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In this work, an adaptation-based method for deriving tuning guidelines 

for proportional-integral-derivative (PID) controllers that take explicitly 

into account the presence of nonlinear behavior is proposed. The central 

idea behind the proposed method is to adjust the PID controller 

parameters to force the nonlinear system response to follow a second 

order critically damped model reference (MR).  The design method starts 

by using classical tuning guidelines (typically derived on the basis of 

linear approximations) to obtain reasonable bounds on the tuning 

parameters.  A modifier technique will produce a correction signal to 

upgrade the PID controller signal to eliminate the relative error between 

the nonlinear system and the MR.  

The efficiency of the proposed tuning method is demonstrated through 

application to a hydraulic crane which is inherently nonlinear and 

contains components exhibiting strong friction, saturation, variable 

inertia mechanical loads, etc. The characteristics of these non-linear 

components are usually not known exactly as structure or parameters.   

It is found that the MR-PID control policy provided the most consistent 

performance in terms of rise time and settling time with set-point changes 

regardless of the nonlinearities characteristics.  

KEYWORDS: Optimal control, Nonlinear PID Control, Model 

Reference, Hydraulic Crane. 
 

1. INTRODUCTION 

The majority (over 90%) of the regulatory loops in the process industries use 

conventional proportional-integral-derivative (PID) controllers. Owing to the 

abundance of PID controllers in practice and the varied nature of processes that the 

PID controllers regulate, extensive research studies have been dedicated to the analysis 

of closed-loop properties of PID controllers and to devising new and improved tuning 

guidelines for the PID controllers, focusing on closed-loop stability, performance and 

robustness (see, for example, the survey papers [1], [2]). Most of the tuning rules are 

based on obtaining linear models of the system, either through running step tests or by 

linearizing a nonlinear model around the operating steady-state, and then computing 

values of the controller parameters that incorporate stability, performance and 

robustness objectives in the closed-loop system. 

While the use of linear models for the PID controller tuning makes the tuning 

process easy, the underlying dynamics of many processes are often highly complex, 
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due, for example, to the inherent nonlinearity of the hydraulic systems, or due to 

operating issues such as time delays and disturbances. Ignoring the inherent 

nonlinearity of the process when setting the values of the controller parameters may 

result in the controller's inability to stabilize the closed-loop system and may call for 

extensive re-tuning of the controller parameters. 

At the application side, the electrohydraulic drives are widely used in industrial 

applications, such as in rolling and paper mills, as actuators in aircraft, and in many 

different automation and mechanization systems.  The main reason for their broad 

industrial applications is the great power capacity that they can exert (as compared to 

their DC or AC counterparts), while preserving good dynamic response and system 

resolution [3]. 

Systems containing fluid power components offer interesting and challenging 

applications of modern and classical control techniques. The use of microcomputers 

and many feedback devices for hydraulic drives allows for implementation of different 

control algorithms that result in better steady-state and dynamic performances in fluid 

power control systems.  There are a number of research results on the applications of 

adaptive control [4], robust control [5], and variable structure control [6] in 

electrohydraulic control systems. 

In the Sliding Mode Control (SMC) method, the system trajectory is forced to 

reach the sliding surface and to slide along it, or to remain in its vicinity [6, 7].  Since 

in many situations the SMC is found robust to a great extent to plant parameter 

variations or uncertainties in the model of the system to be controlled, it has found 

broad applications. However, the chattering is a signify problem in the SMC 

implementations and solutions that either reduce or eliminate it had been investigated 

in [8, 9]. 

In a parallel way, even though fuzzy logic controllers often produce results 

superior to those of traditional controllers [10, 11], the control engineer has found 

difficulties in accessing the fuzzy logic controllers because of the following 

limitations: The design of the fuzzy logic controller is not straight forward due to 

heuristics involved with control rules and membership functions.  There is no standard 

systematic method for tuning the fuzzy logic controller parameters. 

Ayman A. Aly and Aly S. Abo El-Lail, [12] recognized that a hydraulically 

actuated system contains a host of nonlinear elements, thereby making a linear 

controller ineffective.  Furthermore, the authors illustrated that linearization of the 

dynamic equations over a small operating range and the design of an appropriate 

controller for each condition had limitations with time variant parameters challenge. 

