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ABSTRACT

In this paper a system identification toolbox for MATLAB is introduced, including a user friendly
graphical user interface. The toolbox is appropriate for the identification of systems in discrete-time
linear parameter varying (LPV) form. Using LPVIOID1 it is possible to identify input-output
models in open-loop and closed-loop settings based on experimental data. It comprises several
recent LPV identification techniques. Furthermore, a novel method for identifying unstable plants in
closed-loop is proposed. The toolbox is equipped with several tools for model validation. Examples
for illustration are included.

Keywords: Linear parameter varying systems, system identification, non-linear modelling.

1. Introduction

The field of system identification is pushed by the continuous need for accurate and
efficient models for industrial applications. The identification methods to give models
from input-output data have been applied successfully to linear time-invariant (LTI)
systems. However, real systems are often nonlinear or have a time-varying nature.
Therefore, approximating these systems by LTI models may result in a large error. On the
other hand, identifying nonlinear models for these systems introduces complexities in
terms of modeling and control synthesis.

The class of linear parameter-varying (LPV) systems can form an intermediate step
between LTI and nonlinear/time-varying plants. In LPV representations, the signal
relations are considered to be linear just as in the LTI case, but the parameters are assumed
to be functions of an online measurable time-varying signal, the so-called scheduling
variable. Therefore LPV models can describe a large class of nonlinear/time-varying
systems in an attractive structure allowing based on linear control methods the use of LPV
control-synthesis approaches, e.g. [3, 11], to control efficiently these systems. This has
encouraged researches to develop techniques for LPV identification. Methods taking this
approach can be either based on state-space models, see e.g. [15], or on input-output
models [4]. From a practical point of view, the latter appear to be more promising [16].
Identification techniques based on input-output models have received recently considerable
attention with many applied results [4, 5, 8, 1, 7, 13], as they are based on the extension of
the well defined LTI Prediction Error Framework (PEM), [10], and enable model structure
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selection and the stochastic analysis of parameter estimation in a computationally attractive
manner, [13].

The toolbox, LPVIOID, presented in this paper can be utilized to identify LPV input-
output (LPV-10) models in open-loop and closed-loop using the most recent identification
techniques in the literature. These include the least squares (LS) method [4, 13], the basic
instrumental variables (IVV) method [5, 13] and the refined instrumental variables (RIV) as
well as the simplified refined instrumental variables (SRIV) methods [8, 14]. Note that all
these techniques assume stable processes. Therefore, the LPVIOID has been accomplished
with a novel identification technique based on the LS, IV and an iterative LS methods for
identifying unstable LPV-1O plants from measurements in closed-loop. The toolbox
enables the user to identify LPV-IO models using different types of model structures
including Auto-Regressive with exogenous input (ARX), Output-Error (OE) and Box-
Jenkins (BJ) types along with several ways for model validation. Additionally there is a
user support in terms of graphical tools for both model identification and evaluation as
well as support for bookkeeping of the whole identification session (including models and
data). Finally it is worth to mention that, to the best of the authors knowledge, this is the
first toolbox for LPV-IO identification with these attributes. Next the features offered by
the LPVIOID toolbox are summarized:

1. It allows the user to select from different identification methodologies the suitable

way to identify an LPV-10 model with different model structures (including ARX,
OE and BJ types) given an informative measured input-output data set, process and
noise models orders and basis (scheduling) functions.

2. It enables the user to identify stable/unstable plants in open-/closed-loop
configurations.

It offers different identification methods including LS, IV, RIV, SRIV and iterative LS.
It enables the user to evaluate the identified model using several ways in time and
frequency domains.

It provides a friendly graphical user interface using mouse-click operations.

It includes bookkeeping facilities, e.g. saving the the identification session, including
data sets; models and other parameters, to a file such that it can be retrieved later, as
well as user-guide documentation.

The paper is organized as follows: Section 2 reviews briefly the LPV-IO identification
methods incorporated in the toolbox. Section 3 introduces a novel identification technique
for identifying unstable LPV-10 models in closed-loop. The Main parts of the LPVIOID
toolbox are described in Section 4 as well as the usage of all facilities and tools of the
toolbox. Illustrative examples are presented in section 5. Finally, section 6 includes a
summary and future work suggestions.

