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ABSTRACT 
In this paper a system identification toolbox for MATLAB is introduced, including a user friendly 
graphical user interface. The toolbox is appropriate for the identification of systems in discrete-time 
linear parameter varying (LPV) form. Using LPVIOID 0F1 it is possible to identify input-output 
models in open-loop and closed-loop settings based on experimental data. It comprises several 
recent LPV identification techniques. Furthermore, a novel method for identifying unstable plants in 
closed-loop is proposed. The toolbox is equipped with several tools for model validation. Examples 
for illustration are included.  

Keywords: Linear parameter varying systems, system identification, non-linear modelling.  

1. Introduction 
The field of system identification is pushed by the continuous need for accurate and 

efficient models for industrial applications. The identification methods to give models 
from input-output data have been applied successfully to linear time-invariant (LTI) 
systems. However, real systems are often nonlinear or have a time-varying nature. 
Therefore, approximating these systems by LTI models may result in a large error. On the 
other hand, identifying nonlinear models for these systems introduces complexities in 
terms of modeling and control synthesis. 

The class of linear parameter-varying (LPV) systems can form an intermediate step 
between LTI and nonlinear/time-varying plants. In LPV representations, the signal 
relations are considered to be linear just as in the LTI case, but the parameters are assumed 
to be functions of an online measurable time-varying signal, the so-called scheduling 
variable. Therefore LPV models can describe a large class of nonlinear/time-varying 
systems in an attractive structure allowing based on linear control methods the use of LPV 
control-synthesis approaches, e.g. [3, 11], to control efficiently these systems. This has 
encouraged researches to develop techniques for LPV identification. Methods taking this 
approach can be either based on state-space models, see e.g. [15], or on input-output 
models [4]. From a practical point of view, the latter appear to be more promising [16]. 
Identification techniques based on input-output models have received recently considerable 
attention with many applied results [4, 5, 8, 1, 7, 13], as they are based on the extension of 
the well defined LTI Prediction Error Framework (PEM), [10], and enable model structure 

                                                           
1 https://sites.google.com/site/mustafarabeei/home/lpvioid-toolbox 
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selection and the stochastic analysis of parameter estimation in a computationally attractive 
manner, [13]. 

 The toolbox, LPVIOID, presented in this paper can be utilized to identify LPV input-
output (LPV-IO) models in open-loop and closed-loop using the most recent identification 
techniques in the literature. These include the least squares (LS) method [4, 13], the basic 
instrumental variables (IV) method [5, 13] and the refined instrumental variables (RIV) as 
well as the simplified refined instrumental variables (SRIV) methods [8, 14]. Note that all 
these techniques assume stable processes. Therefore, the LPVIOID has been accomplished 
with a novel identification technique based on the LS, IV and an iterative LS methods for 
identifying unstable LPV-IO plants from measurements in closed-loop. The toolbox 
enables the user to identify LPV-IO models using different types of model structures 
including Auto-Regressive with exogenous input (ARX), Output-Error (OE) and Box-
Jenkins (BJ) types along with several ways for model validation. Additionally there is a 
user support in terms of graphical tools for both model identification and evaluation as 
well as support for bookkeeping of the whole identification session (including models and 
data). Finally it is worth to mention that, to the best of the authors knowledge, this is the 
first toolbox for LPV-IO identification with these attributes. Next the features offered by 
the LPVIOID toolbox are summarized:   

1.  It allows the user to select from different identification methodologies the suitable 
way to identify an LPV-IO model with different model structures (including ARX, 
OE and BJ types) given an informative measured input-output data set, process and 
noise models orders and basis (scheduling) functions.  

2.  It enables the user to identify stable/unstable plants in open-/closed-loop 
configurations.  

3.  It offers different identification methods including LS, IV, RIV, SRIV and iterative LS.  
4.  It enables the user to evaluate the identified model using several ways in time and 

frequency domains.  
5.  It provides a friendly graphical user interface using mouse-click operations.  
6.  It includes bookkeeping facilities, e.g. saving the the identification session, including 

data sets; models and other parameters, to a file such that it can be retrieved later, as 
well as user-guide documentation.  