The aim of this paper is to design a new PID controller which has the ability to 

solve the control problem of highly nonlinear systems such as the hydraulic crane, 

which is shown in Fig.1.  To test the designed optimal PID parameters, there are two 

ways one is verifying it practically and the other one is simulating the system with its 

full nonlinearities which will be the safer and the economizer solution.  The proposed 

method has not local compensation for each type of the system nonlinearities.  It deals 

with final system response and tries to correct it according to defined reference model.   
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2. SYSTEM CONSTRUCTION 

The servo system is composed of a hydraulic power supply, an electrohydraulic 

servovalve, a cylinder, mechanical linkages, and control. The piston position of the 

cylinder is controlled as follows: Once the voltage input corresponding to the desired 

position is transmitted to the servo controller, the controller signal current is generated. 

Then, the valve spool position is changed according to the input current applied to the 

torque motor of the servovalve. Depending on the spool position and the load 

conditions of the piston, the rate as well as the direction of the oil supplied to each 

cylinder chamber is determined.  

If it is necessary to represent servovalve dynamics through a wider frequency 

range, a second-order transfer function must be used. The relation between the 

servovalve spool position xv(t) and the input current iv(t) can be written as [4] 
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where kv represents the gain of the servovalve, ωv is the natural frequency of the 

servovalve, and ζv is the damping ratio of the servovalve. 

The valve spool occludes the orifice with some overlap so that for a range of 

spool positions there is no fluid flow. This overlap prevents leakage losses that increase 

with wear and tear. Thus, the dead zone should be placed between the valve dynamics 

and actuator/load dynamics.  For the sake of simplicity, this dead zone is equivalently 

moved to the position between the output of the controller and the input current of the 

valve. So, the dead zone nonlinearity may be characterized as shown in Fig. 2 and 

approximately described as: 
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where iv(t) is the current from the controller and I1 the width of the dead zone.   

The equations of the servovalve flow to and from the actuator (assuming symmetric 

valve port, zero lap design and zero return pressure) are as follows, 

For positive xv(t): 
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For negative xv(t):               
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where xv(t)  is the spool displacement, Ps   is the supply pressure,  is the mass density 

of the oil, Cd is the discharge coefficient of the orifice, W is the width of the orifice, 

suffix n denotes the annular side and suffix f  denotes the full side. 

The linearized flow equation of the actuator is given by [12]:  
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Ple(t) is the effective load pressure, qle(t) is the effective load flow rate, Ae is the 

effective piston area, B is the oil bulk modulus, K1 is the leakage coefficient of the 

piston, Xp(t) is the piston displacement, Vn(t) is the oil volume under compression in the 

annular side of the cylinder, Vf(t)  is the oil volume under compression in the full side 

of the cylinder, An is the annular area of the cylinder, Af  is the full area of the cylinder. 

The equation of motion of the crane is given by  

)()()()(
...

tFtXBtXMAtP dPePeele           (6) 

where Me represents the equivalent mass of both the variable inertia load and the 

piston, Be is the equivalent viscous damping coefficient, and Fd(t) represents the 

disturbing forces like friction forces. 

The various friction characteristics depend on lubrication, relative velocities of 

bodies at the contact point, pressures and others [3, 4].  A typical friction characteristic 

is presented in Fig.3.   
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The exact simulation of the nonlinear behavior of friction in the vicinity of a 

zero velocity is difficult.  The friction force is approximately simulated by the stick-

slip friction law.  The value of the stick-slip friction for positive values of Xp(t) is given 

simply by 
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where Fsl(t) is the slip friction which is proportional to the piston speed )(
.

tX P  and Fst(t) 

is the stick friction. Inside this small region, surrounding )(
.

tX P  = 0, a necessary 

approximation is that consider Ff(t) to be zero.   

The dynamics of hoses and pipes connecting the servovalve and the actuator 

are simulated by a time delay function.  The transport lag function is given by 
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esH
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Transport delays are approximated by a first-order lag 
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where Td is the delay time. The approximation introduces an extra pole to the system 

transfer function, but, unlike Pade's method, it does not introduce an extra zero [4]. 

The actuator is equipped with one hydraulic accumulator in the supply port to 

cope with the dynamic flow demands. A linear variable differential transformer 

(LVDT) measures piston displacement with gain of 10 V/m.  The block diagram of the 

hydraulic crane system is shown in Fig. 4.  The system geometric transformation and 

its physical parameters are illustrated in Appendixes A and B.  

