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ABSTRACT 

This paper addresses a linearization technique for a single degree of freedom (SDOF) linearizable 

nonlinear system based on block pulse (BP) transform. The BP transform gives effective tools to 

simplify control and system problems. The main goal of this work is on using BP transform 

properties in process of linearization of nonlinear problems. It is necessary to compare the results 

obtained using this method with other traditional methods to verify the effectiveness of the proposed 

method. The efficiency of BP transform method compared with the traditional equivalent 

linearization (EL) method. Both numerical simulations are applied to the Duffing nonlinear 

oscillator system to demonstrate the feasibility of the proposed method based on BP transform. 

Finally, the results of the comparison between the approaches depicted the proposed method is able 

to approximate the nonlinear systems behavior. The results showed the superiority of the proposed 

approach in the sense that it is more accurate by computational advantageous. 

Keywords: Linearization, block pulse transform, nonlinearity, Duffing oscillator 

1. Introduction 

Study of nonlinearity in dynamic systems has been a prominent area of research in last 

decades. This inherent phenomenon inevitably occurs in physical systems. In mechanical and 

structural systems nonlinearities can arise in various forms and usually becomes 

progressively more significant as the motion amplitude increases. The major sources of 

nonlinearity arise from misalignment, looseness, temperature effects, impedance 

mismatching, pre-load, exciter problems and overloads [1]. Nonlinear systems may show 

complicated behavior, such as limit cycles, bifurcations and even chaos which are difficult to 

predict. Besides in practical applications, due to the high intensity nature and often complex 

nature of non-stationary environmental loads such as wind loads, sea waves and earthquakes, 

the systems subjected to these loadings may experience excessive stress or displacements 

that results inelastic behavior [2]. To describe real observed processes in field of engineering, 

researchers often use mathematical models. For dynamic processes, these models contain 

many different types of equations such as ordinary or partial differential equations, difference 

equations, and algebraic equations. In general case, due to the nature of the considered 

problems are nonlinear, there is no exact solution for such equations. Except for some special 

cases, the solutions are approximate [3]. There are diverse approaches which have been 

developed over the years to treat the nonlinear problems. Most commonly used methods 
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include Perturbation, Monte Carlo simulation and well known harmonic balance method 

which is one of the main techniques for obtaining approximate analytic solutions to nonlinear 

ordinary differential equations. Also there are the semi-analytical methods, such as the high 

order harmonic balance (HOHB) method which has been developed to avoid the tedious 

algebraic calculations involved in the classical harmonic balance method in processing the 

nonlinear term in the nonlinear dynamical system [4], the high dimensional harmonic 

balance (HDHB) method and the time domain collocation (TDC) method [5]. Meanwhile, 

among many methods dealing with a nonlinear system, linearization methods are the oldest 

and the most popular methods of approximation. To approximate the nonlinear problems a 

powerful linearization technique is required to analyze and predict nonlinear system’s 

behavior in order to design an accurate and desirable scheme of a system during its operation 

under any excitations. One of the linearization methods is the Lyapunov linearization 

technique used to approximate a nonlinear system by a linear one that is around the 

equilibrium point, and it is expected the behavior of the linear system will be the same as that 

of nonlinear one in the equilibrium point [6]. The other one is feedback linearization method 

which is a common approach used in nonlinear control systems. This method is based on the 

idea of transforming original system model into equivalent linear one which is changed to the 

state variables and a suitable input instead [7,8]. Describing Function is another method for 

system linearization which is an extension of the frequency response method of linear control 

can be used as the approximate analysis to predict some important characteristics of 

nonlinear system including systems with hard nonlinearities [9]. Statistical equivalent 

linearization (EL) technique is commonly used approach in nonlinear problems. The 

statistical EL method is based on the idea that the nonlinear system is replaced by an 

equivalent linear equation by minimizing the difference between the two systems in some 

appropriate sense. In order to predict the response of this kind of system or to get an 

approximation solution of nonlinear equation this method is applied to estimate the accurate 

equivalent linear parameters. This method was proposed by Caughey [10] as a way to solve 

nonlinear vibration problems. Statistical EL method has proven to be very useful 

approximation technique in structural dynamics and earthquake engineering. All methods of 

statistical and EL can be considered in different fields such as state space, frequency domain, 

distribution space and characteristic functions space. Usually they consist of two main steps. 