H~ow

oo

2. LPV-10 identification

In this section the identification methods incorporated in the LPVIOID toolbox are
briefly described. The concepts of data generating LPV system, model representation and
the definition of LPV-10 identification problem are reviewed.
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2. 1. Data generating LPV system

For identification in open-loop, Fig. 1 shows a single-input single-output (SISO)
discrete-time data-generating LPV system defined by

A (P, a ) Y(K) = By (P, a7 )a u(k) + Ay (py, q Hw(k) (1)
where u(k)' y(k) and p(k)ePp are system input, noisy output and scheduling
signal, respectively, at a sampling instant k, P, is a compact set representing the

w(k) is an additive noise with bounded spectral

scheduling set of the LPV system,
-1 -1 — -1
is the backward time-shift operator such that g u(k) =u(k-1)q and

-1 -1
input delay. A(P.a7) and Bo(Pe.d7) are time-varying polynomials of

density, q
74 >0

degrees Na and Mo (nb M na), respectively, given by
AP a7 =1+ (p)a " +...+2a; (P *, 4
By (P 0™) =by +b(p)a™ +...+by (p)A ™, o)
0 . 0 .
where & (pk), 1=1...n, and b; (pk), 1=0,....n, are time-varying coefficients

assumed to be non-singular on P, with static dependence on p(k)' i.e. dependence on P

at sampling instant k only. Note that G, in Fig. 1 indecates the process to be identified
which is given by

Go(Pd7) A (P, 0 ) Yo (K) = By (P a)u(k) @)

where Yo (k) denotes noise-free output. Furthermore, H, in Fig. 1 indicates the noise
process, which is represented by a discrete-time autoregressive moving average (ARMA),

[10], model:
e(k) l

p(k) e
k y R
et I > Yk,

Fig. 1. open-loop system
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4 By, (a7)
w(k) = Ho(q7)e(k) = ————-e(k),
Ay, (@7) @

where e(k) is a zero-mean, discrete-time white noise process with a normal distribution

A,@h By (@)

2 2
N(O, z7) where # is the variance. nd are monic polynomials

n

with constant coefficients and with degrees @4 and Moy respectively:

A (@) =1+ag,0™ +.vah, a4 ™, )

0 —n
q bH,

By, (g =1+ bﬁ’|,1q‘1+...+bH’an (5)

-1
and with respective degrees Nan and M4 The noise process Ho(@™) is assumed to be

-1y — -1y —
stable and to have a stable inverse. In case AHO(q ) BHO(q ) 1, (4) defines an OE
noise model, whereas with the representation given by (1a-b), (5) is general enough to
represent BJ-type of noise models.
For closed-loop identification, Fig. 2, the open-loop data generating system (1) is used

with the the noise process given by (5), the reference signals n(k) and r, (k) as depicted

in Fig. 2 and a stabilizing LTI controller Ko given by

3 BKO @™
Ko (g )=m,
0 (6)
B -1 -1
where "0 @) and AKO @) are polynomials of respective degrees ok and naK,

> - ;
Mok = Mok , respectively given by

BKO(pqu) = blg,O +bf<),1qfl +---+b|2,anq_an )

A, (P 0) =1+ag,q™ +...+ag, q .
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e(k) i

r,(K) p(k) H,
wi(k)
+v u(k) v +l K
r,(k) - R, bl G, X =
-A

Fig. 2. Closed-loop system

The controller Ko guarantees the stability of the closed-loop system for all pk) € PF’.
Stability of such closed-loop system can be assessed using the stability concepts of [6] in

Lyapunov sense. Furthermore, Ko is assumed to be known.
2. 2. Model representation

Next the parametrization and structure of the model that identifies the data-generating
system (1) with the noise model (4) are introduced, where the process model and the noise

4 )

model are parametrized separately. The process model is denoted by G(p.q and

defined in LPV-IO representation by
AP, a7, 0)9,(k) = B(py, a7, 0)q “u(k), 8
(8)
where AC) and B() are polynomials of order Na and nb, respectively, given in a form

similar to that in (4.1a-b) and with parameter dependent coefficients a,(p) and b;(p,)

parametrized respectively by
n
f

ai(pk)zai,0+zai,l fi(p), 1=1,--,n, (9a)

"g
bj(pk):bj,0+zbj,mgm(pk)! jzl,"',nb,
m=1 (9b)
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with f' ('), 1= SN and U () m=1-, Ny are arbitrary basis functions of p(k)
with static dependence and allow the identifiability of the model, see [8]. The process
model parameters are collected in the vector

0=[a1]0...a1'nf By By a

T Ng
Byg -+ oDy oDy woonniBy o 1T ERY, w0

where Mo = n,(n; +1)+n,(n, +1).
-1
The noise-model part of (1), denoted by H(q ,p)’ is defined by
H(qfl,p)— H(qi1 ,0) e( )
AH ( ) (11)

-1 -1
where A(@) and By (@) are monic polynomials given by a form similar to that in
(1a-b) with constant coefficients collected in the vector

— T n
p_[aH,l"'aH,naH bH,l"'bH,an] eR”.