The paper is organized as follows: Section 2 reviews briefly the LPV-IO identification 
methods incorporated in the toolbox. Section 3 introduces a novel identification technique 
for identifying unstable LPV-IO models in closed-loop. The Main parts of the LPVIOID 
toolbox are described in Section 4 as well as the usage of all facilities and tools of the 
toolbox. Illustrative examples are presented in section 5. Finally, section 6 includes a 
summary and future work suggestions. 

2.  LPV-IO identification 
 In this section the identification methods incorporated in the LPVIOID toolbox are 

briefly described. The concepts of data generating LPV system, model representation and 
the definition of LPV-IO identification problem are reviewed.  
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2. 1. Data generating LPV system 
For identification in open-loop, Fig. 1 shows a single-input single-output (SISO) 

discrete-time data-generating LPV system defined by  
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kk
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                       (1) 

 where )(ku , )(ky  and pkp P∈)(  are system input, noisy output and scheduling 

signal, respectively, at a sampling instant k , pP  is a compact set representing the 
scheduling set of the LPV system, )(kw  is an additive noise with bounded spectral 

density, 
1−q  is the backward time-shift operator such that 

11 1)(=)( −− − qkukuq  and 
0>dτ  input delay. ),( 1
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−qpA k  and ),( 1
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−qpB k  are time-varying polynomials of 

degrees an  and bn  ( adb nn ≤+τ ), respectively, given by   
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  where )(0
ki pa , ani ,1,=   and )(0

kj pb , bnj ,0,=   are time-varying coefficients 

assumed to be non-singular on pP  with static dependence on )(kp , i.e. dependence on p  

at sampling instant k  only. Note that 0G  in Fig. 1 indecates the process to be identified 
which is given by  
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                                     (3) 

 where )(0 ky  denotes noise-free output. Furthermore, 0H  in Fig. 1 indicates the noise 
process, which is represented by a discrete-time autoregressive moving average (ARMA), 
[10], model:  

   

Fig. 1. open-loop system 
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 where )(ke  is a zero-mean, discrete-time white noise process with a normal distribution 

)(0, 2µN  where 
2µ  is the variance. 

)( 1

0

−qAH  and 
)( 1

0

−qBH  are monic polynomials 

with constant coefficients and with degrees aHn  and bHn  respectively:   
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  and with respective degrees aHn  and bHn . The noise process )( 1
0

−qH  is assumed to be 

stable and to have a stable inverse. In case 
1=)(=)( 1

0

1

0

−− qBqA HH , (4) defines an OE 
noise model, whereas with the representation given by (1a-b), (5) is general enough to 
represent BJ-type of noise models.   

 For closed-loop identification, Fig. 2, the open-loop data generating system (1) is used 

with the the noise process given by (5), the reference signals )(1 kr  and )(2 kr  as depicted 

in Fig. 2 and a stabilizing LTI controller 0K  given by  
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 where 
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0

−qBK  and 
)( 1

0

−qAK  are polynomials of respective degrees bKn  and aKn , 
bKaK nn ≥ , respectively given by   
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Fig. 2. Closed-loop system 

The controller 0K  guarantees the stability of the closed-loop system for all pkp P∈)( . 
Stability of such closed-loop system can be assessed using the stability concepts of [6] in 

Lyapunov sense. Furthermore, 0K  is assumed to be known.  

2. 2. Model representation 
 Next the parametrization and structure of the model that identifies the data-generating 

system (1) with the noise model (4) are introduced, where the process model and the noise 

model are parametrized separately. The process model is denoted by ),,( 1 θ−qpG k  and 
defined in LPV-IO representation by  

 ),(),,(=)(ˆ),,( 1
0

1 kuqqpBkyqpA d
kk
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                                                   (8) 

 where )(⋅A  and )(⋅B  are polynomials of order an  and bn , respectively, given in a form 

similar to that in (4.1a-b) and with parameter dependent coefficients )( ki pa  and )( kj pb  

parametrized respectively by   
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  with )(⋅lf , fnl ,1,=   and )(⋅mg , gnm ,1,=   are arbitrary basis functions of )(kp  
with static dependence and allow the identifiability of the model, see [8]. The process 
model parameters are collected in the vector  

 fnanfniifn aaaaa ,,,01,1,0[= θ
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 where 1)(1)(= +++ gbfa nnnnnθ . 

