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ABSTRACT 

Automated diagnosis and Troubleshooting (TS) in Radio Access Networks (RAN) of cellular 

systems are basic management tasks, which are required to guarantee efficient use of network 

resources. In this paper, we investigate the usage of machine learning techniques: stochastic 

methods and discriminant analysis for automating these TS tasks. Our proposed framework is based 

on Hidden Markov Model (HMM), Principle Component Analysis (PCA) and Fisher Linear 

Discriminant (FLD) techniques. In a learning phase, symptoms relating to faults in the network are 

extracted from a network management system (NMS). Then they are used to create a fault model. 

This model is used to identify the unknown faults using a nearest neighbor classifier. Reported 

results for the automated diagnosis using live RAN measurements illustrate the efficiency of the 

proposed TS framework and its importance to mobile network operators.  

Keywords: Automated diagnosis, Hidden Markov Model (HMMs), faults, symptoms, 

troubleshooting (TS), the Next Generation Mobile Networks (NGMN). 

1. Introduction  

Mobile services are growing faster than most industry observers’ predictions. Market 

demands and competition are driving the needs for a rapid expansion in network capacity, 

coverage, and quality to meet rising user expectations in terms of connection speed and 

network availability. This leads to huge and complex networks with thousands of cells. In 

the meanwhile, operators of mobile communication networks face the challenging task of 

managing such complex networks.  

Along with the Long Term Evolution (LTE) introduction, the concept of Self Organizing 

Networks (SON) [1] was adopted by the Next Generation Mobile Networks (NGMN) alliance to 

address challenges of management several radio access technologies. SON categorized into 

functional tasks according to the operation and maintenance areas of configuration, optimization 

and troubleshooting. Accordingly, SON includes self-configuration, self-optimization and self-

healing network features (shown in Fig.1). Self healing function aims to automate fault detection, 

diagnosis and recovery [2], especially, for coverage and capacity problems to compensate 
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network outages and enhance coverage performance. In practice, operation teams perform fault 

recovery either through remote action like a remote reset for hardware to recover hanging or 

through field intervention to fix the defected item. Most of SON proposed frameworks (e.g., [1]-

[2]), concerned with self healing through remote fault recovery and in case of failure of the 

remote recovery. SON tries to change the configuration management (CM) parameters for 

network elements [2] to provide a solution for the radio coverage problems. As an example, to 

compensate the coverage gap of the impacted neighbour cell, the base station power is increased. 

Despite of the high time consumption needed to make alarms and Key Performance Indicators 

(KPIs) correlations to diagnose the second type of faults, which need field intervention, this type 

of diagnosis has not been addressed under SON standardization [1]. In this paper, automatic fault 

diagnosis addresses the latter type of faults, more specifically the radio base station hardware and 

transmission network faults, to facilitate complex network troubleshooting tasks. 

 

 

 

 

 

 

Fig. 1. SON Use Case Examples [1]. 

Mobile networks are divided into two main parts, the core network and the access network. 

The access network is the part of a telecommunications network that connects subscribers to their 

immediate service provider [3]. While the core network is the central part of 

any telecommunication network that provides various services to customers, who are connected 

by the access network. One of the core network’s main functions is to route telephone calls to 

other mobile operators and the Public Switched Telephone Network (PSTN) [4]. 

In the second generation mobile networks (GSM), the access network consists of three 

main parts, a radio base transceiver station (BTS), the base station controller (BSC), and 

transmission links connecting the base station to the base station controller. In the third 

generation mobile networks (UMTS) the radio access 

The network consists of three main parts also, a radio base station, which is called a 

NodeB, the radio network controller (RNC), and transmission links, which connecting 

RNC to NodeB. While in the Long Term Evolution mobile networks (LTE), the access 

network consists of multiple of enhanced NodeB (eNodeB) and transmission links 

connecting eNodeBs (eNB) with each other and to the core network. 

Modern mobile networks support multiple radio technologies of GSM, UMTS, LTE 

mobile networks and WIFI network. The transmission links can be microwave link, optical 

fiber, copper lines, laser optics link or satellite link.  

Different transmission links are interconnected together to provide different access 

network connectivity forming a private transmission network for mobile operators as 

depicted in Fig.2. 