(12)
Introduce the model sets,
G={G,|0<R"} 13)
consisting of all process models in the form (11),
H={Hp|peR"} (14)
as the collection of all noise models in the form (15) and
M={(G,,H, )|col(8,p) =B R’ "} (15)

2. 3. ldentification problem

Next, the problem of identifying the process and noise models is demonstrated in open-
and closed-loop settings.
2. 3. 1. Open-loop

Now (1) with the parametrization (8) and (11) can be written in a linear regression form by

y(k) =¢" ()0 +V (K), (16)
where
V(k) = A(p(k),g ) H (@ ™)e(k), (17)

#(k) is the regression vector given by
$(k) = [-y(k=1), ~f, (p)y(k=1)~f, (p)y(k—n,),
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uk=74),+ g, (PJU(k=74). 9, (PIuCk =74 =n,)]", 18)

and @ is given by (10). The problem of estimating @ can be formulated as a
minimization of the identification criterion

1 N
M(©y,0) = %5 (K),
k=1 (19)
where Dy ={y(k),u(k), p(k)}’ k=12,...,N , denotes a data set collected from the
open-loop system (1),
£(K) = y(K) =" ()0 20)
is the prediction error, such that the estimated parameter vector is

éN =argminM (D, 0).
o (21)

Estimation of ¢ according to (19) is determined under the following assumptions:
Al The data-generating system belongs to the set of all candidate models, i.e.

Gy, Ho}eM , see (15).

Nt
A2 The parameterization (9a-b) of the polynomials A and B | {H POk and
g
{9 (P} are chosen such that the model Gy, H,} is identifiable [8].
A3 The scheduling signal P is noise free.

A4 The data set Dy is informative w.r.t the considered model set M, [8].
The identification problem can be solved by the least squares approach as follows:

s = 0 +[iZN:e(k)¢T (k)] [iZN:¢(k)¢T (k1™
N = N = (22)

Remark 1. For the estimate O to be consistent, i.e. O converges in probability to 9, it
is necessary that [10]

(i) Iim%ZN:¢(k)¢T(k) benonsingular
(i) m%iﬂk);ﬂk):o.

(23)
The first condition in (23) is a persistency of excitation condition, which requires that

the data set Dy be informative [13]. While the second condition can be illustrated as

follow: If v (k) is white noise, it will be independent of all past data values, and that

condition will be satisfied, whereas in case v (k) is colored noise, it will be correlated with
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the delayed output variables present in (k) and second condition will not be satisfied,
see [12]. The least squares can give optimal solution for open-loop problem if the noise
model is an ARX type, see [10],[12]. In practice noise models are usually not ARX; hence
LS is not in general optimal and it will not give consistent estimate, but it is a primary step
in all advanced identification methods, like IV and RIV.

2.3.2 Closed-loop
cl — —
For the closed-loop case, see Fig. 2, let Dy ={y(k),u(k), p(k)}’ k=12,....N

denote a data set for the closed loop system, with the signals y(k), p(k) are measured and

u(k) computed as u(k) =r (k) + KO(rZ(k)_y(k)). The identification problem can be
stated as follows: Given the true closed-loop system shown in Fig. 2, based on the model
cl

structure defined in (8) and (11), use the data set Dy to estimate the model parameters

collected in @ such that assumptions ALl— A4 hold and the controller Ko being known
and ensure the strict stability of the closed-loop system for all values of the scheduling

variable, p(k)'

cl

Based on the data set Dy it is possible to represent the model in a linear regression as in

(16-18). Therefore the problem of estimating 0 can be formulated as a minimization of the
identification criterion

M©F.6) = Y e ),
= (24)

where £, (K) is the prediction error. Then 0 can be computed by (22), taking into
consideration Remark 1.