The noise-model part of (1), denoted by ),( 1 ρ−qH , is defined by  
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 where )( 1−qAH  and )( 1−qBH  are monic polynomials given by a form similar to that in 
(1a-b) with constant coefficients collected in the vector  
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 Introduce the model sets,  
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 2. 3. Identification problem 
 Next, the problem of identifying the process and noise models is demonstrated in open- 

and closed-loop settings.  
2. 3. 1. Open-loop 

  Now (1) with the parametrization (8) and (11) can be written in a linear regression form by  

 ),(~)(=)( kvkky +Τ θφ                                                                                         (16) 
 where  

 ),()()),((=)(~ 11 keqHqkpAkv −−
                                                              (17) 

 )(kφ  is the regression vector given by  
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 and θ  is given by (10). The problem of estimating θ  can be formulated as a 
minimization of the identification criterion  
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 where )}(),(),({= kpkukyND , Nk ,1,2,=  , denotes a data set collected from the 
open-loop system (1),  

 θφεθ )()(=)( kkyk Τ−                                                                            (20) 
 is the prediction error, such that the estimated parameter vector is  
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Estimation of θ  according to (19) is determined under the following assumptions:   
    A1  The data-generating system belongs to the set of all candidate models, i.e. 

M∈},{ 00 HG , see (15).  

    A2  The parameterization (9a-b) of the polynomials A  and B  , 
fn

lkl pf 1=)}({  and 
gn

mkm pg 1=)}({  are chosen such that the model },{ ρθ HG  is identifiable [8].  
    A3  The scheduling signal p  is noise free.  

    A4  The data set ND  is informative w.r.t the considered model set M , [8].  
 The identification problem can be solved by the least squares approach as follows:  
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 Remark 1. For the estimate lsθ  to be consistent, i.e. lsθ  converges in probability to θ , it 
is necessary that [10]  
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 The first condition in (23) is a persistency of excitation condition, which requires that 

the data set ND  be informative [13]. While the second condition can be illustrated as 

follow: If )(~ kv  is white noise, it will be independent of all past data values, and that 

condition will be satisfied, whereas in case )(~ kv  is colored noise, it will be correlated with 
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the delayed output variables present in )(kφ  and second condition will not be satisfied, 
see [12]. The least squares can give optimal solution for open-loop problem if the noise 
model is an ARX type, see [10],[12]. In practice noise models are usually not ARX; hence 
LS is not in general optimal and it will not give consistent estimate, but it is a primary step 
in all advanced identification methods, like IV and RIV.  

 
2.3.2  Closed-loop 

 For the closed-loop case, see Fig. 2, let )}(),(),({= kpkukycl
ND , Nk ,1,2,=  , 

denote a data set for the closed loop system, with the signals )(),( kpky  are measured and 
)(ku  computed as ))()(()(=)( 201 kykrKkrku −+ . The identification problem can be 

stated as follows: Given the true closed-loop system shown in Fig. 2, based on the model 

structure defined in (8) and (11), use the data set 
cl
ND  to estimate the model parameters 

collected in θ  such that assumptions 41 AA −  hold and the controller 0K  being known 
and ensure the strict stability of the closed-loop system for all values of the scheduling 

variable, )(kp . 

Based on the data set 
cl
ND  it is possible to represent the model in a linear regression as in 

(16-18). Therefore the problem of estimating θ  can be formulated as a minimization of the 
identification criterion  
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 where )(kθε  is the prediction error. Then θ  can be computed by (22), taking into 
consideration Remark 1.  

2. 4. Instrumental variables method 
 Due to the inconsistency of the LS estimation when OE and BJ model structures are 

considered, i.e. bias in the identified parameters; the instrumental variables method is 
usually used in practice, see [12] [13]. The IV method is able to identify consistently open-
loop and closed-loop models if the instruments are not correlated with the measurement 
noise [5]. However, the variance of the estimated parameters will be larger than that with 
LS estimation. A basic IV method is given by Algorithm 1.  
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Algorithm 1: One-step IV 

)(ˆ ky

_______________________________________________________________________ 
Step 1.   Use the LS method to minimize (21) based on the extended regressor (22). This 
estimates an auxiliary model.  
Step 2.   Generate an estimate  of )(ky  using the auxiliary model of Step 1. 
Step 3.   Construct an instrument based on )(ˆ ky , then estimate θ  using the IV method.  

 
An auxiliary model, for example computed by LS, can be used to generate the 

instrumental variables vector, as shown in Algorithm 4.4, see [5] for more details.  

