
1378

Journal of Engineering Sciences

Assiut University

Faculty of Engineering

Vol. 42

No. 6

November 2014

PP. 1378 – 1391

DESIGNING AN ARCHITECTURE LEVEL

MODEL FOR MULTI-CORE SYSTEMS

Hassan Ali Hassan Ahmed Youness

Staff in Computers and Systems Eng. Depart, Faculty of Engineering, Minia University, Egypt

(Received 13 October 2014; Revised 7 November 2014; Accepted 15 November 2014)

ABSTRACT

The Architecture Level Model (ALM) as a design in space exploration in the early phases of the

design process can have a dramatic impact on the area, speed, and power consumption of the

resulting systems. A multi-core system is an integrated circuit containing multiple processor cores

that implements most of the functionality of a complex electronic system and some other

components like FPGA/ASIC on a single chip. In this paper, we present a new approach to

synthesize multi-core system architectures from Task Precedence Graphs (TPG) models. The front

end engine applies efficient algorithm for scheduling and communication contention resolving to

obtain the optimal multi- core system architecture in terms of number of processor cores, number of

busses, task-to-processor/channel-to-bus mapping, optimal schedule, and Hardware/Software

partition. The back end engine generates a System C simulation model using a well-known

commercial tool model generation library to form the architecture level model. The viability and

potential of the approach is demonstrated by a case study.

Keywords: ALM, Multi-core, System C, TPG, MPSoC, TLM.

1. Introduction

Multi-core designs represent today the main trend for future architectural designs. It

poses number of problems [1], such as extracting parallelism from applications,

partitioning application into tasks, allocating and scheduling tasks to multiprocessors and

coordinating communication and synchronization between processors. Furthermore the

process of automating the generation of realistic multi-core architectural designs from

system level specifications remains a challenge for nowadays EDA design tools and the

true complexity of the problem is the reason why until to date no tool in this area has

become a commercial success.

Several system level modeling and design space exploration methodologies for streaming

multiprocessors especially heterogeneous media and signal processing systems have gained

wide acceptance in system level community, among those methodologies are SPADE [2],

Sesame [3], CASSE [4], and CoWare’s approach [5]. These methods share the Y-chart

concept that separate between applications and architectures. SPADE and Sesame start with a

Kahn Process network (KPN) as design entry and use trace-driven simulation, where

execution of architecture model is driven by traces from execution of application model.

1379

Hassan Ali Hassan Ahmed Youness, Designing an architecture level model for multi-core systems

CASSE follows a programming model based on Task Transaction Level Interface (TTL) [6]

and uses System C based simulation. On the other hand, CoWare uses a set of un-timed

reactive System C tasks communicating through a Transaction Level Model interface. In

work of [7] they used an extended Task Graph (eTG) as design entry, and generated a

scheduled System C performance model that is further synthesized into interacting H/W

modules with control unit implemented as FSMs [8, 9, 10].

Researchers have also proposed system level modeling methodologies for integrated

HW/SW embedded systems, but aiming at automated HW/SW partitioning, co-design, code

generation from formal specification languages, and refinement from abstract system level

models to more realistic implementations including communication refinement. The Ptolemy

[11], Metropolis [12], and COSY [13] environments are pioneering work in that direction.

In the COSY model higher abstraction level interfaces are proposed, where application

level transactions are used for programming a network of functions that specifies what the

system is supposed to do. They are refined into system transactions when choosing

implementation of functions to software and hardware components.

Fig. 1. Proposed System Level Synthesis to ALM Approach.

In this paper, we present a system level synthesis approach to automate the process of

architecture exploration and generation of specialized multi-core system architectures

from Task Precedence Graphs (TPG). Figure 1 shows the outline of the proposed

synthesis to ALM approach.

The design entry is a Task Precedence Graph with communication channels (TPG).