2. 4. Instrumental variables method

Due to the inconsistency of the LS estimation when OE and BJ model structures are
considered, i.e. bias in the identified parameters; the instrumental variables method is
usually used in practice, see [12] [13]. The IV method is able to identify consistently open-
loop and closed-loop models if the instruments are not correlated with the measurement
noise [5]. However, the variance of the estimated parameters will be larger than that with
LS estimation. A basic IV method is given by Algorithm 1.
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Algorithm 1: One-step IV

Step 1. Use the LS method to minimize (21) based on the extended regressor (22). This
estimates an auxiliary model.

Step 2. Generate an estimate Y(k) of y(k) using the auxiliary model of Step 1.
Step 3. Construct an instrument based on Y(k), then estimate & using the IV method.

An auxiliary model, for example computed by LS, can be used to generate the
instrumental variables vector, as shown in Algorithm 4.4, see [5] for more details.

2.5. Refined instrumental variables methods, RIV

The refined instrumental variables method, for open-loop and closed-loop LPV-1O
identification has been introduced in [8] and [14], respectively. The method can deliver
minimum variance and minimum bias (optimal estimate), however, it needs some
iterations. In this method the noise model is identified along with the process model,
therefore it assumes a BJ type of noise model, in the form indicated by (4) and (5). By
assuming an OE type of noise model the RIV method is simplified to the SRIV method. It
is in general suboptimal method, but experiments show that it still delivers small bias and
variance, moreover it can be used to identify BJ type model, see [8] and [14] for more
details.

3. ldentification of unstable LPV-10 models

The identification methods discussed in the previous section are used to identify stable
LPV-10 models in open- or closed-loop. In this section we propose a technique that is
capable to identify unstable LPV-10O models in closed-loop. It is based on formulating the
closed-loop system in a form that can represent the LPV closed-loop identification
problem in a linear regression form as the LTI case, which permits the use of least squares
LS as well as 1V approaches systematically.

3. 1. Data generating system

Consider the closed-loop discrete-time system shown in Fig. 3, with a strictly proper
olant Co(P®) e M <Na yetined by (1), (2) and Ko is a feedback stabilizing
controller. In contrast to the LPV closed-loop identification techniques of [14] and [2], G

and Ko might be unstable systems.
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e(k) i

p(k) H,
v wi(k) i
u(k) + vk
r(k) —» — G, S A
= E Yo(k)
k
v(k) | K, |

Fig. 3. Closed-loop configuration

We consider the following assumptions:
e The controller K, is a strictly proper LTI system given by

B, (@)
v(k) = Koy(k) = ———-y(K),
i A (a™)
(25)
where V(k) is the controller output and Ay, (q™, By, (q™") are polynomials of
respective degrees n, and n,, n, >n,, given by (7a-b).

e K, guarantees the stability of the closed-loop system for all

pk)eP,.
e The noise process is represented by
w(k) = H,e(k) = e(k), (26)

where e(k) is a sequence of random variables with zero mean values. This defines an
Output Error (OE) noise model.
e The controller output V(k), see Fig. 3, is a noise free signal, i.e. it

can be gathered without additive noise.

u(k)

It is worth to mention that, the plant input can be considered to be known signal

since it is resulted from subtracting two known signals, i.e. r(k) and v(k) . Therefore, one
can use open-loop identification approach, e.g. [8], to identify the plant from the signal

u(k) , noise free, and y(k). However, an important condition for open-loop identification
is that the identified plant should be stable which is not the case here, as the identified
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plant might be unstable. Consequently we carry out the closed-loop identification scheme
proposed in this section.

Remark 2. Here we assume both the plant and the controller transfer functions are
strictly proper. This assumption is reasonable; since all physical processes are strictly
proper by nature.

3. 2. Model representation

Next the parameterization and structure of the model identifying the data-generating

-1
system is introduced. The process model is denoted by G(p.q7.0) and defined in input-
output LPV representation by (8) with (9(a-b)). The process model parameters are

- Ng
collected in the parameter vector 0 given by (10). Let G={G,|0<R"} be the set of all
process models in the form (8).

