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ABSTRACT

This paper attempts to investigate the horizontal conductor lightning striking distance estimation.
An electromagnetic model was proposed to model a vertical downward lightning leader and an
infinite grounded horizontal conductor by using the charge simulation method (CSM) to calculate
the lateral striking distance. A formula between the lateral striking distance, the lightning current,
and the horizontal conductor height was estimated. The proposed formula was compared with
electromagnetic model and previous formulas. By the use of a similar methodology, a horizontal
conductor voltage coefficient had been proposed and estimated. The proposed voltage coefficient
was used to modify the electrogeometric model in order to study lightning striking rates of an
unshielded horizontal conductor for different heights at either AC or DC voltages.

Keywords: Electromagnetic theory, Electro-geometric model, horizontal conductor, lightning
leader, striking distance, charge simulation method, conductor voltage.

I. Introduction

The study of electric power reliability is one of the main concerns of electrical
engineers. This issue has been researched previously by registering and assessing customer
service across a considerable period of time. The analysis of such data has revealed weak
points in electric power grids resulting from grid faults and lightning stokes to the electric
power grid [1]. Protection and control devices were distributed in electric power grids
which supplied high demand electrical power to costumers, [2]. Some areas around the
equator have over 100 days of lightning strikes per year. Consequently lightning strikes to
the electric power grid have become the main reason for loss of the electric power supply.
In addition, where downward lightning charges travel down along the lightning leader, the
electric field on the surface of conducting objects increases. Both, the direct lightning
current and the induced current due to lightning discharges cause damage to equipment
[3-4]. Therefore, lightning protection strategies are based on shielding electric power
equipment by using shielding wires or rods. When the lightning leader bypasses the
shielding systems and strokes the electric power grid, the distributed arrangements of surge
arrestors protect different electric power components. However, selecting the location of
surge arrestors is a complex process, as it must be conducted based on the electromagnetic
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transient of the electric power grid. Usually, the electric power grid demonstrates a
dynamic behavior and varies with time [5-6]. As a result, an effective design of the
lightning shielding system is a high priority in order to defend electric power grids. To
achieve this objective, different techniques have been used to estimate lightning strike
distance to grounded objects and the design of shielding system.

1.1. Electro-geometric model (EGM)

The Electro-geometric model is one of the techniques that have been successfully
employed to design a shielding system and to provide a scientific basis for calculating the
annual number of lightning strokes to electric power components and buildings [7-12]. As
the downward leader approaches the ground, a point of the discrimination is reached for a
final leader step. In contrast, other models simulate the upward directed leaders from
objects [13-16]. The EGM portrays this concept with the use of striking distances [7].
This is the distance between the lightning leader tip and the conducting object, when the
object surface electric field reaches a critical electric field of air breakdown and an upward
leader starts from the object to meet lightning downward leader. A number of equations
have been proposed for determining the striking distance and the principle examples are
listed as follows [8-10]:

r, =21 +30(1—¢e""*®)  Darveniza (1)
r, =101°% IEEE, Love 2)
r,=9.41%" Whitehead (3)
r, =81°% IEEE 4)
r, =331 Suzuki 5)
r,=191" V. Cooray, et.al (6)

where r; is the striking distance in m; / is the magnitude of the lightning current in kA.

Based on the observations of the lightning strikes to different transmission lines at
different conditions, Eriksson proposes a lateral striking distance equation with a
dependence on conductor height A[11]:

D,(I,h)=0.671""*h"° (7

Rizk also studied the effect of conductor height on the lateral lightning striking
distance [12], for a current ranging from 5 to 31 kA and a conductor height range from 10
to 50 m.

D,(I,h)=1571"%p"* (8)

The Electro-geometric model (EGM) was subsequently modified to consider different
parameters, such as surrounding objects, transmission line sag, and ground slope lightning
slope weather conditions [17-22]. Fig. 1 shows the horizontal conductor collecting locus,
as lightning strikes the horizontal conductor when reach arc bca while the remaining
strikes go to ground. The attractive radius D, of lightning stroke with current amplitude 7
is given by:

D,=D,, forh>r, ©))
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2 2
Dkz\/st—(”g—h) forh<r, (10)
Where r, is the lightning striking distance to ground, and D, is the lightning striking
distance to horizontal conductor.