The output is an Architecture Level Model (ALM) of a specialized multi-core system

architecture described in extended Markup Language (XML) format. The ALM

description is then processed by a utility we developed (XML Parser/Generator) that will

interpret the structure and operation of an optimal (or semi-optimal) configuration of our

specialized multi-core system architecture, instantiate the appropriate System C TLM 2.0

(Transaction Level Model) compliant models from a library of fast generic models and

connect the target multi-core system architecture.

The front-end engine of our synthesis approach is an efficient algorithm to solve the task

allocation/scheduling problem to obtain the optimal schedule on a multiprocessor system and

reduce the number of processors in the target system. The algorithm also resolves

communication channels conflicts and reduces the overall execution time of the application task

Fast

Generic

TLM modelsXML Parser/Generator

Scheduling & Core Reduction
(GAA Algorithm)

Channel Mapping
Optimal Schedule

(Task Mapping)
HW/SW Partition

ALM ALM (XML)(XML)

Channel Conflict Resolving
(Graph Coloring Algorithm)

HW/SW Partitioning
(Fast conversion Algorithm)

Multi-core System

Architecture (SystemC TLM)

Front-End Engine

TPGTPG

Fast

Generic

TLM modelsXML Parser/Generator

Scheduling & Core Reduction
(GAA Algorithm)

Channel Mapping
Optimal Schedule

(Task Mapping)
HW/SW Partition

ALM ALM (XML)(XML)

Channel Conflict Resolving
(Graph Coloring Algorithm)

HW/SW Partitioning
(Fast conversion Algorithm)

Multi-core System

Architecture (SystemC TLM)

Front-End Engine

TPGTPG

1380
JES, Assiut University, Faculty of Engineering, Vol. 42, No. 6, November 2014, pp. 1378 – 1391

fir2d
(T2)

c0

mat1xN

(T3)

quantize

(T4)

c1

fir

(T5)

c2

Sort

(T1)

c3

c4 c5 c6 c7

dot_product

(T6)
convolution

(T7)

Time: (cycles)

[Energy: (nJ)]

Task

sort

Computation Cost

6762 [571.74]

fir2d 108821 [8455.4]

9715 [719.94]

925 [86.82]

2086 [163.47]

dot_product 906 [72.25]

convolution 871 [65.84]

Channel

c0

Communication Cost

TPG Profile Table

mat1xN

quantize

fir

† Profiled on: M32R Core@50MHz

200 [3.84]c1, …, c7

2000 [38.43]

fir2d
(T2)

c0

mat1xN

(T3)

quantize

(T4)

c1

fir

(T5)

c2

Sort

(T1)

c3

c4 c5 c6 c7

dot_product

(T6)
convolution

(T7)

Time: (cycles)

[Energy: (nJ)]

Task

sort

Computation Cost

6762 [571.74]

fir2d 108821 [8455.4]

9715 [719.94]

925 [86.82]

2086 [163.47]

dot_product 906 [72.25]

convolution 871 [65.84]

Channel

c0

Communication Cost

TPG Profile Table

mat1xN

quantize

fir

† Profiled on: M32R Core@50MHz

200 [3.84]c1, …, c7

2000 [38.43]

graph by using HW/SW partitioning that depends on fast conversion from SW to HW tasks.

The rest of this paper is organized as follows. Section 2 describes the output & input of

our proposed synthesis approach and the algorithm of the front-end engine. Section 3

shows an illustrative example “case-study” to clarify the algorithm operation and back-

end generation. Section 4 draws some conclusions.

2. Target system and graph model

2.1. Architecture level model (ALM)

To narrow down the complexity of MPSoCs, we used a specialized multi-core

system architecture template that consists of multiple Processor cores for SW (i.e

CPU core) and HW tasks (i.e. FPGA).

Each Processor core has its Local Memory (Cache) that is used for communication

among the tasks on the same core. The cores communicate with shared memory via

multiple buses and a global Real-Time Resource Scheduler (RTRS) module that

schedules/controls the tasks operation on these cores as shown in Fig. 2.

Fig. 2. Specialized Multi-core system architecture.