 

http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Telecommunications_network
http://en.wikipedia.org/wiki/Service_provider
http://en.wikipedia.org/wiki/Telecommunication_network
http://en.wikipedia.org/wiki/Service_(systems_architecture)
http://en.wikipedia.org/wiki/Access_network
http://en.wikipedia.org/wiki/Routing_in_the_PSTN
http://en.wikipedia.org/wiki/PSTN
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Fig. 2. Multiple Radio Access Technologies Mobile Network. 

Tools are required to automatically analyze the data that are collected from different parts of 

the network. This provides a useful feedback that can be smartly used for mobile business 

priorities, managing network complexity, save revenue loss and improves customer experience. 

Manage access networks need a large number of operation experts, who diagnose 

network’s faults as well as propose quick solutions for restoring the network. There are 

two kinds of operation experts involved in radio access network faults’ troubleshooting. 

Radio optimization experts [5] perform radio coverage faults diagnosis and recovery. 

Radio Access Network (RAN) operation and maintenance experts [6] perform 

maintenance for hardware of radio access network nodes BTS and transmission links. 

The main symptoms, which can be adopted in identifying RAN’s faults, are Key 

Performance Indicators (KPIs) and alarms. Examples of KPIs [7] are Blocked Call Rate 

(BCR), Dropped Call Rate (DCR), network availability, etc. While base station modules’ 

faults, which composed of elements that deteriorate gradually or suddenly over time, 

generate alarms. The faulty component can be a transceiver (TRX), a radio combiner, an 

antenna, a connector, a cable, a power supply, etc. 

2. Related work  

Automating TS consolidates thousands of unlabelled alarms and KPIs into meaningful 

events, which can be easily managed. Still the research in the area of automatic diagnosis 

in the radio access part of cellular networks is limited, despite of the increasing interest in 

this type of research shown by mobile network operators and manufacturers. Among 

troubleshooting tasks, diagnosing the cause of faults is the most complex and time-

consuming one. Therefore, researchers investigated the automatic diagnoses of different 

faults. As an example, Barco et al. [8] focused on BTS hardware faults, e.g., faulty TRX. 

While in another work, Baku et al. [9] focused on transmission link faults. Coverage faults, 

e.g., lack of coverage, were investigated in ([10] - [11]).   

In the limited previous works ([8] - [11]) KPIs and alarm symptoms were used in 

discrete Bayesian networks-based frameworks for automatic fault diagnosis in cellular 

networks. Solana et al. [11] used KPIs as symptoms for radio coverage faults diagnosis. 

While Barco et al. [9] used a KPI and alarms as symptoms to diagnose hardware and radio 

coverage faults. However, low diagnosis accuracy has been achieved as only dropped call 
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rate (DCR) KPI adopted as symptoms. On the other hand, in other works, e.g., ([10], [11]) 

KPIs only are used as symptoms to diagnose radio coverage faults, hardware faults and 

transmission link faults. However, low diagnosis accuracy achieved for hardware and 

transmission link faults as alarms have not been considered as symptoms.  

Previous automated fault diagnosis researches in mobile network focus on radio coverage 

faults and its self-healing mechanism as an important part of a self-organizing network 

(SON) architecture [7]. Radio KPIs as symptoms represent a strong information source to 

reveal radio coverage faults. Despite of the importance and complexity of hardware and 

transmission link faults and its significant contribution in service outages, hardware and 

transmission faults are not efficiently addressed in these works e.g., ([10] -[11]).  

In this work, hardware and transmission link faults are deeply investigated to facilitate 

the most consuming time in troubleshooting complex hardware and transmission faults 

come from multi radio access technology networks shown in Fig.2.  Since alarms are 

considered as rich information sources to identify hardware and transmission link faults, 

alarms have been selected as symptoms. Our main objective is designing a tool to 

automatically achieve high diagnostic accuracy and to be easily implemented in an 

operator live network. In this paper, Hidden Markov Model (HHM) ([12]-[14]) is adopted 

for diagnosis. HMM is used as a statistical method for modelling and recognizing 

sequential information (i.e. Alarms consequences).  