If the length of the horizontal conductor is L, then the collection area A, corresponding
to a lightning strike current amplitude /, is given by:

A, =2D,L an
The number of lightning strikes to horizontal conductor of lightning current I, is given
by:
N, :AkPekNg (12)
where N, is the ground flash density, P,; is the probability of lightning current /;

Then, the annual number of lightning strokes collected by the horizontal conductor (N)
is given by:

N=N,SAP, (13)
k=1

ground
(@ h=r, (b)h<r,
Fig. 1. The attractive locus for lightning stroke with current .

This paper focuses on estimating the striking distance by considering the effect of
lightning current, horizontal conductor height and horizontal conductor voltage in an
attempt to improve the electro-geometric model. The lightning striking distances are
calculated by using the electromagnetic model for different horizontal conductor heights
up to 150 m and under different lightning currents up to 200 kA. The effect of horizontal
conductor voltage on lightning striking distance has been analyzed by proposing a voltage
coefficient. The proposed equation and modification for the striking distance to horizontal
conductor have been used to modify the Electro-geometric model of the unshielded
horizontal conductor.

2. The electromagnetic model

A horizontal conductor at height /# has been exposed to a downward lightning leader, as
shown in Fig. 2. By using the charge simulation method, an electromagnetic model has
been constructed to study the lightning strike to this horizontal conductor. The
electromagnetic model consists of a downward lightning leader and horizontal conductor.
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Fig. 2. Schematic arrangement of a horizontal conductor stroked by the
downward lightning leader.

2.1. Lightning leader modeling

In this paper, the charge decaying distribution along the stepped leader was assumed to
be exponentially of a negative charge as [23-24].

—o(z— In c/ s
p(2)=pe ", “:ﬁ (9

where, p; is the charge density (C/m) at the tip of leader stroke (z=h,), po. is the charge
density (C/m) at cloud base (z=h,), h. is the cloud height above ground (m), h; is the height
of the leader stroke tip above ground (m).

The downward lightning leader length /4, was assumed to be constant and equal to 3 km

and p/p=0.05. This value resulted to a=10". The downward lightning leader was
simulated by n discrete line charges along the positive Z direction.

The downward lightning leader was simulated by N  vertical discrete constant charge
densities in Z direction. The charge density for n segment would be as follows (p,) :

pe
Py = ;
—aZn -1 —Z

oty

(e —e™™m) (15)

n

The potential of the downward lightning leader at any point in the space was expressed
as:

N
V=2F p, (16)
n =1

where P, is the potential coefficient for n " vertical discrete constant charge density

(shown in Appendix I).
2.2. Horizontal conductor modeling

The surface charges on the horizontal conductor were not uniform, due to the presence
of downward lightning leader. The surface charges on horizontal conductor along the
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positive Y direction was simulated by N, discrete line charges uniformly distributed around
a factious coaxial cylinder extending along the horizontal conductor length and having a
radius equal to a fraction S of the horizontal conductor radius r. To account for the
nonuniform distribution of the charge along the positive Y direction, each of the discrete
line charge was divided into N, sections, of which (N,-1) finite sections and a semi-infinite
section at the end. The length of 7 finite sections was e”(e"*"-¢"). The starting distance of
the semi-infinite line charge d,=¢” "“*", where m is a constant and is chosen to be 1.84
[24-25].

In addition to different line charges at the radial and axial directions inside the
horizontal conductor, N, point charges were placed at the intersection of the factious lines
extension with X-Z plane as shown in Fig. 2. These point charges are recommended in
order to increase the boundary and check points at intersections of the horizontal conductor
with X-Z plane, and also, due to the presence of downward lightning leader in X-Z plane
[24-25]. The assumed factious charges had N,xN,+N, unknown charges.

To maintain zero potential at the ground plane, images of the simulation charges were
considered with respect to this plane. To satisfy the boundary conditions, boundary points
have been chosen on the horizontal conductor surface as shown in Fig. 2. A set of
equations was then formulated at a set of boundary points selectively placed on the
horizontal conductor surface to determine these unknown charges. The number of
boundary points is equal to the number of the unknown charges. The potential at each
boundary point in the presence of downward leader was expressed as:

N,N, N, N,
ﬂzlpﬂn Pun T ﬂzll)sﬂn Pgn T ZIPpn Qpn =V-V (17)
n= sfln= pn=

where Py,, Py, P,, are potential coefficients calculated at the boundary point due to
finite line charges, the semi-infinite line charges and point charges respectively (see

Appendix II), V is the horizontal conductor voltage, V is the voltage at the boundary
point due to downward lightning leader.
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Fig. 3. Charge simulation of the horizontal conductor

The voltages at check points were calculated at different cases and compared with the
conductor voltage to estimate the error. These different charges arrangements have
demanded maximum error of less than 0.002%.
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It is considered that lightning would strike the grounded horizontal conductor if there is
an upward-directed leader from the surface of the object, as shown in Fig. 3. The following
criteria were tested to estimate whether that lightning leader would strike the horizontal
conductor, or not [26-28]:

- The critical electric field in Equation 18 was considered as an indication of the upward
lightning leader inception. The critical ionizing electric field at the horizontal
conductor surface was assumed to satisfy the requirements of Peek’s law.