2.2. Task precedence graph

The design entry is given as a Task Precedence Graph with communication (TPG)

as shown in Fig 3. In general, a TPG G(V,E,W,C), is a Directed Acyclic Graph

(DAG), such that V is the set of nodes, E is the set of edges, W is the computation

costs of the nodes and C is the communication costs of the directed edges. A node in

the DAG represents a task which in turn is a set of instructions that must be executed

sequentially without preemption in the same processor. Edges in the DAG are

directed and thus capture the precedence constraints among the tasks. The

communication link between tasks denoted by (ni,nj) and implies that nj is a child

which cannot start until its parent ni finishes and sends its data to nj.

Fig. 3. The TPG practical example of JPG picture.

CPU Core CPU Core FPGA Core

Shared

Memory

Local Memory

Real-time Resource Scheduler

Bus N

Bus 1

Bus 2

Local Memory Local Memory

CPU Core CPU Core FPGA Core

Shared

Memory

Local Memory

Real-time Resource Scheduler

Bus N

Bus 1

Bus 2

Local Memory Local Memory

1381

Hassan Ali Hassan Ahmed Youness, Designing an architecture level model for multi-core systems

The geometry of the task graph divides it into paths and levels; the path is the way

from the start node to the exit node considering all the nodes and the edges in this way.

The levels are depths of nodes. In scheduling a task graph G onto a target system

with a set of processors P, each node must be assigned to one processor. Classical

assumptions [14] that are made about the target system are:

i) Tasks are non-preemptive.

ii) Local communications are cost free.

Let ts(ni) be the execution start time of node ni, and w(ni) be the weight of node ni. The

execution finish time of node ni, tf(ni) can be denoted [15] as:

 tf(ni)=ts(ni)+w(ni) (1)

where a processor can execute only one task at the same time, two nodes ni and nj

assigned to the same processor should satisfy the following equation:

 tf(ni)< ts(nj) or tf(nj)< ts(ni) (2)

For an edge (ni,nj), if ni and nj are assigned to the same processor, communication cost

becomes zero since there is no data transfer between processors. Hence, we define edge

finish time tf((ni,nj)) as the following equation [16] where c(ni,nj) denotes communication

cost of edge (ni,nj)

processorsdifferent on , if),()(n

processor same on , if)(n
)),((

iif

iif

jji

j

jif nnnnct

nnt
nnt

 (3)

Node nj can start to execute after all data are ready, i.e. all edges connected to node nj

are finished. Hence data ready time of node nj, tdr(nj), is defined as

),(max)(

),(,
jif

Enjnii
jdr nntnt

 (4)

Scheduling length of scheduling S, SL(S), is the time when all nodes are finished. Hence

SL(S) is defined as follows:

)}({max)(ntSSL f

Vn
 (5)

Two processors pi and pj are isomorphic if the ready times of them are equal and the

tasks ni and nj are equivalent when the following conditions are satisfied [14].

i) pred(ni) = pred(nj),

ii) w(ni)=w(nj),and (6)

iii) succ(ni) = succ(nj)

According to the above assumptions, we can derive the following fact. Scheduling

length of optimal task assignment to P+1 processors is always less than or equal to the one

to P processors [15],

))(())1((PSSLPSSL optopt , (7)

where SL(S) represents scheduling length of scheduling S and Sopt(P) represents optimal

scheduling to P processors.

1382
JES, Assiut University, Faculty of Engineering, Vol. 42, No. 6, November 2014, pp. 1378 – 1391

2.3. F r o n t -End Engine Algorithm

The main role of the front-end engine algorithm is to obtain optimal design

parameters for the multi-core system architecture given a Task Precedence Graph (TPG)

model. The objective is to maximize performance in terms of execution speed under

some constraints as precedence, area, and communication conflicts. In order to achieve

this we divide the front-end engine algorithm into two processes.