 

3. CONTROLLER DESIGN 

PID-controller is the most common in many industrial applications and it has been 

stated in many papers that a PID-controller has been used in hydraulic position servo 

systems [4, 5, 13, 14 and 15].  The most serious nonlinearities are the nonlinearities of 

valves, load, and friction forces. The nonlinearities in the forward loop as shown in 

Fig. 5 cause the position error in position servo systems, and they are responsible for 
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performance limitations. Unquestionably, the plant as a whole poses a very difficult 

dynamics to control.   

 

 

 

As detailed model of the crane would be difficult to derive so it is too complex 

to be used in regulator design.  The common solution is often at first approximate the 

real complex model to linearized one and finally adjust nearly the PID controller 

parameters according to standard design method such as Ziegler-Nichols [16] method 

which is considered in the most popular one during the last 50 years.  The linear PID-

control algorithm in Laplace form is presented as follow, 
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where U(s), E(s) are the controller output, system response error, KP, KI, and KD are the 

proportional, integral and derivative PID gains respectively.  According to the studies 

of many researchers in the field of fluid power control systems [5, 6, 7 and 10] the 

following conclusions can be made: 

Linear PID-controllers are not suitable controllers for hydraulic position servo 

because of overshoots and limit cycles.  Since PID controller parameters are usually 

designed using either one or two measurement points of the system frequency response 

as Ziegler-Nichols method, their control performance may not satisfy the desired time-

response requirements.  

Also linear PID controller with additional nonlinearities compensators face the 

fact that the system nonlinearities have variable structure and parameters which clear 

the needing to readjust the controller gains time to time. 

When a system has different operating points with widely differing dynamic 

properties and high position accuracy is required, it is not always possible to control it 

with a fixed parameter controller, a nonlinear design of PID-controller might be a 

solution.  A model reference control scheme can guide continuously the tuning of the 

controller parameters to deal with system regardless the nature of its nonlinearities will 

be our propose policy during this work.   
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The proposed scheme is shown in Fig. 6.  The steps of the proposed control strategy 

are as follow, 

The First Stage: Because of there is no standard design method for the PID control 

parameters with nonlinear system, it will be designed for the linearized one as a 

starting point.  In order to have a good closedloop time response, the following 

performance function needs to be considered during the design of the PID controller 

parameters: 

ITASEKKKJ DIP ),,(         (11) 

where ITASE is the integral time absolute square error of the system output.  Thus, the 

optimal PID controller design problem may be stated as finding the PID controller 

parameters which give minimum performance function.  This step output will be the 

initial PID parameters which will be implemented in the nonlinear system. 

The Second Stage: is defining the reference model, in the time domain; 

specifications for a control system design involve certain requirements associated with 

the time response of the system. The requirements are often expressed in terms of the 

standard quantities on the rise time, settling time, overshoot, and steady-state error of a 

step response. The time response of a standard second-order system is widely used to 

represent the above time-domain requirements as a model reference to the real 

nonlinear time variant system. Thus, the second-order system is chosen for the tracking 

mode, whose transfer function is  
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where the parameters ωm is the model natural frequency and ζm the model damping 

ratio, which are chosen according to the desired time-domain response requirements of 

the closed-loop system.  

The Third Stage: If the controller gains which were achieved in the first stage are 

implemented in the nonlinear model, the response will be worthier than the response of 

the linearized one.  As shown in Fig.6 the system response is compared with the model 

reference response.  The relative error in between of them will be fed to the modifier 
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controller which will produce a correction signal to modify the optimal PID controller 

to eliminate the relative error. 

Using modifying law similar to Equation (10), one obtains the rules base for 

the modifier controller.  The variations in the PID gains will be as follows: 

PP KtK  )( , II KtK  )(  and DD KtK  )(       (13) 
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tde
Kt r

Dm
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er(t) is the relative error between the MR and the system response, cer(t) is change in 

the relative error, KP, KD, and KI are the PID gains variation, KP, KD, and KI are the 

calculated gains of the PID controller based on Equation (11), (t), (t) and (t) are the 

modifier outputs and  KPm, KIm and KDm are scaling factors. 