E_ =30000m(1+ %) (18)

Jor

where, 0 is the relative air density, r is the radius of the horizontal conductor; m is the
surface roughness factor.

- To ensure sustained progress of the upward lightning leader, the main electric field for a
gap of a 10 m length around horizontal conductor generated by downward lightning
leader, exceeded 230 kV/m [26-28]. This electric field intensity is necessary to break
down this air gap.

In previous work [24], a lateral striking distance occurred when the voltage of
cylindrical gap around horizontal conductor reaches the breakdown voltage of this gap. An
equation of r, = al’h°, then exponential coefficient was estimated to consider voltage effect.
The estimated equation was used to modify electro-geometric model to calculate shielding
failure probability for high voltage AC and DC transmission lines.

3. Electromagnetic model results
3.1. Horizontal conductor at zero potential

The attractive area around 500 HVDC transmission line was studied before and shows
that all shielding areas appears lateral to the transmission line [23]. Fig. 4 shows the
attraction area around the horizontal conductor at a height 50 m due to the lightning current
31 kA. It shows that the lateral striking distance is longer than the normal striking distance.
So, the lateral striking distance is estimated in this paper to be considered in EGM.

The influence of the horizontal conductor height on the lateral striking distance of the
lightning leader to the grounded horizontal conductor under different lightning current is
shown in Fig. 5. The horizontal conductor shows that as the lightning current increases, the
lateral striking distance increases. Moreover, as shown in Fig.5, the lateral striking distance
of the grounded horizontal electrode depends on its height.

h+75

Attracticesurface of
horizontat conductor
h=50 stressed by {1V
\.\ ‘‘‘‘‘‘‘‘‘‘‘

h-25 = .

Z-Direction [m]
s

h

=75 -30 -25 0.0 25 50 75
X-Direction [m]|

Fig. 4. Attractive surfaces of grounded horizontal conductor.
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Fig. 5. Lateral striking distance vs. lightning current for grounded horizontal
conductor.

The horizontal conductor height is fixed and a second order polynomial equation of
lateral striking distance for each horizontal conductor height £ is estimated:

D, =AI’ +BI +C

The coefficients A, B and C form a set of n equations with the horizontal conductor
height. A relation between the coefficients A, B and C and the horizontal conductor height
is estimated and the following results are obtained:

D.(I,h)=Al’* +BI +C (19)
where, the coefficients A, B and C could be estimated by

A =-0.00041""%, B=0.22h"",C=0.0

The lateral striking distance obtained by the use of the electromagnetic model shows a
good agreement with the lateral striking distance by using Eriksson equation (7) as shown in
Fig. 6. The main deviation between the electromagnetic results and the Eriksson equation is
1.35 m for current range up to 200 kA and a horizontal conductor height up to 150 m.

Fig. 7 shows a scattering plot of the calculated lateral striking distance of grounded
horizontal conductor by employing the Eriksson formula (7), Rizk formula (8), and
proposed formula in Equation (19). The results show a good agreement between the
proposed equation and both the formulas of Eriksson and Rizk. The main deviation
between the Eriksson equation and the proposed formula in Equation (19), and between the
Rizk equation in (8) and the proposed equation (19) are 7.8% and 7.4% respectively for a

current range of up to 200 kA and a horizontal conductor height up to 150 m.
700

OO0
500
400
300
200 g
100 -
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Fig. 6. The Scattering plot of the calculated lateral striking distance of grounded
horizontal conductor by using different conditions compared to that by Eriksson
equation (7).
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Fig. 7. The Scattering plot of the calculated lateral striking distance of grounded
horizontal conductor by using Eriksson formula in (7), Rizk formula in (8) and
proposed equation (19).

3.2. A Horizontal Conductor Stressed by +ve or —ve Voltage

It was then observed that, when the ultra-high voltage (UHV) was built, more lightning
accidents occurred than were originally calculated. Subsequently, it was found that, the
actual measured values obtained from the lightning observations were different from the
calculated values during the design stage [29].