2.3.1. Scheduling, cores reduction, and channel conflicts resolving process

We use The A-star as a best-first state space search algorithm that maintains two lists

OPEN and CLOSED. It starts by putting the initial state into the OPEN list. The states in

the list are sorted according to the cost function f(s). The cost function f(s) is the addition

of g(s) and h(s), g(s) represents the cost from the initial state to the state s and h(s) is the

estimated cost from the state s to the goal state. In each step, the state s with the lowest f(s)

value is taken from the list and put onto CLOSED list. The algorithm terminates when the

state s is the goal state.

The task graph is partitioned according to the geometrical shape of paths and levels.

The path length (sum of weights of nodes and edges) are calculated and sorted in

descending order. From paths and levels we build a matrix called the geometrical matrix

(G_matrix). Then, we use pruning techniques to reduce the number of search state space,

for example, the property of isomorphic processor and node equivalence. Lastly, the

algorithm reduces the number of processors to be used for scheduling in case of idle time.

The Geometric A* Algorithm (GAA) [17] is outlined below where Q represents the set

of used processors (Note. at least one task is assigned to the processor), as shown in Fig.

4. The algorithm schedules the node to only one processor in case of there are many

isomorphic processors and at the same time it searches for the used processors that has a

ready time less or equal to the ready time of the isomorphic one to reduce the number of

processors that can be used in the scheduling process. The algorithm is explained in

section 3 as illustrative example.

To derive the time complexity, suppose that the application has n nodes with l levels, h

paths and r repeated node and this application should be scheduled on p processors. The

flowchart shows that there is l loop of repeated nodes (r) and non-repeated nodes (n-r) on p

cores. Then lpnprnrpl)])(()[(so, in the worst case l=E (i.e.))(EpnO and if all the

nodes are fully connected then 2/)(2 nnE , so the time complexity is))((23

2
nnO

p
 .

Channel conflicts are resolved by mapping conflicting channels to different buses. This

scheme sacrifices area (bus interconnect) to preserve the optimal schedule length. This can

be formulated as follows; Given a Channel Conflict Graph, defined as undirected graph

),(EVGConflict , where V denotes communication channel and E is conflict relation on V .

The algorithm maps BVc : where B is the set of buses such that, Gvuvcuc),(|)()(.

2.3.2. Partitioning process

The partitioning starts after scheduling by searching for the critical path (i.e. the

Processor core that has the longest schedule length) and converts SW tasks running on that

core to HW tasks provided that SW tasks attributes indicate feasibility to convert to HW.

This conversion has an impact on the execution time of each task by a reduction of (1/3

~1/5) of its original computation time value.

1383

Hassan Ali Hassan Ahmed Youness, Designing an architecture level model for multi-core systems

Start

CLOSED List

ni -----> P isomorphic

P ready_time <=

P isomorphic

for j = 1 : P

FOR i=1: Ready nodes

while [OPEN_R || OPEN <> 0]

OPEN_R = Repeated of P_matrix

OPEN= non repeated of P_matrix

for Level =1:L

G_matrix(PATHS,LEVELS)

Extract P_matrix(P,P)

Initialize OPEN,

OPEN_R, CLOSED

ni -----> Pi

ni ----> Pi

ni -----> Pj

TPG , P

P =

isomorphic

Pi = Q

End

Fig. 4. The Scheduling Algorithm (GAA).

1384
JES, Assiut University, Faculty of Engineering, Vol. 42, No. 6, November 2014, pp. 1378 – 1391

3. Case study and experimental results

We present a case study to illustrate the operation of the front-end engine algorithm

using the task graph shown in Fig. 3; initially we assumed the target system contains three

processor cores on a single bus:

Step (1): The task graph is partitioned into paths and levels, these paths are sorted in

descending order by their values. There are 5 paths and 3 levels from start node to the goal node.