 

4. RESULTS 

By considering the fast system dynamics, the sampling period in the simulation routine 

is chosen to be 0.001 sec. The cost function is given by J(KP, Kl , KD). The reference 

input is a step signal, which changed from 0 to 10 degree. Using the MATLAB 

optimization toolbox, the optimal PID parameters KP=34.286, Kl= 0.686 and KD=0.171 

are found. 

Figure 7.a shows the closed-loop responses due to step input of linearized and 

nonlinear model with the same optimal PID controller parameters which is designed 

based on the linearized model.  The expected system response will be worthier than the 

response of the linearized one due to the effect of the nonlinearities which appears as 

increasing in the overshoots, rise time and settling time however, the steady state error 

is zero in the two cases.  The corresponding controller signals for each case are shown 

in Fig.7.b.  

Since in many industrial applications, it is necessary to assure that the response 

has minimum/no overshoot, this is achieved in Fig.8.a which, illustrates the model 

reference responses and the nonlinear system responses based on the proposed control 

policy with model damping ratio (ζm= 1) and two suggested model natural frequencies 

(ωm= 50 and 100 rad/sec).  It is easy to decide the value of ζm to be critically damped 

however the value of ωm need extra effort to be chosen within the physical limitation of 

the cylinder maximum velocity.  It is noticed that the responses are improved 

compared with the responses of Fig.7.a where, there is smaller settling and rise times 

with no steady state error or overshoot.  In the nonlinear PID controller design, the 

model reference controller outputs are used to adapt the final output of the controller 

according to the relative error in the performance of the reference model and the 

nonlinear system responses. 

The parameters of the modifier controller are KPm=1.45, KIm=0.720 and 

KDm=0.140.  The crossholdings controller outputs of the proposed strategy for the 

tested model are illustrated in Fig.8.b.  It is interesting to notice that the amplitude of 

controller’s signals became smaller with implementing the proposed strategy compared 

with Fig. 7.b, which is signifying index in the hydraulic system design and in its power 

energy saving.  
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Figure 8.c represents the modification signals in the PID control of the 

nonlinear system with the two tested models.  It is a remarkable notice that the 

modification mechanism work only with the transient change in the system response. 

Another good application with a continuous motion test as an input signal for the 

nonlinear system with the proposed controller policy is shown in Fig.9.  The system 

response follows the model reference with delay of 0.018 sec. 
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5. CONCLUSIONS 

Nonlinear dynamic phenomena in hydraulic systems are unique and diverse. It is 

difficult to estimate their global nature from local nature by linear analysis. Thus, the 

hydraulic systems are often very conservatively tuned and the fact that the cost of 

getting the tuning wrong can be highly destructive and costly.  To effectively assess the 
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performance of the proposed tuning method, the control system performance is 

evaluated via simulations.  

In this paper the position control problem of a hydraulic crane is addressed. 

The highly nonlinear behavior of the system limits the performance of classical linear 

controllers used for this purpose. It has been demonstrated that the MR-PID control can 

be successfully implemented in the control system of a hydraulic crane.  Since there 

are nonlinearities in the hydraulic position control system, it is difficult to achieve 

high-precision tracking performance using only linear PID controllers.  The results 

obtained show that the proposed controller policy exhibits much better response, much 

better tracking characteristics, and retains excellent following motion property 

comparable to, or better, than that obtained by the conventional optimally tuned PID 

controller.  

In addition to faster and more accurate responses, the proposed controller 

design steps are simple, thus, the application of the algorithm can be made wider than 

that of the conventional PID controllers. 
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Appendix-A 
The Hydraulic Crane Geometric Transformation 

For the kinematics analysis [3], the schematic representation of the hydraulic crane is 

illustrated in Fig.A.1.  

Since the two vectors, 
DBr  and 

CDr  are of fixed length and are rigidly 

connected at point D, they are combined. The reference angle, θ, is adjusted to reflect 

the orientation of the combined vector and this adjusted value is termed, θ
*
. This is 

shown graphically in Fig.A.2. 

