THREE DIMENSIONAL HEAT TRANSFER CHARACTERISTICS THROUGH A LINEAR GAS TURBINE CASCADE | ||||
JES. Journal of Engineering Sciences | ||||
Article 10, Volume 41, No 3, May and June 2013, Page 947-970 PDF (967.53 K) | ||||
Document Type: Research Paper | ||||
DOI: 10.21608/jesaun.2013.114776 | ||||
![]() | ||||
Authors | ||||
H. M. El-Batsh ![]() | ||||
Mechanical Engineering Department, Benha Faculty of Engineering, Benha University, Egypt | ||||
Abstract | ||||
This study presents experimental and numerical investigation for three-dimensional heat transfer characteristics in a turbine blade. An experimental set-up was installed with a turbine cascade of five blade channels. Blade heat transfer measurements were performed for the middle channel under uniform heat flux boundary conditions. Heat was supplied to the blades using twenty-nine electric heating strips cemented vertically on the outer surface of the blades. Distributions of heat transfer coefficient were obtained at three levels through blade height by measuring surface temperature distribution using thermocouples. To understand heat transfer characteristics, surface static pressure distributions on blade surface were also measured. Numerical investigation was performed as well to extend the investigation to locations other than those measured experimentally. Three-dimensional non-isothermal, turbulent flow was obtained by solving Reynolds averaged Navier Stokes Equations and energy equation. The Shear stress Transport k- model was employed to represent turbulent flow. It was found through this study that secondary flow generated by flow deflection increases heat transfer coefficient on the blade suction surface. Separation lines with high heat transfer coefficients were predicted numerically with good agreement to the experimental measurements. | ||||
Keywords | ||||
Gas turbine blades; Heat transfer; Secondary flow; Computational fluid dynamics | ||||
Statistics Article View: 126 PDF Download: 323 |
||||