Path1 is T2, T3, T6 value (path1) = 121642 cycles

Path2 is T1, T3, T6 value (path2) = 17783 cycles

Path3 is T1, T5, T7 value (path3) = 10119 cycles

Path4 is T1, T4, T6 value (path4) = 8993 cycles

Path5 is T1, T4, T7 value (path1) = 8958 cycles

Step (2): Levels

Level 1 is T1, T2

Level 2 is T3, T4, T5

Level 3 is T6, T7

Step (3): The G_matrix is built from paths and levels; it gives a matrix with 5 rows and 3 columns

741

641

751

631

632

_

TTT

TTT

TTT

TTT

TTT

matrixG

 Step (4): According to the target system (P=3), a priority matrix called P_matrix,

has rows and columns equal to the number of processors in the system and the P_matrix is

extracted from G_matrix by taking the first three rows and three columns.

751

631

632

_

TTT

TTT

TTT

matrixP

Step (5): As noticed from the P_matrix, there are some nodes that are repeated in the

same level according to their relation to the child nodes as T1 here has 3 children. So, these

nodes are called the repeated nodes and should be put in the OPEN_R list and the other

nodes are called non-repeated nodes and should be put in the OPEN list

 OPEN_R = T1, T3, T6

 OPEN = T2, T4, T5, T7

Step (6): The scheduling process will begin as in the algorithm using the P_matrix and

the A-star fitness function f(s), Table (1) shows the function values of scheduling for tasks

using 3 and 2 cores, respectively.

Figure 5 shows the Gantt chart (schedule) for each case. By observation, it turned out

that scheduling on two cores has the same schedule length as three (i.e. cores are reduced).

We need two buses when three cores are used (c1 conflicts with c3 and c5 conflicts with c6

1385

Hassan Ali Hassan Ahmed Youness, Designing an architecture level model for multi-core systems

“when drawing the GANTT chart to scale”). Using graph coloring (c1 and c5) are mapped

to bus 1 and (c3 and c6) to bus 2.

 Table 1.

 Task Scheduling process on 3 cores.

Level Task
g(s)+h(s)

Core 1 Core 2 Core 3

1
T1 6762+11021*

T2 108821+12821*

2

T3 120536+1106 118536+1106* 120536+1106

T4 7687+1106* 7887+1106

T5 8848+1071 9048+1071*

3
T6 119642+0 119442+0* 119642+0

T7 11190+0 10990+0*

Level
Task

g(s)+h(s)

Core 1 Core 2

1
T1 6762+11021*

T2 108821+12821*

2

T3 120536+1106 118536+1106*

T4 7687+1106*

T5 9773+1071*

3
T6 119642+0 119442+0*

T7 10644+0* 119507+0

(a)

(b)

(c)

1386
JES, Assiut University, Faculty of Engineering, Vol. 42, No. 6, November 2014, pp. 1378 – 1391

(d)

Fig. 5. Scheduling and target system. (a) Task mapping (b) Channel conflict

graph and number of buses (c) Gantt chart on 3 cores (d) Gantt chart on 2 cores.

The partitioning process is done after scheduling/ processor cores reduction, and channel

conflicts resolving stage as a final step to compact the SL along its critical path. The second

choice of two cores on one bus is selected for the partitioning process as outlined next.

Step 1: Find the longest schedule length on cores, processor P2 has SL = 119642 cycles,

including the time for data write (Channel-W) and read time (Channel-R) from and to tasks

that are implemented on other core respectively.

Step 2: The SW tasks on the longest SL will be converted to HW tasks to reduce the

overall execution time. We assume the execution time of a HW task on FPGA equals one

third to one fifth of the execution time of a SW task on CPU core. In this case study, all

tasks have feasible attribute for conversion to H/W tasks.

Step 3: The target architecture is reduced to one bus, one processor core with HW tasks

(i.e. FPGA) and one processor core with SW tasks. Task T1 send data to task T3 via

channel (C1) and task T4 send data to T6 via channel (C5), the channels are mapped to one

bus (no conflicts) and the SL is reduced to 29910 cycles, see Fig. 6.

(a)

(b)

Fig. 6. Scheduling and target system for 2 cores. (a) Task mapping

(b) Gantt chart after HW/SW partitioning

As for backend generation, the optimal (or any semi-optimal configuration) can be

1387

Hassan Ali Hassan Ahmed Youness, Designing an architecture level model for multi-core systems

selected for SystemC generation; both the structural and scheduling info is written to an

XML file. The information is parsed and processed by a utility we developed to integrate

the front-end engine to Mentor Graphics® Vista Architect™ Model Builder tool [18, 19].