2.5. Refined instrumental variables methods, RIV 
 The refined instrumental variables method, for open-loop and closed-loop LPV-IO 

identification has been introduced in [8] and [14], respectively. The method can deliver 
minimum variance and minimum bias (optimal estimate), however, it needs some 
iterations. In this method the noise model is identified along with the process model, 
therefore it assumes a BJ type of noise model, in the form indicated by (4) and (5). By 
assuming an OE type of noise model the RIV method is simplified to the SRIV method. It 
is in general suboptimal method, but experiments show that it still delivers small bias and 
variance, moreover it can be used to identify BJ type model, see [8] and [14] for more 
details.  

3.  Identification of unstable LPV-IO models 
The identification methods discussed in the previous section are used to identify stable 

LPV-IO models in open- or closed-loop. In this section we propose a technique that is 
capable to identify unstable LPV-IO models in closed-loop. It is based on formulating the 
closed-loop system in a form that can represent the LPV closed-loop identification 
problem in a linear regression form as the LTI case, which permits the use of least squares 
LS as well as IV approaches systematically.  

3. 1. Data generating system 
Consider the closed-loop discrete-time system shown in Fig. 3, with a strictly proper 

plant ),(0 qpG k , i.e. ab nn < , defined by (1), (2) and 0K  is a feedback stabilizing 

controller. In contrast to the LPV closed-loop identification techniques of [14] and [2], 0G  

and 0K  might be unstable systems.  
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Fig. 3. Closed-loop configuration 
  We consider the following assumptions:   

• The controller 0K  is a strictly proper LTI system given by  

),(
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=)(=)( 1
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0
0 ky
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qB
kyKkv

K

K
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(25) 
 where )(kv  is the controller output and )( 1

0

−qAK , )( 1

0

−qBK  are polynomials of 

respective degrees aKn  and bKn , bKaK nn > , given by (7a-b).  
• 0K  guarantees the stability of the closed-loop system for all 

pkp P∈)( .  
• The noise process is represented by  

 ),(=)(=)( 0 kekeHkw                                                                                        (26)  
 where )(ke  is a sequence of random variables with zero mean values. This defines an 

Output Error (OE) noise model. 
•  The controller output )(kv , see Fig. 3, is a noise free signal, i.e. it 

can be gathered without additive noise.  

 It is worth to mention that, the plant input )(ku  can be considered to be known signal 

since it is resulted from subtracting two known signals, i.e. )(kr  and )(kv . Therefore, one 
can use open-loop identification approach, e.g. [8], to identify the plant from the signal 

)(ku , noise free, and )(ky . However, an important condition for open-loop identification 
is that the identified plant should be stable which is not the case here, as the identified 
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plant might be unstable. Consequently we carry out the closed-loop identification scheme 
proposed in this section.  

Remark 2. Here we assume both the plant and the controller transfer functions are 
strictly proper. This assumption is reasonable; since all physical processes are strictly 
proper by nature.  

3. 2. Model representation 
Next the parameterization and structure of the model identifying the data-generating 

system is introduced. The process model is denoted by ),,( 1 θ−qpG k  and defined in input-
output LPV representation by (8) with (9(a-b)). The process model parameters are 

collected in the parameter vector θ  given by (10). Let }|{= θ
θ θ nG RG ∈  be the set of all 

process models in the form (8).  

3. 3. Closed-Loop formulation 
 Next a representation of the closed-loop system shown in Fig.3 is formulated. Using (1) 

and (25), the closed-loop system can be written as  
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 where 
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1 −− qAqA KK , see (1). Equation (27) can be 
represented in a compact form by  
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  where γn  = ),(max aKa nn . Note that the controller parameters, aKnKK aa ,,1 ,,
 and 

,1Kb ,  , bKnKb ,  might be unknown, therefore they can be identified simultaneously with 
the plant parameters. For generality, we consider that the controller parameters are 
unknown and the order of the controller is known. For simplicity we assume in (9) that 

)(=)( ⋅⋅ ml gf , fnl ,1,=  . Now (28) can be written in a linear regression form by  
),(~)(=)( kwkkx +Τφθ                                                                                             (31) 

 where   
),(),(=)(~ 1 kwqpHkw kcl

−

                                                                                         (32) 
  