3. Proposed framework 

The access network, which is addressed in this paper, consists of more than 6000 of 

physical radio base stations. These base stations are connected to base station controllers 

and radio network controllers using more than 6000 different types of links. Links covered 

in this paper are mainly fixed microwave links. Microwave links use the free space as a 

transmission medium and a beam of radio waves in the microwave frequency range to 

transmit data between two locations. The microwave link consists of two main parts: an 

indoor unit, which performs baseband digital signal processing, and an outdoor unit, which 

performs radio signal processing. In this paper, the microwave fault of the baseband and 

the radio units has been addressed.  

On the other hand, the base transceiver station consists of three main parts: a clock card 

to interface with the BSC and to perform the baseband processing, a transceiver to perform 

most of the radio wave processing, and an antenna system to convey the radio waves from 

the transceiver to be transmitted to mobile stations. In this paper, two types of antenna 

system faults are addressed.  

These four types of faults are chosen because they contribute significantly in the overall 

mobile network faults. Since the target access network is a complex and a high 

dimensional network, this network uses microwave links which suffer from many radio 

propagation problems, i.e., interference, fading… etc. 

In the proposed framework, alarms as symptoms are gathered from network management 

system NMS [20]. The target radio access network NMS reports many categories indicating 

BTS faults namely: hardware, software, quality of service, signalling, trunk, and 

communication faults. In this work, BTS communication trunk faults (i.e. The microwave fault 

of the baseband and the radio units) and GSM antenna faults (two types of antenna system 

faults) have been addressed. For each fault type, alarms are daily recorded in a historical file.  

http://en.wikipedia.org/wiki/Data
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3.1 HMM–Based modelling and recognition 

Because it has been successfully used for automatic diagnosis in many applications 

(e.g., diagnosis of diseases in medicine [15-17] and diagnosis of mechanical system faults 

[18-19]), we propose to use Hidden Markov Model (HMM) [12] in diagnosing faults of 

multi radio access technologies networks. The alarmed data, in each historical file, are 

segmented into T segments; each segment has a duration of K seconds. Then each segment 

is sampled every τ seconds. Finally, each alarm message is given an arbitrary code. The 

result is an observations matrix О= {О1,О2 ,О3 ,…, ОT} of K/τ codes for each observation 

vectorОi, (1≤ i ≤ T) and  T varies based on the alarm historical file length. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. HMM Training and Recognition Approach. 

As shown in Fig. 3, in the training phase the faults’ observation sequences OF (i.e. Coded 

alarms) are used in modelling and training for each fault model λj using Baum-Welch’s 

algorithm [12]. While in the recognition phase, an under test fault’s observation sequence 

(i.e. Coded alarms) is used to calculate the likelihood 𝑃𝑟(𝑂𝑇|𝜆𝑗) of the under test faults’ 

observation OT with respect to each fault model λj using the modified forward algorithm. 

HMM is useful to model a sequential event in a system [21]. In this work, HMM is used 

as a statistical method for modelling and recognizing sequential information (i.e. Coded 

alarm consequences). The purpose of training a HMM is to determine a model parameters 
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λj with the highest probability of the observation likelihood Pr(OF|λj) when observing a 

sequential alarm’s code under test OF. 

For a set of hidden states S = {s1,s2…… sN}, the conventional HMM model is denoted 

as λ= {A, B, π}. Where the state transition probability matrix A, the observation symbol 

probability matrix B, and the initial state π are defined as 

 𝐴 =  {𝑎𝑖𝑙} ,                                      𝑎𝑖𝑙 =  𝑃𝑟(𝑞𝑡+1 = 𝑆𝑙|𝑞𝑡 =  𝑆𝑖 ), 1 ≤ 𝑖, 𝑙 ≤  𝑁    (1) 

𝐵 = {𝑏𝑙(𝑂𝑡)},                                   𝑏𝑙 = 𝑃𝑟(𝑂𝑡|𝑞𝑡 = 𝑆𝑙), 1 ≤ 𝑙 ≤ 𝑁     (2) 

𝐵 = {𝑏𝑙(𝑂𝑡)},                                   𝑏𝑙 = 𝑃𝑟(𝑂𝑡|𝑞𝑡 = 𝑆𝑙), 1 ≤ 𝑙 ≤ 𝑁     (3) 

𝜋 = {𝜋𝑙},                                           𝜋𝑙 =  𝑃𝑟(𝑞1 = 𝑆𝑙)                              (4) 

In this work, a hidden state s𝑖 represents the unique signature for a fault when HMM 

trained using the alarm sequenceOF. In the learning phase of the proposed framework, we 

define the variable, ξ (i, l) as the probability of being in the state s𝑖 at time t, and the sate sl at 

time t+1, and the variableγ(i), as the probability of being in the state sl at time t as follows. 