The utility would instantiate the appropriate System C TLM 2.0 compliant models from a

library of fast generic models (e.g. Processor core with SW/HW Thread, Bus “AHB/AXI”,

MEM/Cache, etc.) and connect the target multi-core system architecture based on the

design parameters and configuration in the XML file. As for the interconnect (See Fig. 7)

and dynamics (see Fig. 8) of the final generated multi-core system, we use the built-in

generic memory model for modeling the shared and the local memories, the bus model

which is currently an AHB bus for modeling the system interconnect, and the CPU model

for modeling the Real-Time Resource Scheduler (RTRS) [20]. We build a number of

processor core models for the main processing element with a SW or HW Task thread. For

the interface protocols, we used an AHB master/slave TLM protocol for the bus interface

between RTRS, Processor cores, as well as shared memory and the system AHB bus. We

also used a Tightly Coupled Memory (TCM) protocol for the interface between the

processor cores and their associated local memories. The tasks running on each core is

statically bounded according to the scheduling algorithm results. Each task is modeled as

an SC_THREAD that is suspended for the specified execution time based on the

computation cost of the task (SW or HW). Access to channels is modeled as bus read/write

transactions from specific memory addresses.

The memory address space that can be accessed through each bus is specified in a

parameter file to correctly map the channels to their dedicated buses. The time spent in a

channel read/write transaction (i.e. communication cost) is specified using the

parameterized memory read/write associated delay timing policy. The SW thread associated

with the RTRS is modified to initiate tasks at different cores to run according to the

scheduling algorithm results. An SC_METHOD “control callback” in each processor core is

sensitive to the control interfacing port connected to the RTRS. This method notifies the

“Go” event associated with each of the statically allocated tasks which are implemented as

SC_THREADS. The Scheduler thread in the RTRS is responsible for generating correct

control information at appropriate time to realize the pre-determined scheduling.

Upon simulating the generated System C code equivalent to the three processor

configuration in Fig. 9, the following statistical charts are directly obtained using the

Vista Architect™ analyzing utility. Fig 8. shows three cores (red = P1, green = P2, and

blue = P3) and tasks id’s on Y-axis versus time in cycles on X-axis which is equivalent

the Gantt chart of Fig. 5. (c) when drawn to scale. Other analysis widgets are also

available for calculating throughput and latency on busses for example Fig. 10 shows

the read/write transactions on buses 1 and 2 for the given configuration.

1388
JES, Assiut University, Faculty of Engineering, Vol. 42, No. 6, November 2014, pp. 1378 – 1391

Fig. 7. Interconnect of the Generated multi-core system (3 cores).

Fig. 8. Dynamics of the Generated multi-core system.

Fig. 9. Processors Tasks GANTT chart (3 cores).

Fig. 10. Read/Write transactions on Bus 1 and Bus 2

P1

RTRS

Scheduler

T1

Control

Callback

T4

P2

T2

Control

Callback

T3

P3

T5

Control

Callback

T7
T6

SC_THREAD

SC_METHOD

P1

RTRS

Scheduler

T1

Control

Callback

T4

P2

T2

Control

Callback

T3

P3

T5

Control

Callback

T7
T6

SC_THREAD

SC_METHOD

1389

Hassan Ali Hassan Ahmed Youness, Designing an architecture level model for multi-core systems

 4. Conclusion

In this paper we presented a system level synthesis approach for multi-core system

architectures. The front-end uses an efficient algorithm for optimal architecture selection.

The algorithm solves task scheduling problem and obtain the optimal schedule on a

specialized multi-core system architecture with a capability of (i) reducing the number of

cores in the target system, (ii) resolving communication contention over buses and (iii)

minimizing execution time by searching for the cores that have the longest schedule length

and converts their tasks to be executed in hardware instead of software if feasible. The

output of the algorithm which is typically an optimal ALM structure/schedule is then fed to

a utility (back-end generator) that uses Vista Architect Model builder™ to architecturally

build the system with appropriate TLM components and dynamics for System C simulation.