ΤΤΤ −−−−−− )](,1),(),()(,1),([=)( bfnfn nkrfkrnkxkfkxk γφ
                           (33)   

and 
,,,,,,,[= ,,01,1,0 fnnnfn γγ

ααααθ 
 

,],,,,,, ,,01,1,0
Τ

fnbnbnfn ββββ 
                                                                            (34) 

 where  

,,0,1,=,,1,2,=,=
,,

,,
, f

iKiK

lili
li nlni

ab
ba

 γα 







−

                                                    (35) 
  

,,0,1,=,,1,2,=,
0

= ,
, fb

lj
lj nlnj

b









β

                                                                (36) 

3. 4. Identification problem 

 Let )}(),(),({= kpkrkxclu
ND , Nk ,1,2,=  , denote a data set gathered from the data 

generating system. The identification problem can be stated as follows: Given the true 
closed-loop system shown in Fig. 3, based on the model structure defined in (28), use the 

data set 
clu
ND  to estimate the model parameters collected in θ  (34) under the conditions  

A1-A4, see section 2.3.1, as well as the following assumptions, 

A5  The controller output signal )(kv  is noise free.  
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A6  If the controller is to be identified, its order and structure should be always chosen 
equal to the true one.  

3. 5. Basic IV method 

 In prediction error method, [10], with w~  is a white noise, i.e. 
Τ0][1=clH , the model 

represented in (28) yields a one-step-ahead predictor  
),(=1)|(ˆ kkkx φθθ

Τ−                                                                                                 (37) 
 which provides a one-step-ahead prediction error  

1).|(ˆ)(=)( −− kkxkxk θθε                                                                                       (38) 
 Therefore the problem of estimating θ  can be formulated as a minimization of the 

identification criterion  

)(1=),( 2

1=
k

N
M

N

k

clu
N θεθ ∑D

                                                                                         (39) 
 such that the parameter estimation is  

).,(minarg=ˆ θθ
θ

clu
NN M D

                                                                                      (40) 
 By considering (31) with the extended regressor in (37), the use of the LS method to 

obtain the solution (40) leads to optimal estimates of θ . In case that w~  is not a white 
noise as the situation here, see (32), IV methods can be used to provide unbiased estimates 
if the instrument is not correlated to the measurement noise, [5]. However, the variance of 
the estimated parameters will be larger than that of the LS estimation. Consider the 
assumptions A1-A6 in the previous subsection, a one-step IV algorithm is given by 
Algorithm 1. The problem of identifying the model (28) can be seen as an identification of 
an LPV model in open-loop.  

3.6  Iterative algorithm 
 Next an alternative method is presented to identify consistently the model (28). The 

model (28) can be rewritten as  
)(),(~)(),(=)(),( 111 kwqpHkrqpBkxqpA kclkclkcl

−−− +                                           (41) 
 where  
   
















 −
−

0
)(

=)(,
10
0),(

=),(~ 1
1 kw

kw
qpA

qpH k
kcl



 
Therefore, a one step ahead predictor for the model (41) can be formulated, [13], by  

 )()),(()(),(=1)|(ˆ 1
2

1 kxqpAIkrqpBkkx kclkcl
−− −+−θ  

)()),(~( 2
1 kIqpH kcl θε−+ −

                                                                                       (42) 
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 where 
22

2
×∈RI  is the identity matrix and the prediction error )(kθε  is given by (38). 

The predictor (42) can be reprinted in a pseudolinear regression by  
),|(=1)|(ˆ EE kkkx θφθθ

Τ−                                                                                          (43) 

where Eθ  is extended with the parameters of )(~ ⋅clH  as follows 
,,,,,,,[= ,,01,1,0 fnnnfnE γγ

ααααθ 
 

                       
,],,,,,,,,, ,1,0,,01,1,0

Τ

fnanfnnnfn ωωββββ
δδ


                           (44) 

 

,,0,1,=,,1,2,=,
10
0

= ,
, fa

li
li nlni

a









ω

                                                         (45) 

and )(kφ  is an extension of(33) given by  

 
1),(),()(,1),([=)( −−−−− ΤΤ krnkxkfkxk

fn γφ
 

ΤΤΤ −−− )](,1),(),(, afnbfn nkfknkrf θθ εε
 (46) 

An iterative LS algorithm, inspired by the approach of [13], is introduced here to 
minimize the identification criterion (39) corresponding to (43), see Algorithm 2.   
       _________________________________________________________________ 
      Algorithm 2: Iterative LS identification 
      __________________________________________________________________  

1. Use the LS method to minimize (39) based on the regressor (33) to estimate an 
ARX auxiliary model. Set τ  =0.  

2.    repeat  
3.   Generate an estimate )(ˆ )( ke τ

θ  of )(keθ  using the resulting model in the 
previous Step, using (38).  