Fig. 8 shows the lateral striking distance to a horizontal conductor at a height of 50 m
when the horizontal conductor is stressed by DC voltage. This illustrates that the lateral
striking distance increases with an increase in positive voltage of the horizontal conductor,
where the lightning leader has a negative charge, and then vice versa for a negative voltage.
This arises from the negative charge of the lightning leader and the positive voltage of the
horizontal conductor increases in the gap potential, otherwise, the negative charge of
lightning leader and the negative voltage of the horizontal conductor decrease the gap
potential around the horizontal conductor.
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Fig. 8. The Lateral striking distance for horizontal conductor at height of 50 m
with applied voltage varies from -1 MV to +1 MV.

The lateral striking distances were obtained for a horizontal conductor at heights of 50
m and 20 m, and at different horizontal conductor voltages from -1 MV to +1 MV, and for
a lightning current of up to 200 kA. By dividing the ackuired lateral striking distance
curves at certain voltages by the lateral striking distance of the horizontal conductor at zero
potential, it results in an approximate constant ratio k, at that voltage. This ratio and the
horizontal conductor voltage were related as a voltage constant for each horizontal
conductor voltage ky. This coefficient is applied to the modified equation in (19) or to
modified Eriksson equation in (7).
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D, (I,h,V)=D,(I,h)k,
=0.671%7 %% Modified Erikssoneq.(7 ) (20)
=(—0.00041% +0.221 )h*5* "V Modified proposedeq.(19)

This provides the following coefficient: k, =e"" and b=0.0003 for a negative lightning

current.

Fig. 9 shows a scattering plot of the calculated lateral striking distance of a grounded
horizontal conductor by using the electromagnetic model, the modified proposed equation
(19) and the modified Eriksson equation. This demonstrates a positive agreement between
the electromagnetic model and the proposed formulas with a voltage coefficient.
Furthermore, this show the mean deviations of 0.84 and 1.15 m from the electromagnetic
model for the modified the proposed equation (19) and the modified Eriksson equation.

4. The probability of a shielding failure to horizontal conductor by using
electro geometric model

The probability of lightning striking a horizontal conductor stressed by AC or DC
voltage under different condition were calculated to analyses some observation that were
noted in relation to the use of shielding failure of UHV and EHV transmission lines by

using the electro-geometric model in section I1.
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Fig. 9. The scattering plot of the calculated lateral striking distance of the
horizontal conductor stressed by a voltage from -1000 to 1000 kV

The following assumptions were used in the EGM in this paper:

(1) There will be no effects of horizontal conductor till the lightning leader is within
“striking distance” from the conductor.

(2) The lightning leader develops in a vertical direction.

(3) The lightning leaders experience only one strike.

(4) The lateral striking distance is a function of lightning current amplitude,
horizontal conductor height and horizontal conductor voltage. In this paper the
modified Eriksson equation is used to obtain the lightning striking distance to
horizontal conductor.

(5) The striking distance to the ground was assumed [16] to be equal to the lightning
striking distance to a horizontal conductor of equations (1) to (5). In this paper,

equation (4) is used to obtain lightning striking distance to ground r, = 81°%

Assuming a histogram of the amplitude of lightning currents to a flat ground is
available, and that it consists of K discrete current values, the log;o(P.)=0.05-1;/74 would
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be the probability of current /;, in China, where the ground flash density is assumed to be
0.015 [23-24]. The number of lightning strikes to different horizontal conductors and
lightning stroke of a negative charge are calculated by using the electro-geometric model
in section 11, and based on the previous assumptions.

Fig. 10 shows the number of lightning strikes to horizontal conductors per 100 kilometer
per year. The number of lightning strikes to a grounded horizontal conductor increases as the
horizontal conductor height increases. Because the lightning charge is negative, the number
of lightning strikes to a horizontal conductor when it is stressed by negative voltage is less
than that when the conductor is stressed with zero potential and also decreases as the
conductor negative voltage increases. The opposite occurs in the case of lightning stressing
the horizontal conductor with positive voltage. The lightning stroke to horizontal conductor
stressed by an AC voltage is somewhat higher than that when it is stressed with zero potential
and this increases as the horizontal conductor at AC voltage increases.

o 12
g 500 kV .
210 | 1000 kW T
=2 AC 500 kv 5T
E AC 1000 kv .2
g & T
=4
2t
s 2 |
=
-
0
o 50 100 150 200

Conduclor heighl |[m|
Fig. 10. The number of lightning strokes to different horizontal conductors and
the lightning strike of negative charge.