5. Acknowledgment

I would like to express my greatest gratitude to our friends who have helped & supported

me throughout my project in Mentor Graphics Egypt and my greatest thanks to Mentor

Graphics Company that helped me to use the tools over than one year throughout this project.

REFERENCES

[1] G. Martin. “Overview of the MPSoC Design Challenge,” in Proc. Of DAC’06, pp. 274-279,

CA, U.S.A., July 2006.

[2] V. Zivkovic, E. Deprettere, P. Van der Wolf and E. De Kock. “Design space exploration of

streaming multiprocessor architectures,” in Proc. of SIPS’02, pp. 228-234, USA, 2002.

[3] A. Pimentel, L. Hertzberger, P. Lieverse, P. Van der Wolf and E. Deprettere. “Exploring Embedded-

Systems Architectures with Artemis,” in IEEE Computer, pp. 57-63, Vol. 34, No. 11, Nov. 2001.

[4] V. Reyes, T. Bautista, G. Marrero, P. Carballo, W. Kruijtzer. “CASSE: A System-Level

Modeling and Design-Space Exploration Tool for Multiprocessor Systems-on-Chip,” in

Proc. of DSD'04, pp. 476-483, France, Aug. 2004.

[5] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel and B. Vanthournout. “A

Modular Simulation Framework for Spatial and Temporal Task Mapping onto Multi-

Processor SoC Platforms,” in Proc. of DATE’05, pp. 876-881, Germany, Mar. 2005.

[6] P. Van der Wolf, E. De Kock, T. Henriksson, W. Kruijtzer and G. Essink. “Design and

Programming of Embedded Multiprocessors: An Interface Centric Approach,” in Proc. of

CODES+ISSS’04, pp. 206-217, Sweden, Sep. 2004.

[7] S. Klaus, S. Huss and T. Trautmann. “Automatic Generation of Scheduled SystemC Models

of Embedded Systems From Extended Task Graphs,” in System Specification & Design

Languages - Best of FDL'02, pp. 207-217, Kluwer, 2003.

[8] Digalwar, M. ; Gahukar, P. ; Mohan, S., “Design and development of a real time scheduling

algorithm for mixed task set on multi-core processors”, 7
th

 International Conference

on Contemporary Computing (IC3), DOI: 10.1109/IC3.2014.6897184, pp. 265 – 269, 2014.

[9] Brinkschulte, U., “Introducing Virtual Accelerators to Decrease the Communication

Overhead of an Artificial Hormone System for Task Allocation”, IEEE 17th International

Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing

(ISORC), DOI: 10.1109/ISORC.2014.23, pp. 117-124, 2014.

[10] Yi Wang ; Zili Shao ; Chan, H.C.B. ; Duo Liu ; Yong Guan, “Memory-

Aware Task Scheduling with Communication Overhead Minimization for Streaming Applications

on Bus-Based Multiprocessor System-on-Chips”, IEEE Transactions on Parallel and Distributed

Systems, Volume: 25 , Issue: 7 DOI: 10.1109/TPDS.2013.172, pp: 1797 – 1807, 2014.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Digalwar,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gahukar,%20P..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6899139&sortType%3Ddesc_p_Publication_Year%26queryText%3Dtask+scheduling
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6899139&sortType%3Ddesc_p_Publication_Year%26queryText%3Dtask+scheduling
http://dx.doi.org/10.1109/ISORC.2014.23
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zili%20Shao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chan,%20H.C.B..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6828815

1390
JES, Assiut University, Faculty of Engineering, Vol. 42, No. 6, November 2014, pp. 1378 – 1391

[11] J. Buck, S. Ha, E. Lee and D. Messerschmitt. “Ptolemy: a framework for simulating and

prototyping heterogeneous systems,” International Journal of Computer Simulation, on

Simulation Software Development, Jan. 1990.