4. Build the extended regressor )(kτφ  using (46).  

5. Estimate θ  in term of 

.)]()()(1)][()(1[=ˆ 1
1=1=1)(

−ΤΤΤ
+ ∑∑ kkkx

N
kkx

N
N

k

N

k ττττ φφφθ  Increase τ  by 1.  

6. until τθ  has converged or maximum number of iterations is reached.  
7. return estimated plant (and controller) parameters.  
_________________________________________________________________ 
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4. LPVIOID overview 
 The GUI (Graphical User Interface) of LPVIOID toolbox is opened by typing  LPVIOID 

in the MATLAB command window. This opens the main window shown in Fig. 4.   

Fig. 4. LPVIOID main window 
By looking to the main window we can find how much it is easy to perform the 

identification of models from a set of measurement data. The user starts by clicking on the 
Import I/O Data button which raises up a special window that allow specifying the input, 
output and scheduling signals, from available MATLAB workspace variables. Then the user 
turns to the estimation area where he/she specifies the identification technique, the orders of 
the model to be estimated as well as the scheduling functions. Finally the estimated model is 
represented in the evaluation area where it can be selected by the user to perform different 
validation and evaluation procedures in time and frequency domains. In the following we 
shall illustrate the main parts of LPVIOID main window:   

1.  A data board on the left part, where a data set can be imported from MATLAB 
workspace or a data file. The imported data set is represented by a colored line icon 
that can be selected by a mouse action. For closed-loop identification, the controller 
numerator and denominator coefficients can be typed or imported.  
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2.  An estimation board in the middle: This enables the user to select a suitable method 
among the others and to choose a suitable noise model structure from a list of 
models. The user can specify the suitable orders, delays and scheduling functions of 
the identified model.  

3.  A  model evaluation board in the right: This contains tools enable the user to 
perform different evaluation procedures in time and frequency domains as well as 
performing residual analysis. For example, by the Model Output option, the quality 
of the model that has been identified can be assessed. To this end, the predicted 
output by the identified model is compared with the measured output signal. As a 
figure of merit, we use the Best Fit Rate (BFR) criterion [9]:  

),0)100%
)(

),(ˆ)(((1=
2

2

||
||

yky
kykymaxBFR

−
−

−
θ

                                                  (47) 

 Where | . |2  is the 2  norm, y  is the mean of )(ky  and ),(ˆ θky  is the simulated model 
output based on the validation data.  

4.  The menu bar in the upper part: It contains dedicated sub-menus for each of the 
following:   

• data: deletion, time-domain plot or spectrum analysis.  
• model: deletion, evaluation or exporting to MATLAB workspace.  
•  session: bookkeeping; open, save, save-as or close.  
• help: open product help, quick start documents or running quick start 

Demo video.  
  

For more information about the facilities of the LPVIOID GUI, see the user manual 
available with the toolbox at the website: 

https://sites.google.com/site/mustafarabeei/home/lpvioid-toolbox  

5. Simulation examples 
In this section we present three examples for the identification in open-loop and closed-

loop using the LPVIOID toolbox.  

5. 1. Data generating system 
 Consider the data generating system, Fig. 1, that is described by (1) with (2a-b) and with 

coefficients:  
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o

kkkk
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kkkk
o

kkkk
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−−
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−−

                                                         (48) 

 where  
).(=),(=1,= 2

,2,1,0 kpfkpff kkk                                                         (49) 

 The scheduling variable )(kp  is given by  
][00.5))(0.35sin(0.5=)( ηπη ∈+kkp                                                            (50) 

where η  is a scalar which takes different values to affect the stability of the plant as 
shown below. In this part, the robustness of the LPVIOID identification methods are 
investigated with respect to certain signal-to-noise ratio (SNR)  

),(log10= 0

e

y

P

P
SNR                                                                                             (51) 

where 
0yP  and eP  are the average power of signals 0y  and e  respectively, see Fig. 1.  

