjunction with a process model. This work is one of the major commercial successes
of neurocontrol. Figure 9 illustrates how the proposed controller is trained and
implemented.

4. RESULTS AND DISSECTION

The proposed NN is used to identify the inverse of system (D-C motor, amplifier,
transducers, pump and load) dynamics, then we used this inverse model to generate the
input voltage of reference swashplate angle to follow a pre-selected set point in flow
and pressure.

The capability of NN is trained by applying different set points of pump flow
rates and pressures. Fig.10 presents the space relation of the swashplate, pump flow
rate and pump pressure. As the swashplate angle is increased the flow rate is increased
at the same pressure level. If the back pressure level increases it will has opposite
effect in flow rate at the same swashplate set point. The resulted figure will be the base
for training the inverse NN model. It is clear from noticing the three dimensional plot
that the relation is nonlinear. Fig.11 shows the target swashplate angle and the trained
NN output angle at different flow rates and pressure levels. The error signal is

Swash plate angle, [k 2.

L

=
I

-
o

LY

[}

o

Pump flow rate, m*/sec
&

) .
a4 ] ump pressure, Pa

Fig.10 The training trajectory reference for the inverse NN model

Fig.12. It can be seen from the figure that the trained signal follows the
desired signal very closely and the error nearly approach zero (4x10® m*/sec.) after 40
samples.

By using Ziegler-Nichols method the PID gains Kp, K,, and K4 will be [2100
1.9091x10° 5.775], and it will produce an overshoot response of the swashplate and
consequently of the pump flow rate as displayed in Fig.13 and 14. As overshoot of the
pump flow rate increases, the overshoot of the hydraulic motor output and the dynamic
load also will increase. So the PID control need to improve its gains setting to give
minimum overshoots as possible. The trail and error technique is considered to adjust
manually the PID gains to get the accepted response of the pump flow rate.
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The NN controller voltage will use the modified PID controller as a teacher to
it as introduced in Fig.15. The trained signal follows the target signal very closely. For
testing the trained NN controller, a reference swashplate desired trajectory is applied in
Fig.16. It is illustrated that the error in between of them is 0.07 Deg at steady state.
with rise time of 0.1 sec. and no overshoot achieved.

The corresponding response of the modified PID gains Kp, K,, and K4 of [900
56 0.25], is shown in Fig.17 for the pump flow rate and pressure set point of [1.5x10™
m®/sec., 15MPa], it is noticed that the flow rate get steady state error as pressure is
increased to 25MPa or 35MPa. This is reasonable result for the fact of that the
controller has not a pressure compensator for these disturbance to the nominal plant.
The controller signal at the lower part of Fig.17 does not respond to the changes of the
pressure levels. In Fig. 18, the system response based on the proposal trained NN
controller has a robustness behavior because of at every pressure level the inverse
model repeat the calculation of the adequate swashplate angle to keep the flow rate
constant regardless to the pressure level.
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Fig 15 Original and trained signals of the Fig. 16 The swashplate angle response based on
PITY control action and the error in between NN controller.
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To improve the dynamic response of the pump, a DC motor is implemented to
control the pump swashplate (and hence flow rate) directly. The pump and DC motor
are mathematically modeled and their parameters are simulated via MATLAB 6.3 and
SIMULINK 5.0 software. By means of the DC motor’s quick dynamic response, the
DC motor controlled pump demonstrated a fast dynamic response independent on the
pump pressure.

For precise control, an off-line learning algorithm is introduced. The strategy
of design is also given. It is important to note that the NN have the distinct advantage
of not relying on the system parameters and it deal with system as a black box. The
simulation results indicate the accuracy of tracking. Also the effectively of the
proposed controller with the inverse NN model is cleared. It gave a robustness
response, as the pressure changes, the pump does not affect to a great extent the output
flow rate accuracy.
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