[12] F. Balarin, H. Hseih, L. Passerone and A. Sangiovanni-Vincentelli. “Metropolis: An integrated

electronic system design environment,” in IEEE Computer, pp. 45-52, Vol. 36, No. 4, April 2003.

[13] J. Brunel, W. Kruijtzer, H. Kenter, F. Pétrot, L. Pasquier, E. De Kock and W. Smits. “COSY

Communication IP's,” in Proc. of DAC’00, pp. 406-409, California, U.S.A., June 2000.

[14] Y. K. Kwok and I. Ahmad. “Dynamic critical path scheduling: An elective technique for

allocating task graphs to multiprocessors”, IEEE Transactions on Parallel and Distributed

Systems 7(5):506–521, 1996.

[15] O. Sinnen, “Task Scheduling for Parallel Systems”, Wiley Publisher, Hoboken, New Jersey, USA, 2007.

[16] S. Banerjee and N. Dutt, “Efficient Search Exploration for HW-SW Partitioning”, Proc. of

Int’l Conf., CODES+ISSS’04, pp. 122-127, Sept., 2004.

[17] H. Youness, K. Sakanushi, Y. Takeuchi, A. Salem, A. Wahdan and M. Imai, “Optimal

Scheme for Search State Space and Scheduling on Multiprocessor Systems”, IEICE

Transaction On Fundamentals of Electronics, Communications and Computer Sciences, Vol.

E92-A, No.4, pp.1088-1015, Apr. 2009.

[18] Mentor Graphics® Vista Architect™ Tool [Online 2014]: Available:

http://www.mentor.com/products/esl/design_verification/vista_architect.

[19] Mentor Graphics® A Complete TLM 2.0-based Solution [Online 2014]: Available:

http://www.mentor.com/esl.

[20] Rudat, A. ; Battat, J. ; Cameron, B., “The modeling and evaluation of interplanetary manned

missions using system architecting techniques” IEEE on Aerospace Conference,

DOI: 10.1109/AERO.2013.6496944, pp. 1-17, 2013.

http://www.mentor.com/products/esl/design_verification/vista_architect
http://www.mentor.com/products/esl/design_verification/vista_architect
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rudat,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Battat,%20J..QT.&newsearch=true

1391

Hassan Ali Hassan Ahmed Youness, Designing an architecture level model for multi-core systems

 تصميم نموذج لعمارة الحاسب لانظمة الحاسبات متعددة المعالجات

 :الملخص العربى

(هو التصميم الامثل فى استكشاف الحلول في مراحل مبكرة من ALMيعتبر النموذج المعمارى للحاسب)

عملية التصميم، حيث يكون له تأثير كبير على استهلاك مساحة صغيرة من الشريحة الالكترونية وزيادة

نظام متعددة النواة هو دائرة متكاملة تحتوي على النوى سرعة الحاسب وكذلك الحد من استهلاك الطاقة.

معقد وبعض المكونات الأخرى النظام إلكتروني المعالجات التي تطبق معظم وظائف المتعددة في ال

تعدد على شريحة واحدة. في هذه الورقة، نقدم نهجا جديدا لتجميع أبنية نظام ASIC/ FPGAمثل

م خوارزالمحرك الامامى يقوم بتطبيق .(TPG) الرسوم البيانيةفى الأسبقية ذات المهام المعالجات من نماذج

فعال لجدولة المهام على المعالجات وحل مشكلة الاتصالات بينها وكذلك تقليل عدد المسارات وعدد

المعالجات على الشريحة وتقسيم النظام بين التصميم البرمجى والمادى بشكل امثل. اما المحرك الخلفى

باستخدام اداة مكتبية لتكوين النموذج المعمارى للحاسب System Cفيستخدم لتوليد نموذج محاكاة

. وجدوى وامكانيات هذة الطريقة ALMوهو والحصول على افضل التصميمات على الشريحة الكترونية

 تتجلى فى نتائج دراسة الحالة المستخدمة.