𝜉(𝑖, 𝑙) =
𝛼𝑡   𝑎𝑖𝑙  𝑏𝑙  (𝑂𝑡+1) 𝛽𝑡+1(𝑙) 

Pr (𝑂 |λ )
    (5) 

   𝛾𝑡   (𝑖) =  ∑  𝜉 (𝑖, 𝑙)

𝑁

𝑙=1

    (6) 

Also define αt(i) as the forward variable and βt(i) as the backward variable: 

𝛼𝑡(𝑖) =  𝜋𝑖𝑏𝑖(𝑂1) ,                                                               (1 ≤ 𝑖 ≤ 𝑞)                                      (7) 

𝛼𝑡+1(𝑙) =  [∑ 𝛼𝑡 (𝑖)𝑎𝑖𝑙] 𝑏𝑙(𝑂𝑡+1),                      (𝑡 = 1,2, … … . , 𝑇 − 1)   (8) 

𝛽𝑡(𝑖) = 1,                                                                                 (1≤ 𝑖 ≤ 𝑞)   (9) 

 𝛽𝑡(𝑖) =  ∑ 𝑎𝑖𝑗  𝑏𝑗 (𝑂𝑡+1)𝛽𝑡+1(𝑖),                        (𝑡 = 𝑇 − 1, 𝑇 − 2 , … … … ,1)

𝑁

𝑗=1

 (10) 

Using these variables, we can estimate the updated parameters A and B of the model of 

λ via estimating probabilities as follows. 

 𝑎𝑖𝑙̅̅ ̅̅ =  
∑ 𝜉𝑡(𝑖,𝑙)𝑇−1

𝑡=1

∑ 𝛾𝑡(𝑖)𝑇−1
𝑡=1

.  (11) 

𝑏𝑙(𝑘)̅̅ ̅̅ ̅̅ ̅ =
∑ 𝛾𝑡(𝑖)𝑇−1

𝑡=1𝑂𝑡=𝑘

∑ 𝛾𝑡(𝑖)𝑇−1
𝑡=1

.  (12) 

Where  ail̅̅ ̅̅  is the estimated transition probability from the state 𝑖 to the state 𝑙 and 𝑏𝑙(𝑘)̅̅ ̅̅ ̅̅ ̅ 

is the estimated observation probability of alarm’s code 𝑘 from the statel. In the 

recognition phase of the proposed framework, the probability of a certain coded alarm Ot 

generated from a fault model λj is calculated using the forward algorithm as follows. 
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Pr(O𝑡|𝜆𝑗) = ∑ 𝛼𝑇(𝑖)𝑁
𝑖=1 ,  (13) 

αt(i) is the probability of observations being in state 𝑖 at time 𝑡. 

3.2 Features selection and dimensionality reduction 

As mentioned before, alarms are daily recorded in a historical file, and then data are 

segmented and sampled. The dimension of the resultant fault signature may be greater than 

7000 due to the high dimensionality of the alarm log file especially for a number of 

records, which spread over an extended time duration. It is well known that a large number 

of features may cause over-fitting, if they are not relevant features and if the underlying 

distributions are not estimated accurately. Furthermore, a large number of features make it 

difficult to design a classifier due to time and space complexity issues. 

Therefore, in this work, we use two mechanisms to select the features. The first 

mechanism represents the original information in a lower dimensional space by retaining 

most of the relevant information. This is the Principal Component Analysis (PCA) 

approach [22]. The second mechanism, which is Fisher Linear Discriminant (FLD) [23], 

maps the original feature space into one where classes separability is greatly enhanced.  

 Principal Component Analysis (PCA) is used as a first technique followed by HMM. 