3. 3. Closed-Loop formulation

Next a representation of the closed-loop system shown in Fig.3 is formulated. Using (1)
and (25), the closed-loop system can be written as

{A(pk,q‘l) B(pk,Q‘l)}{y(k)}
-Be(@™)  Aq™) |v(k)

B(p,.q™) A(p,.a7™)
{ ’ }r(k){ ’ }W(k),

B -1 = B -1 -1 - -1
where 2K (@)= B (@) ACGT) = A (@)
represented in a compact form by

(27)

, see (1). Equation (27) can be

Ay (P, a)X(K) = By (P, 7)r (k) + Hg (P, g )w(k), (28)
where
x(k) =[y(k) v, (29)

A ('), Ba () and Ha () are polynomial matrices given respectively as follows

a1 0] &lalpd) bilpd)]
A (P4 )—{0 J+Z{_bm 2. }q ,

i=1

. [b,(p.)

By(P.a™=>| 0 g7,
=1

(30a)

(30D)
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1] .. [a(p)
Hy(p,a™)=[0[+>] 0 |q7,
1=1

(30c)

n max(n,, By e B

where 7 =

b
bKvl, e, MK might be unknown, therefore they can be identified simultaneously with
the plant parameters. For generality, we consider that the controller parameters are
unknown and the order of the controller is known. For simplicity we assume in (9) that

naK). Note that the controller parameters, aK and

[i()=9,0) =10 Now (28) can be written in a linear regression form by
x(k) = 0" (k) +W(k), (31)
where
w(k) = Hg (p,. g )w(k), (32)
g(k) =[-x"(k-1),,- o (K)x"(k-n,),r(k-1),, fo, Tk -n,)I" 33)
and
0=lag ..., s @y gyees@n o

Brore- P, 7"'!ﬂnb,0""’ﬂnb,nf]T! (34)
where

ail bi| -
a;, {—b’ a' }l =12,...,n,1=01,...,n(,

Ki 9K (35)

b, -
B = 1 i=12,...,n,1=01,...,n,

0 (36)

3. 4. ldentification problem

clu _ —
Let Dy" = {x(k), r(k), p(k)}, k=12,...,N , denote a data set gathered from the data
generating system. The identification problem can be stated as follows: Given the true
closed-loop system shown in Fig. 3, based on the model structure defined in (28), use the

clu

data set — N to estimate the model parameters collected in 0 (34) under the conditions
Al-A4, see section 2.3.1, as well as the following assumptions,

A5 The controller output signal v(k) is noise free.
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A6 If the controller is to be identified, its order and structure should be always chosen
equal to the true one.

3. 5. Basic IV method

In prediction error method, [10], with W is a white noise, i.e. Hy =[1 O]T, the model
represented in (28) yields a one-step-ahead predictor
%, (k|k=1) = 0"p(k), (37)
which provides a one-step-ahead prediction error
£ (K) = X() = %, (K [k ~1). 38)

Therefore the problem of estimating @ can be formulated as a minimization of the
identification criterion

clu 1 .
M (D3, 0) = 2D 53 (K)
k=1

such that the parameter estimation is
6, =arg min M (DS, 6).

(39)

(40)
By considering (31) with the extended regressor in (37), the use of the LS method to

obtain the solution (40) leads to optimal estimates of @ . In case that W is not a white
noise as the situation here, see (32), IV methods can be used to provide unbiased estimates
if the instrument is not correlated to the measurement noise, [5]. However, the variance of
the estimated parameters will be larger than that of the LS estimation. Consider the
assumptions Al-A6 in the previous subsection, a one-step IV algorithm is given by
Algorithm 1. The problem of identifying the model (28) can be seen as an identification of
an LPV model in open-loop.

3.6 lterative algorithm

Next an alternative method is presented to identify consistently the model (28). The
model (28) can be rewritten as

Ay (P a )x(K) = By (P @1 (K) + Hy (py 0 )W(K) 1)
where

~ -1 k
Hc.(pk,q*):{”pgq) ﬂ vv(k):m )}

Therefore, a one step ahead predictor for the model (41) can be formulated, [13], by
%, (k [k =1) = B, (P, a )r(k) + (1, — A, (P, g ) x(k)
+(Hcl(pk’q71)_|2)‘99(k) (42)
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2x2
where I, eR is the identity matrix and the prediction error £,(K) is given by (38).
The predictor (42) can be reprinted in a pseudolinear regression by

%y (k [k =1) = O2(k | 6¢),

(43)
where O is extended with the parameters of Ha () as follows
O =[agr-- oy, e O green Oy s
ﬁl,O“'":Bl,nf ""’ﬂng,O""Vﬁnﬁ,nf 1@yt Wy I, (44)
a, 0].
o, = 0 1 JA=12,...,n,1=01,...,n(,
(45)

and #(k) is an extension of(33) given by
#(k) =[-x"(k-1),,f, (K)x"(k-n,),r(k-1),

Jfork=n,),e, (k-1),, f. &, (k-n,)]"
LGOI ACELN)

An iterative LS algorithm, inspired by the approach of [13], is introduced here to
minimize the identification criterion (39) corresponding to (43), see Algorithm 2.