In the first step, deal to find explicit or implicit analytical formulas for linearization 

coefficients based on the linearization criterion which is depend on unknown response 

characteristics such as mean value, variance, and higher-order moments. In the second step, 

deal to replace the unknown characteristics by the corresponding ones determined for 

linearized systems. It is worth mentioning that accuracy and feasibility of these solutions 

dependent on the type of nonlinearity and amplitude of external excitation forces. This 

method has been widely used [11,12]. Discrete-time (data sampled) systems have resulted in 

corresponding demand for designing and understanding these systems. These systems are 

governed by difference equations in which members are coupled to each other. One source of 

difference equations is the numerical evaluation of integrals. Also we could use the 

conventional Laplace transform to solve these difference equations [13].  

Block pulse (BP) transform provides a useful tool to solve difference equations of any 

order with less computational costs. The BP transform originated from BP functions. The 

BP functions are a set of orthogonal functions with piecewise constant values and are 

usually applied as a useful tool in the analysis, synthesis, identification and other problems 

of control and systems science. This set of functions was first introduced to electrical 
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engineers by Harmuth [14]. Some papers discussed the BP functions and their operational 

matrix for integration in order to reduce the complexity of expressions in solving certain 

control problems via Walsh functions. PurnachandraRao and RanganathaRao [15] used BP 

functions to determine the piecewise constant feedback controls for a finite linear optimal 

control problem of a power system. The proposed method is simple and has 

computationally advantageous. Sannuti showed that the application of BP functions results 

in an enormous reduction of computational effort over Walsh functions in control system 

applications [16]. In active control problem a new method proposed based on BP functions 

evolves minimizing computational costs of analytical approaches [17, 18].  

The main objective of this study is the using of BP transform in linearization procedure 

through its easy and simple operation. The input - output relationships for a linearized 

system and nonlinear system are obtained using the BP transform. Following the basic 

procedure of the traditional EL approach, one can find the least mean square error between 

the linearized and nonlinear equations. The effectiveness of the proposed method is 

validated on nonlinear Duffing oscillator system. Different simulations used to verify the 

accuracy and feasibility of the proposed method, the traditional EL results of displacement 

have been compared with those obtained by this method. Results from this study presented 

that this method can approximate the nonlinear systems behavior for stationary excitation 

better than the traditional EL method.  

Frequency response function (FRF) summarizes essential information to specify the 

dynamics of a structure. The FRF of linear and nonlinear system that is linearized by existing 

methods have been compared. This comparison confirmed the accuracy of proposed method.   

The remaining of this paper is organized as follows. Section 2 presents the BP 

transform formulation. In section 3 linearization method based on BP transform is 

proposed. The simulations have been carried out to compare with the traditional EL 

method in Section 4 and followed by the conclusion in Section 5. 

2. Block pulse transform 

Block pulse (BP) transform originate form B pulse functions (BPFs). BP functions 

possess various properties such as disjointness, Orthogonality and completeness. These 

functions discretize time domain of a problem to a unit time interval. Discretization in time 

domain makes BP functions as a potential approximation method which has its accuracy 

and simplicity. Here we noted that BP transform may not provide better approximation in 

comparison with the linearization based on the EL approach. EL approach is also a rich 

and strong methodology. However, BP transform provides a simplified approximation 

method and its results can be compared with EL approach. 

The block pulse transform method provides a technique for transforming a difference 

equation into an algebraic equation. It is very similar to z-transform method due to both 

methods can greatly facilitate the analysis, especially when we only desire responses at the 

sampling instants. But the block pulse transform defined with respect to the Laplace 

transform [19]. Consequently, the BP transform is the implementation of Black Pulse 

Functions in z-transform. The BP transform of function )(tf is defined by: 







0

)(
i

i

i zfzF

                                                                                                              (1)
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Where 
if  are the coefficients of the terms iz  ( ,...2,1,0i ) in the power series which 

are the values of the sampled signal )(tf  at the corresponding time instants h  and h  is the 

sampling period. The summery of BP transform properties are following [20]: 

For addition and subtraction of function )()()( tgtftx  , we have: 

)()()( zGzFzX                                                                                                         (2)
 

For multiplied by a scalar )()( tkftx  , we have: 

)()( zkFzX 

                                                                                                      

          

(3)

 

For multiplication of function )()()( tgtftx  , we have: 
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For division of function )(/)()( tgtftx   with 0)( tg , we have: 
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and finally for derivative of function
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where )0(

0f is the initial value of )(tf . 