5. 2. Open-loop identification 
To illustrate open-loop identification the open-loop system (1) with (48-49) is considered 

with )(ku  taken as a white noise with a uniform distribution 1,1)(−U , 1=η  to make the 
open-loop system strictly stable and a number of data samples 4000=N . Furthermore 

the white noise disturbance )(0,)( 2µN∈ke  is considered with 0.002=µ , where 
2µ  is 

the variance, to produce a SNR  = 15  dB and the following noise model  

1

1

0.31
0.51=)( −

−

+
+

q
qqH

                                                                                                        (52) 
is considered. Next the generated data set is imported to the LPVIOID, see section 4, and 

a model is estimated using the RIV identification method, with 
1=1,=1,=2,= aHdba nnnn  and 1=bHn . Finally, the estimated model is evaluated 

using the Model Output option in the evaluation board and the BFR (47) is found to be 
82.388% , see Fig. 5. The RIV method gives a good estimates of both plant and noise 
model parameters, relative to a SNR  of 15 dB, as indicated in table 1. Other options can 
be applied to perform more evaluation of the estimated model, see section 4.  
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Fig. 5.  LPVIOID open-loop model output 

Table  1. 
 Open-loop identification 

 estimated parameters of the A  polynomial 
method 1,1a  1,2a  1,3a  2,1a  2,2a  2,3a  
EXACT 1 -0.5 -0.1 0.5 -0.7 -0.1 

RIV 0.9939 -0.5070 -0.0295 0.5088 -0.7850 0.0282 
estimated parameters of the B  polynomial 

method 1,1b  1,2b  1,3b  2,1b  2,2b  2,3b  
EXACT 0.5 -0.4 0.01 0.2 -0.3 -0.02 

RIV 0.5007 -0.4060 0.0167 0.1976 -0.3107 0.0087 
the estimated HA  and HB  polynomials’ parameters 

method ,1Ha  ,1Hb  
EXACT 0.3 0.5 

RIV 0.3194 0.4926 
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5. 3. Closed-loop identification for stable plants 
For closed-loop identification, see section 2.3, the plant (1) with the coefficients (48-49) 

is simulated with a stabilizing controller  

1

1

0.851
0.51=)( −

−

−
+

q
qqK                                                                                              (53) 

 and the scheduling variable as given in (50) with 1=η , such that the open-loop and 
closed-loop systems be stable in the whole scheduling range. In the simulation, the 
reference signals )(1 kr  and )(2 kr  are both taken as white noise with a uniform 
distribution 1,1)(−U  and a number of data sample 4000=N , )(ke  is taken as a white 
noise disturbance with uniform distribution )(0, 2µN  with 0.0075=µ  to produce a SNR  
= 15 dB and the noise model (52) is considered. The RIV identification method in 
LPVIOID is applied, with 1=1,=1,=2,= aHdba nnnn  and 1=bHn  . Estimated model 
parameters are listed in table 1 and the simulated model output is compared in Fig. 6 with 
the true system output. 
 

 

Fig. 6. LPVIOID closed-loop model output 
As shown in table 2 and Fig. 6, the RIV method gives good estimation of the plant and 

the noise-model parameters with a 78.65.=BFR   



1656 
Mustafa Rabeei, et al., Lpvioid – a LPV identification toolbox for matlab: recent and novel 
techniques, pp. 1637 - 1659 

Journal of Engineering Sciences, Assiut University, Faculty of Engineering, Vol. 41, No. 4, July, 
2013, E-mail address: jes@aun.edu.eg 

Table  2.  
Closed-loop identification 

  the estimated A polynomial parameters  
Method 

1,1a  1,2a  1,3a  2,1a  2,2a  2,3a   
EXACT 1 -0.5 -0.1 0.5 -0.7 -0.1 
RIV 0.9992 -0.4441 -0.1887  0.4971 -0.6503 -0.1760 

the estimated B polynomial’s parameters  
Method 

1,1b  1,2b  1,3b  2,1b  2,2b  2,3b   
EXACT 0.5 -0.4 0.01 0.2 -0.3 -0.02 
RIV 0.4975 -0.3943 0.0068 0.1997 -0.2891 -0.0352  

the estimated HA  and HB  polynomials’ parameters 
Method 

,1Ha  ,1Hb  
EXACT 0.3 0.5 
RIV 0.3767 0.5651 

5. 4. Closed-loop identification with unstable plant 

Finally, the same plant used above is made unstable, by putting 1.7=η  in the 
scheduling variable expression (50). To stabilize the closed loop system, see Fig. 3, for that 
new range of scheduling variable we use the following controller  