 

 
 

Application of the coordinate system indicated in Fig.A.2 yields,  
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The unknown quantity, α, is found in terms of the other two unknowns, lAB and 

θ
*
, by first collecting terms containing α on the left hand side, 
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The length of the actuator, lAB, as a function of the angular displacement of the 

boom, θ
*
, is then found through substitution of Equation A.2 into Equation A.1: 
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Also a similar velocity analysis is performed in order that the angular velocity 

of the crane arm could be related to the velocity of the hydraulic actuator as follows: 
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Appendix-B 
System Physical Parameters 

Parameters Symbols Values Units 

Torque motor gain of servovalve 

Natural frequency of servovalve 

Damping ratio of servovalve 

Rated flow rate of servovalve  

Total leakage coefficient 

Supply pressure 

Bulk module of oil 

Mass density of oil 

Equivalent mass of both the load and the piston  

Diameter of rod 

Diameter of piston 

Maximum stroke of cylinder 

Length of pipeline and hoses from pump to cylinder 

Cylinder Coulomb friction force 

kv  

ωv  

ζv  

Qv 

Ct 

Ps 

B 

 
Me 

drod 

dpiston 

Xp 

L 

Ffc 

3.75x10
-4

 

1068 

0.5 

0.333x10
-3

 

1.0x10
-10

 

14x10
6 

7.0x10
8
 

900.0 

100.0 

0.12 

0.14 

1.2 

5.0 

200 

m/mA 

rad/sec 

- 

m
3
/sec 

m
5 
/(sec

 
N) 

Pa 

Pa 

kg /m 

kg 

m 

m 

m 

m 

N  

 

 

 أمثل لاخطّى فى رافعة هيدروليكية PID تحكم
 

ييت قا ذتييإذترتيي ع ذفييهذاييلعذعِ، ييي    ذاعِتكا ليييياذعِنهيي يذلحاك يياذعِتضاضيييلياِذضيي ط ذذت،لي يييا ذط يقيييسذسهاهييشاذت اق
(PIDذ)ذعِخخطييهذوجيو  ذ اك ذوعضي ذذعِتىذتأخلذفىذتعت ا اا  ِ ذعِضكي َ ذعِ  كيييس ذو ذذذذ.عِهيلو عءذعِط يقيس ذتني

ذذاييوذعِ  قت   حييس ذ ذت ،يي ي   ذعِخخطيييهتهييتاج سذلإجق ييا ذذPID ،ييا خ ذعِحاك يياذس نق ِ تا ،ييسذتاييا جذ  ج،ييياذذعِنظيياإ 
ذعِت يييي يإ ذذذ.لوذخ يييي ذحيييي  ذ((MRذِن ييييول ذ يييينذعِ  جيييياذعِ انيييييا ذط يقييييسذعِضيييي ط إهييييت، ا ذذت يييي سذط يقييييس 

ذعِخطييييي ذن ولجيييياسذعليييىذسهييياخذعِتق ي يييا   يييس ذعِكخهييييكيس ذ)تايييتقي ق ذ ،قوِ يييو ذعليييىذحييي و   فيييىذضييي طذس (ذِلح   
ر ييييسذتاييا َ ذي، ييي يذعِت ذتقنيييسذذ.،ييا خ  عِ ذِت  ق ذتاييياَ ذت ييحي   ييت نت   ذه  خطيييأذعِنهيي هذ يييينذلإيعِييسذعِذPIDعِحاك ييياذ  

ذعِخخطيه ذعِن ول . ذوذذعِنظاإ 
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ذعِ َ ذط يقس  ذكضاء يكيسذظش  عِ  قت   حس ذذض ط ذتني لاخطيييس ذس يخسذذايىذعِتيهذوذخخ ذعِتط ي  ذتِىذ عف،سذاي  وِ
ذعلىذذوت حتوي نا   ذت كوي ذذوذتا اعذوذحتكاِذرويلإت ،ق ض  ذعِ يكانيكييس  ذعِيّ.ذتني سح ا ذر يو ذلعتيهذ تّييي  

ذ ، وفس ذ اِض طذكت كيبذس وذ ذعِخخطييس ذعا َذِ يه ق نا   ذالجذعِ كوي ذ. ،ا خ خ ائص 
ييي وذذريي وذ ذذاسذتيييالأ عءذعلأك يي ذ  عذلع ذعِن ييول ذعِ  ج،يييىذرييي   ذذPIDذاك ييياعِحذهياهييس ذذسنذج   يينذناحييييسذورييي  

ذور  ذوُّ ذعِعلأهتق ع ذ عذذعلإ تضاع  ذنقطس  ذعِ ّضذعِنظ ذعنذذض طتّيي ع    .اعِخخطييخ ائص 