3. Linearization based on BP transform  

We consider a SDOF nonlinear system subject to external signal )(tf  with the 

following motion equation: 

)(),()( tfxxgtxm  
                                                                                                   (7) 

where, m is mass of system and ),( xxg  is the nonlinear function. Performing the BP 

transform both sides of (7) yields: 

)()()(1 zFzGzmX                                                                                                     (8)
 

Where )(1 zX , )(zG  and )(zF  are BP transform of )(tx , ),( xxg   and )(tf  

respectively. Regarding to equation (8), the equation of an equivalent linearized system 

can be found as follows: 

)()()()( 21 zFzXkzXczmX eqeq 
                                                                                

(9) 
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In which, eqc  and eqk  are unknown damping and stiffness coefficients to be 

determined through linearization process. )(2 zX and )(zX  are BP transform of )(tx and 

)(tx , respectively.  

Replacement of a nonlinear system with an equivalent linear system will yield the error. 

The error, e, may be defined as: 

)()()(2 zGzXkzXce eqeq                                                                                         (10) 

A similar relation can be deduced to compute the error in EL process in respect of eqC  

and eqK . Using the basic procedure of the EL approach the solution of the nonlinear 

system is approximated. Equivalent parameters should be selected such that the error 

would be as small as possible by finding the mean square least error between the original 

equation and equivalent one [21]. 

2

2

2 )]()()([ zGzXkzXce eqeq 
                                                                               (11)

 

To determine the unknown coefficients from equation (11), the expected value of the 

error, ][ 2eE , is derived and its derivations in respect of eqc  and eqk  are written. It should 

be noted that the expected value of the error has been considered for having generality. 

This is true where the error to be assumed as a random variable. The coefficients eqc and 

eqk are determined as follows: 

0
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Noting 0][ xxE   
due to displacement and the velocity are uncorrelated and by using BP 

transform properties from section (2), the Eq. (12) leads to the following equations: 

                                                                                   (13) 

and 

      
                                                   (14) 

In practical applications of involving numerical algorithms all parameters are 

computing at discrete grid points. In discrete domain the minimization conditions are: 
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and 

0][
0
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
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eE
k

                                                                                                   (16)     

In above equations, T is the final time-instants in simulation process. 

By solving equations (15) and (16) equivalent coefficients of the system can be 

determined as follows. Here, we found two expressions to calculate eqc  and eqk  using BP 

transform. Similar equations can be defined to find eqC  and eqK according to EL 

approach. 
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For the summation (18) and (19) to converge, it is required that 1|
1

| 
iz

 and 

)1()1( 11   zz
 . We get  1z  and 0z  as convergence conditions. Therefore, the 

series do converge when z larger than 1.   

The traditional linearization of the dynamic equation (7) leads to the following equation 

with eqC  and eqK (in upper case letters), equivalent damping and stiffness coefficients to 

be determined by EL and replacement of the nonlinear terms of the main equation. 

)()()()( tftxKtxCtxm eqeq  
                                                                                 (19) 

Again the replacement of a nonlinear system by a linear system is in some probabilistic 

sense and it will yield the difference or error. The error defined as 

)()(),( txKtxCxxge eqeq    (20) 

Minimizing the mean square value of e  is the criterion used here, i.e. 

]))()(),([( 22 txKtxCxxgEe eqeq     (21) 

 The coefficient eqC  and eqK  are determined by the following equation: 
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And we have 

][

)],([
2xE
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and 
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
  (24) 

For more details see [1]. 

4. Results 

To implement the proposed methodology for finding equivalent damping and stiffness 

coefficients of a system we consider a nonlinear SDOF system as shown in figure 1. 

Nonlinearity of system is modeled with nonlinear stiffness. The equation for a famous non-

linear oscillator, the Duffing equation is studied. The Duffing equation with nonlinear 

stiffness subjected to external signal )(tf  is written as follows. 

)()()()( tfxgtxctxm  
                                                                                      (25) 

In which m is the mass, c  is the damping coefficient, )(tf  is the external excitation 

and )(tx is the displacement response of the system. The term, )(xg , is the nonlinear 

restoring force that would depend on displacement response defined as follows [22]: 

3

3)( xkkxxg 
                                                                                                       (26) 

In the above equation  is considered additionally as non-linear factor that reflects the 

rate of nonlinearity in the nonlinear system. 