PCA linearly transforms fault data (i.e. Alarms) in the high-dimensional space to a space 

of fewer dimensions. Since HMM is normally trained with symbols of sequential data, the 

feature vectors obtained from PCA are quantized to constitute a codebook, which is a set 

of quantized signature of faults’ sequential dataset. Then, the codebook is used in training 

HMM’s, as explained in the flowchart shown in Fig. 5.  

The PCA purpose is to find a linear orthogonal transformation W such that the variance 

is maximized in the new space (i.e., ʋ = Wu, u is the observation vector.) In this work, u 

represents the fault’s raw data and  ʋ represents the fault’s feature vector. Alternatively, 

PCA represented a minimization of reconstruction error it turned out that these principles 

leads to a symmetric eigenvalue problem. The row vectors of W correspond to the 

normalized orthogonal eigenvectors of the data covariance matrix. Eigenvectors are 

obtained using singular value decomposition (SVD). 

After training each HMM, an unknown fault test sequence is projected on the PCA 

feature space and quantized. The obtained symbols are compared with the codebook to 

form a proper test symbol set O to calculate the log-likelihood with respect to trained 

faults’ models Pr(O|λj) , 1 ≤ j ≤ N, N is the number of trained faults. 

PCA finds the minimum number of components that best represents the data. However, 

we need to reduce the dimensionality, under some constraint of maximizing the class 

discrimination. Therefore, we use Fisher Linear Discriminant (FLD) to map the original 

data space into another feature space that maximizes the class discrimination. Similar to 

PCA-based approach, the feature vectors obtained from FLD are quantized to constitute a 

codebook, then, the codebook is used in training HMM’s. 

Fig. 4. Presents an example of a codebook generation for four different faults, in the 

training phase the original data per fault is projected on the PCA feature space. The resultant 

faults’ projection vectors are 𝑓𝑝1, 𝑓𝑝2 , 𝑓𝑝3 and 𝑓𝑝4. After quantization, under the assumption 
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of 1 quantized level per fault, there are four quantized levels𝑐1 , 𝑐2  , 𝑐3   and 𝑐4   represent the 

codebook records and used to train the HMM. In the recognition phase, the test sample is 

projected on the PCA feature space, quantized according to the same quantization process 

used in the training phase and finally, HMM is used to find the highest likelihood of test 

sample’s projection and codebook records as a codebook lookup process, as shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

Fig. 4. PCA codebook Generation Example. 

4. Experiments 

To evaluate the performance of the proposed fault recognition system, a set of experiments 

is conducted for modelling and recognition. Also, the effect of feature dimensionality on the 

recognition performance is investigated. Where, machine learning approaches, PCA and FLD, 

are used in combination with HMM for modelling and recognition.  

Experimental data has been collected from NMS of Vodafone Egypt live mobile network, 

alarms log files are gathered for three months duration. Four different types of faults have 

been trained, two faults for the BTS transmission link (i.e., F1≡ Microwave Link Free Space 

Propagation & Transmission Fault and F2≡ Microwave Link hardware and Baseband Fault). 

Other two types are BTS antenna system faults (i.e., F3≡ BTS Voltage Standing Wave Ratio 

(VSWR) [24] fault and F4≡ Losing of Receiver Diversity Channel fault [25]). Our data 

consist of 74 alarm log fault files, at least 15 files per fault type. One file for each type is 

randomly selected for the training process and the others are used for testing.  

To obtain accurate statistical results, the training and testing process are repeated many 

times using different files, and the average of the recognition performance is reported. 

The reported results, in each experiment, represent the best recognition rate with the 

empirical settings of the raw observation vector length, number of features and codebook 

size. For PCA, eigenvectors have been computed for all faults datasets and the projections 

corresponding to the highest eigenvector are quantized and then used to train the HMM. 

The system is quantitatively evaluated as follows. Each given test sample is identified 

against the four stored faults’ models to get the recognition rate per fault. The recognition 

results are represented in the form of a confusion matrix, which represents the recognition 

rate for known test sample with respect to the fault models (i.e.,. For optimum classifier the 

confusion matrix is the identity matrix). Accordingly, the diagonal elements should have 

maximum values for each corresponding row. 
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Fig. 5. A flowchart describes feature selection, training Procedure in the Left Side, and 

Recognition Procedures in the Right Side. 