Algorithm 2: Iterative LS identification

1. Use the LS method to minimize (39) based on the regressor (33) to estimate an
ARX auxiliary model. Set 7 =0.
2.  repeat

3. Generate an estimate €{” (k) of e, (k) using the resulting model in the
previous Step, using (38).
4. Build the extended regressor ¢_(K) using (46).

5. Estimate ¢ in term of
~ 1 1 _
Oz ) =[WZkN:1X(k)¢,T (k)][WZkN:lX(k)ciﬁ,(k)¢,T (K)I™". Increase 7 by 1.

6. until 8, has converged or maximum number of iterations is reached.
7. return estimated plant (and controller) parameters.
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4. LPVIOID overview

The GUI (Graphical User Interface) of LPVIOID toolbox is opened by typing LPVIOID
in the MATLAB command window. This opens the main window shown in Fig. 4.

LPVIOID =N Eol )

Maodel Session Data Help

DATA MODELS
— Datalmport————————— — — Estimation [ Evaluation
Import 10 Data METHOD f MODEL STRUCTURE
Import Validation Data
Time Plot
Data Spectra SPECIFY MODELS ORDERS
na nb nd naH nbH Residual analysis

CONTROLLER, K
Model Qutput

Scheduling Functions

f(p) [1pp"2;1pp."2] specify the number of

frozen values

Known Controller g(p) [1pPp."2;1pp."2;1pp."2] PolesZeros Map

Frequency Response

i Transient Response
Estimate

MISCELLANIE:
|7 [Data | | cic | [HANDLES| [ close |

Fig. 4. LPVIOID main window

By looking to the main window we can find how much it is easy to perform the
identification of models from a set of measurement data. The user starts by clicking on the
Import I/O Data button which raises up a special window that allow specifying the input,
output and scheduling signals, from available MATLAB workspace variables. Then the user
turns to the estimation area where he/she specifies the identification technique, the orders of
the model to be estimated as well as the scheduling functions. Finally the estimated model is
represented in the evaluation area where it can be selected by the user to perform different
validation and evaluation procedures in time and frequency domains. In the following we
shall illustrate the main parts of LPVIOID main window:

1. A data board on the left part, where a data set can be imported from MATLAB
workspace or a data file. The imported data set is represented by a colored line icon
that can be selected by a mouse action. For closed-loop identification, the controller

numerator and denominator coefficients can be typed or imported.
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2. An estimation board in the middle: This enables the user to select a suitable method
among the others and to choose a suitable noise model structure from a list of
models. The user can specify the suitable orders, delays and scheduling functions of
the identified model.

3. A model evaluation board in the right: This contains tools enable the user to
perform different evaluation procedures in time and frequency domains as well as
performing residual analysis. For example, by the Model Output option, the quality
of the model that has been identified can be assessed. To this end, the predicted
output by the identified model is compared with the measured output signal. As a
figure of merit, we use the Best Fit Rate (BFR) criterion [9]:

BFR = max((1— YKV =YKz 5310004 (47)
ly(K) -1,
Where | . |, isthe ¢, norm, ¥ is the mean of y(k) and Y(k,8) is the simulated model

output based on the validation data.
4. The menu bar in the upper part: It contains dedicated sub-menus for each of the

following:

o data: deletion, time-domain plot or spectrum analysis.

o model: deletion, evaluation or exporting to MATLAB workspace.

o session: bookkeeping; open, save, save-as or close.

e help: open product help, quick start documents or running quick start
Demo video.

For more information about the facilities of the LPVIOID GUI, see the user manual
available with the toolbox at the website:
https://sites.google.com/site/mustafarabeei/home/lpvioid-toolbox
5. Simulation examples

In this section we present three examples for the identification in open-loop and closed-
loop using the LPVIOID toolbox.