 

Fig. 1. SDOF nonlinear system 

For instance, in an example system the dynamic parameters were chosen as follows, 

kgm 2 , mNSecc /20 , mNk /104  and mNk /108.3 9

3  . The system was excited 

by two signals. The first test signal was the sine excitation which contains three different 

frequencies as 4sin(6t)6sin(4t)sin(2t))( tf . The second one was a chirp signal in 
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which the frequency increases linearly with time. In the linear chirp the frequency varies 

from 0.1 Hz to 1.5 Hz with a sampling period of 0.01. It should be noted that the nonlinear 

Duffing system subjected to two stationary excitations. Using equation (17) and (18) for 

the stationary excitation may make some confliction. For the cases in which excitation is 

not stochastic the computed error is not random variable. It is obvious that in such cases 

expected value of error is replaced with sum of square errors and derivation of it in respect 

to unknown parameters is performed. The equivalent damping and stiffness coefficients of 

the Duffing system were calculated based on BP transform and EL method. To assess the 

effect of the rate of nonlinearity on the computed response of system, four different 

amount of nonlinear stiffness were considered through defining various . The values of 

1.0, 1.05, 1.1 1nd 1.2 were considered. Figures 2 and 3 illustrate the displacement response 

of the linearized system using both proposed and traditional EL methods. 

As illustrated in figures 2 and 3, three curves are plotted in each figures. a) The 

response of the linear system for the system in which K3=0. This one is illustrated only to 

show the disparity of the linearized system from linear response in respect of nonlinearity 

rate. It named "linear system" in figures.  b) The response of nonlinear system linearized 

by the proposed method. c) The response of nonlinear system linearized by EL method.  

 

Fig. 2. Displacement response of linearized system; linear system (solid line), 

linearized system by proposed method (dotted line), linearized system by 

traditional EL method (dashed line): (a) α =1.0 (b) α =1.05 (c) α =1.1 (d) α =1.2. 

The obtained results on nonlinear SDOF system reveal that the proposed linearization method 

based on BP transform can be a promising tool in linearizing nonlinear systems. Comparing the 

results shows that the difference between the responses obtained from two methods are very close 

to each other. The disparity of displacement response of linearized system based on BP transform 

from in respect to the response of linear system is plotted in figure 4 for values of .     
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Fig. 3. Displacement response of linearized system; linear system (solid line), 

linearized system by proposed method (dotted line), linearized system by 

traditional EL method (dashed line): (a) α =1.0 (b) α =1.05 (c) α =1.1 (d) α =1.2. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4. The disparity of displacement response obtained based on the proposed 

method in respect to linear response: Displacement errors; α =1.0. (solid line), α 

=1.05. (dotted line),  α =1.1.  (dashed line), α =1.2. (dash-dotted line). 

In the field of structural dynamics, one of the most widely-used method of visualizing 

the dynamic properties of a system is to build the frequency response function (FRF). The 

FRF summarizes most of the necessary information such as resonances, anti-resonances, 

modal density and phase to specify the dynamics of a structure. In addition, the FRF can 
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rapidly provide an indication of whether a system is linear or nonlinear. Figure 5 presents a 

comparison of FRF of the nonlinear system linearized by two methods. 

 

 

Fig. 5. Linearized FRF of system; linear system (solid line), linearized system 

by proposed method (dotted line), linearized system by traditional EL method 

(dashed line); (a) α =1.0. and (b) α =1.2. 

5. Conclusion 

This paper deals with linearization of a nonlinear SDOF system. The proposed method 

based on BP transform compared with traditional EL approach. In order to investigate the 

performance of the proposed linearization method, the Duffing oscillator subjected to 

stationary signals and the feasibility of the proposed method is demonstrated. The results 

showed that the proposed method can be suggested as a technique that simplifies solving 

complicated nonlinear dynamic equations. Comparisons between the results obtained based on 

two approaches reveal that for any rate of nonlinearity in nonlinear system, the displacement 

response of the proposed method is well-approximated and very close to those one obtained 

based on the traditional EL method. The frequency response functions of linear and linearized 

system have also determined. It is observed that the approximated nonlinear system by 

proposed method is well-behaved than the one approximated by traditional EL approach.  
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