 

.
0.20.11

0.50.1=)( 11

11

−−

−−

++
−

qq
qqqK                                                                                (54) 

 
 Next the closed-loop system is simulated using )(kr  taken as a white noise with a 
uniform distribution 1,1)(−U  , a number of data samples 4000=N  and an additive 
white noise disturbance )(0,)( 2µN∈ke  with 0.0025=µ , to produce a dBSNR 15= . 
The noise model is taken as 1=H , i.e. OE type. Estimated parameters using the LS, IV, 
and iterative-LS methods, explained in section 3, respectively, are shown in table 3. Using 
the option Compare under the menu Model, the three estimated models’ outputs were 
plotted in a single figure as shown in Fig. 7 and the BFR  of each model is also calculated. 
From table 3 and Fig. 7 it is found that LS provides biased estimate, iterative LS gives a 
little better estimate, while, IV gives the best estimate, 81.226%=BFR .  
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Fig. 7. LPVIOID closed-loop model output 

Table  3.  
Unstable plant identification 

  the estimated A polynomial parameters  

method 
1,1a  1,2a  1,3a  2,1a  2,2a  2,3a  

EXACT 1 -0.5 -0.1 .5 -0.7 -0.1 
LS 0.7919 -0.2102 -0.1691 0.3710 -0.5207 -0.1183 
IV 0.9825 -0.4715 -0.1435 0.4799 -0.7226 -0.0827 

iterative-LS 0.7923 -0.2127 -0.1673 0.3706 -0.5230 -0.1164 

the estimated B polynomial parameters 
method 

1,1b  1,2b  1,3b  2,1b  2,2b  2,3b  

EXACT .5 -0.4 0.01 0.2 -0.3 -.02 
LS 0.4959 -0.3884 0.0041 0.1390 -0.2051 -0.0531 
IV 0.4959 -0.3863 0.0035 0.1990 -0.3138 -0.0122 

iterative-LS 0.4958 -0.3890 0.0044 0.1390 -0.2045 -0.0536 
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6. Conclusions and future work 
This paper has presented the LPVIOID, a system identification toolbox for MATLAB to 

identify LPV-IO models. The toolbox comprises the more recent identification 
methodologies and supported with a user friendly graphical user interface (GUI). 
Furthermore the toolbox supports both open-/closed-loop identification and includes many 
options for model evaluation in time and frequency domains. A novel technique for the 
identification of unstable LPV-IO plants in closed-loop has been introduced and embedded 
in the LPVIOID. The current version of LPVIOID deals with the SISO LPV models only, 
an extension to the MIMO case is a straightforward future work.  
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 باستخدام الماتلاب تضم طرق حديثه  ةبرمجيه تفاعليه للنمذج
 المتغيرة ذات المعاملات الخطية ة للأنظمالمعملية ةو مبتكره في النمذج

 الملخص العربي
 ةلإجراء النمذج (MATLAB)  )  باستخدام برنامج LPVIOIDيقدم البحث حزمه برمجيه تفاعليه (

 الطرق الأكثر ةالحزم ) .   تضم هذهLPV  (ة ذات المعاملات المتغيرة الخطية للنظم الديناميكيةالمعملي
 النظم الغير ةلي تقنيه مبتكره تصلح لنمذجإ ة،  بالإضافة النظم ذات المعاملات المتغيرة في مجال نمذجةحداث
 ة.  تتيح هذه البرمجية باستخدام قياسات  مجمعه من نظم تحكم مغلقه الحلق )unstable systems( متزنه

 مجمعه سواء   قياسات ) باستخدامdiscrete-time (ة المتقطعة للأنظمةجراء عمليه النمذجإ ةمكانيإ ةالمقترح
 علي توافر العديد من الطرق (الأدوات)  لتقييم النموذج ة، علاوة الحلقةو مفتوحأ ةمن انظمه مغلقه الحلق

 . توضيحيهةمثلأ عده  أيضا يشمل البحث الناتج و كل ذلك بطريقه عمليه.