5. 1. Data generating system

Consider the data generating system, Fig. 1, that is described by (1) with (2a-b) and with
coefficients:
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a (p) = fk,O_O'ka,l_O'lfk,Z’
a;(p,) =05f,-07f,-0.1f,,,

(48)
b’(p,) =05f,-04f  +0.01f,,
b(p,) =0.2f,,—03f,,—0.02f,,,
where
fk,O =1, fk,l = p(k), fk,z = pz(k)- (49)
The scheduling variable p(k) is given by
p(k) =7(0.5sin(0.357k) +0.5) € [0 7] (50)

where 77 is a scalar which takes different values to affect the stability of the plant as

shown below. In this part, the robustness of the LPVIOID identification methods are
investigated with respect to certain signal-to-noise ratio (SNR)

P
SNR =10log(—2), (51)
P
where Pyo and P, are the average power of signals Yy, and e respectively, see Fig. 1.

5. 2. Open-loop identification

To illustrate open-loop identification the open-loop system (1) with (48-49) is considered
UC11) 7=1 6 make the

open-loop system strictly stable and a number of data samples N = 4000 Fyrthermore

with u(k) taken as a white noise with a uniform distribution

2 — 2
the white noise disturbance (K) €N, £7) s considered with 4= 0-002 \yhere 4 s
the variance, to produce a SNR =15 ¢B and the following noise model
1+0.597"
M= g

is considered. Next the generated data set is imported to the LPVIOID, see section 4, and
a model is estimated wusing the RIV identification method, with

n,=2,n,=1,n,=1,n,, =1 and n,, =1. Finally, the estimated model is evaluated
using the Model Output option in the evaluation board and the BFR (47) is found to be
82.388%, see Fig. 5. The RIV method gives a good estimates of both plant and noise

model parameters, relative to a SNR of 15 dB, as indicated in table 1. Other options can
be applied to perform more evaluation of the estimated model, see section 4.
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validation of estimated model.
File Edit View Insert Tools Desktop Window Help

BFR = 82.388951 %

m— Estimated Cutput
- | === Measured Output H
051
= 0
05k
Ak i
1 1 1 1 1 1 1
2000 2005 2010 2015 2020 2025 2030 2035 2040
kTs

=N o =

]

Fig. 5. LPVIOID open-loop model output

Table 1.
Open-loop identification

estimated parameters of the A polynomial
methOd a1,1 a1,2 a1,3 a2,1 a2,2 a2,3
EXACT 1 -0.5 -0.1 0.5 -0.7 -0.1
RIV 0.9939 -0.5070 | -0.0295 0.5088 -0.7850 0.0282
estimated parameters of the B polynomial
methOd bl,l b1,2 bl,3 b2,1 b2,2 b2,3
EXACT 0.5 -0.4 0.01 0.2 -0.3 -0.02
RIV 0.5007 -0.4060 0.0167 0.1976 -0.3107 0.0087
the estimated A, and B, polynomials’ parameters
method a, by 1
EXACT 0.3 0.5
RIV 0.3194 0.4926

Journal of Engineering Sciences, Assiut University, Faculty of Engineering, Vol. 41, No. 4, July,

2013, E-mail address: jes@aun.edu.eg



1655
Mustafa Rabeei, et al., Lpvioid — a LPV identification toolbox for matlab: recent and novel
techniques, pp. 1637 - 1659

5. 3. Closed-loop identification for stable plants

For closed-loop identification, see section 2.3, the plant (1) with the coefficients (48-49)
is simulated with a stabilizing controller

1+0.59™

K (q) :—q_l

1-0.85¢q

and the scheduling variable as given in (50) with 7 =1, such that the open-loop and
closed-loop systems be stable in the whole scheduling range. In the simulation, the
reference signals r,(k) and r,(k) are both taken as white noise with a uniform
distribution U(-1,1) and a number of data sample N =4000, e(k) is taken as a white

noise disturbance with uniform distribution N(0, z*) with £=0.0075 to produce a SNR
= 15 dB and the noise model (52) is considered. The RIV identification method in
LPVIOID is applied, with n, =2,n, =1,n, =1,n,, =1 and n,, =1 . Estimated model

parameters are listed in table 1 and the simulated model output is compared in Fig. 6 with
the true system output.