5. Conclusions

From the results of the above calculations the following conclusions can be drawn.

- The lateral striking distance to a horizontal conductor increases as the lightning
current increase, and as the horizontal conductor height increased.

- The electromagnetic model was used to obtain the lateral striking distance instead
of observed results. The methodology used in estimating the lightning striking
distance from electromagnetic results conducted accurate formula. As the
proposed formula showed good agreement with the electromagnetic model, the
Eriksson equation and the Rizk equation.

- For a negative lightning charge, the lateral lightning striking distance increases if
the horizontal conductor is stressed by +ve voltage and vice versa. The
methodology used to obtain the lateral striking distance was used successfully to
obtain the voltage multiplied coefficient.

- The results of modification to the proposed equation and to the Erikson equations
by using obtained voltage coefficient agree with the electromagnetic model
results.

- The Electro-geometric model was modified successfully to consider the
horizontal conductor voltage by using the voltage coefficient.

- Stressing a grounded horizontal conductor by negative voltage is attracts fewer
lightning strikes than stressing the horizontal conductor by positive voltage or
AC voltage.
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- The shielding system to a negative pole would be much more effective than the
shielding system to the positive pole for negative lightning charges.

- The results explain the differences between the previous calculated shielding
failure numbers and observed the occurrences for UHV DC/AC transmission
lines.
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APPENDIXES
I- Potential coefficients for simulation downward lightning leader

The potential coefficient P, of simulation finite line charge of downward lightning leader

calculated at a given any point of coordinates (Xp, ¥, Zp) is

P = 1 In (Zn2_zp+7/1)(zn1+zp+72)

" Az, | (z,,-2,+6) (2., +2,+5))

-1

where

}/1:\/()6 _xn )2+(yp_yn )2+(Zn2_zp)2’72:\/(xp_xn )2+(yp_yn)z+(znl+zp)z’
5 \/ yp yn) (111_Zp)2’§2:\/(xp_xn)2+(yp_yn)2+(zn2+zp)2

where Z,,, Z,, are the Z coordinates of the beginning and end of the nth finite simulation

line charge which has a charge density p,, x,, y, are the x-and y- coordinates of the nth finite line
charge.

II- Potential coefficients for simulation horizontal conductor

a) The potential coefficient P, of the simulation point charges of grounded horizontal conductor
calculated at a given boundary point of coordinates (x,, ¥, z,) is

1 1 (1)
" dze,| D D

pnc pni

where D, is the distance between the point charge and the boundary point and D,; is the distance
between image of the point charge and the boundary point. g is the permittivity of free space.

b) the potential coefficient Py of simulation finite line charge of grounded horizontal conductor
calculated at a given boundary point of coordinates (X, Yy, Z) is

P 1 In (}’ﬂnz_yp+71)(yﬂn1+yp+7z) (yﬂnl_yp+7/3)(yﬂn]+yp+}/4)

4re, (yﬂnl -V, +§1)(yﬂnz+yp +§z) (yﬂnZ_yp +§3)(yﬂn2+yp +54) (I-2)

“xf Foley=zaf o=l =+ 03, F oo, =20
Fbp, Fole, =20 0=l g f g 0, F oo, 20

7= f b f ey vz fors = b F b, Fole, 20
N ) R S B S B e R e

+(yﬂn2_yp

TV~
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where Yy .1, Yq .2 are the y coordinates of the beginning and end of the nth finite simulation line
charge which has a charge density oy, Xp. Zn, are the X- and Z- coordinates of the n™ finite line
charge.

c) The potential coefficient Py of simulation semi finite line charge of grounded horizontal
conductor calculated at a given boundary point of coordinates (x,, y,, z,) is

1 ln{(ysﬂn oy, va) (v, oy, )} (I1-3)

Bon =

47e, (ysﬂn Y, +:81) (ystn, Yy +ﬂ2)

where
a :\/(xp _xsﬂn)Z +(ysﬂn +yp)2 +(Zp _Z.\ﬂn>2’ﬂl :\/(xp _x»fﬂn)Z +(ySﬂn _yp)z +(Zp _ZSﬂn)z’
a, :\/(xp _xsﬂn)z +(y.\ﬂn +yp)z +(Zp +Z.\‘ﬂn)z’182 :\/(xp _)Csﬂn)2 +<y.s‘ﬂn _yp)z +(Z1J +Z~‘ﬂn)z

where X1, Yy Zg1n are the x-, y-, and z- coordinates of the starting point of the nth semi finite
simulation line charge which has a charge density py .
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