(53)

validation of estimated model. IEI@

File Edit Wiew Insert Tools Desktop Window Help ™

BFR = 78.650524 %

- —— Estimated Output [

————— Measured Cwutput

2 1 1 1 I 1 1 1 .
2000 2005 2010 2015 2020 2025 2030 2035 2040

kTs

Fig. 6. LPVIOID closed-loop model output

As shown in table 2 and Fig. 6, the RIV method gives good estimation of the plant and
the noise-model parameters with a BFR =78.65.
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Table 2.
Closed-loop identification
the estimated A polynomial parameters
MethOd al,l ai,Z ai,S a2,1 a2,2 a2,3
EXACT 1 -0.5 -0.1 0.5 -0.7 -0.1
RIV 0.9992 -0.4441 -0.1887 0.4971 -0.6503 -0.1760
the estimated B polynomial’s parameters
MethOd bl,l b1,2 b1,3 b2,l b2,2 b2,3
EXACT [0.5 -0.4 0.01 0.2 -0.3 -0.02
RIV 0.4975 -0.3943 0.0068 0.1997 -0.2891 -0.0352
the estimated A, and B,, polynomials’ parameters
Method a, , b, ,
EXACT 0.3 0.5
RIV 0.3767 0.5651
5. 4. Closed-loop identification with unstable plant
Finally, the same plant used above is made unstable, by putting n=17 in the

scheduling variable expression (50). To stabilize the closed loop system, see Fig. 3, for that
new range of scheduling variable we use the following controller

0.1 -0.597"

K(q) = :
@ 1+0.1g"+0.2q™"

(54)

Next the closed-loop system is simulated using r(k) taken as a white noise with a
uniform distribution U(-1,1) , a number of data samples N =4000 and an additive

white noise disturbance e(k)eN(0, #*) with 2=0.0025, to produce a SNR =15dB.

The noise model is taken as H =1, i.e. OE type. Estimated parameters using the LS, 1V,
and iterative-LS methods, explained in section 3, respectively, are shown in table 3. Using
the option Compare under the menu Model, the three estimated models’ outputs were
plotted in a single figure as shown in Fig. 7 and the BFR of each model is also calculated.
From table 3 and Fig. 7 it is found that LS provides biased estimate, iterative LS gives a
little better estimate, while, IV gives the best estimate, BFR =81.226%.

Journal of Engineering Sciences, Assiut University, Faculty of Engineering, Vol. 41, No. 4, July,
2013, E-mail address: jes@aun.edu.eg



1657
Mustafa Rabeei, et al., Lpvioid — a LPV identification toolbox for matlab: recent and novel
techniques, pp. 1637 - 1659

Model Comparison. =R EEE ==

File Edit View Insert Tools Desktop Window Help ¥

Estimated Model(s) Output BFRs

: Model 1 :79.720958 %
06 i 7 Model 2 :81.226398 %
Model 3 :79.736336 %

Fig. 7. LPVIOID closed-loop model output

Table 3.
Unstable plant identification

the estimated A polynomial parameters

method &, &, R 851 ¥ 8,3
EXACT 1 -0.5 -0.1 5 -0.7 -0.1
LS 0.7919 -0.2102 -0.1691 0.3710 -0.5207 -0.1183
v 0.9825 -0.4715 -0.1435 0.4799 -0.7226 -0.0827

iterative-LS| 0.7923 -0.2127 -0.1673 0.3706 -0.5230 -0.1164
the estimated B polynomial parameters

method bl,l bl,Z bl,3 b2,1 b2,2 b2,3
EXACT 5 0.4 0.01 0.2 03 -.02
LS 0.4959 | -0.3884 | 00041 | 01390 | -02051 | -0.0531
\Y 0.4959 | -0.3863 | 00035 | 01990 | -0.3138 | -0.0122

iterative-LS| 0.4958 -0.3890 0.0044 0.1390 -0.2045 -0.0536
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6. Conclusions and future work

This paper has presented the LPVIOID, a system identification toolbox for MATLAB to
identify LPV-IO models. The toolbox comprises the more recent identification
methodologies and supported with a user friendly graphical user interface (GUI).
Furthermore the toolbox supports both open-/closed-loop identification and includes many
options for model evaluation in time and frequency domains. A novel technique for the
identification of unstable LPV-10 plants in closed-loop has been introduced and embedded
in the LPVIOID. The current version of LPVIOID deals with the SISO LPV models only,
an extension to the MIMO case is a straightforward future work.
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