In the first experiment, the original data, which are segmented, sampled, and coded 

from the raw data, are used without any learning approach. A nearest neighbour classifier 

is used to classify the original data using the Euclidean distance. Table.1 illustrates the 

recognition performance obtained from this experiment.   

As expected, the original data, without learning, can’t be correctly classified using a 

nearest neighbour classifier. This why fault F2 is identified as fault F1 and fault F4 is 

identified as fault F3.  
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The second experiment addresses the usage of HMM in the recognition framework. 

After training the HMM’s, the highest likelihood value for the unknown fault against each 

model is chosen as a criterion for the recognition. Table.2 illustrates the recognition 

performance obtained from this experiment. It is clear that the recognition performance is 

enhanced after using trained HMM’s and the faults are correctly classified with an average 

recognition rate 78%. 

The third experiment addresses the usage of PCA in the recognition framework. The 

original data segmented, sampled, and coded, then PCA is applied to reduce the 

dimensions of coded data. A nearest neighbour classifier is used to classify the low 

dimensional PCA projected data using the Euclidean distance. Table.3 illustrates the 

recognition performance obtained from this experiment. Again, fault F2 is identified as 

fault F1 and fault F4 is identified as fault F3. The results confirm that even the projected 

data cannot be classified without learning. 

The fourth experiment addresses the usage of PCA or FLD in combination with HMM 

in the recognition framework. The original data segmented, sampled, and coded, then PCA 

or FLD is applied to reduce the coded data dimensions. HMM uses PCA codebook 

projected data to train faults. Then the highest likelihood value is used for recognition. 

Table.4 illustrates the recognition performance obtained by using PCA and HMM. Since 

the results of using FLD instead of PCA are comparable to the one in Table.4, we don’t 

add these results. Despite the faults are correctly identified, the recognition performance is 

degraded compared to results reported in Table.2. This is due to information loss during 

the PCA codebook quantization process. 

                     Table 1. 

                       Original Data Euclidean Based Fault Diagnosis Confusion Matrix. 

Label F1 F2 F3 F4 

F1 86.81 13.13 0.05 0.01 

F2 60.72 39.08 0.20 0.00 

F3 21.79 0.00 63.37 14.84 

F4 30.02 0.00 60.66 9.32 

Average 49.64 % 

                Table 2.  
                  HMM Based Fault Diagnosis Confusion Matrix. 

Label F1 F2 F3 F4 

F1 74.20 17.43 8.37 0.00 

F2 28.13 71.43 0.44 0.00 

F3 0.00 0.00 95.56 4.44 

F4 0.03 0.00 29.25 70.72 

Average 77.98 % 
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                  Table 3.  
                  Original Data PCA Based Fault Diagnosis Confusion Matrix. 

Label F1 F2 F3 F4 

F1 81.22 12.88 0.36 5.53 

F2 63.62 33.92 0.22 2.23 

F3 21.79 0.00 63.19 15.01 

F4 30.20 0.04 60.64 9.12 

Average 46.86 % 

                  Table 4.  

                        PCA-HMM Based Fault diagnosis Confusion Matrix 

Label F1 F2 F3 F4 

F1 54.07 38.34 1.71 5.89 

F2 27.12 61.00 3.66 8.22 

F3 3.33 1.30 59.48 35.89 

F4 1.59 0.60 29.92 67.89 

Average 60.1 % 

                     Table 5. 

                  Extended Segment Size for Original Data Euclidean Based Fault   

                  Diagnosis Confusion Matrix. 

Label F1 F2 F3 F4 

F1 73.23 26.74 0.00 0.03 

F2 13.49 86.51 0.00 0.00 

F3 0.00 0.00 53.97 46.03 

F4 0.79 0.09 19.93 79.19 

Average 73.22 % 

               Table 6.  
                 Extended Segment Size for Original Data PCA Based Fault Diagnosis  

                 Confusion Matrix. 

Label F1 F2 F3 F4 

F1 70.79 15.01 0.11 14.10 

F2 35.75 49.17 0.00 15.08 

F3 30.53 0.00 53.97 15.50 

F4 19.73 1.44 19.79 59.04 

Average 58.24 % 

The fifth experiment addresses the effect of increasing the segment size K, where K is 

increased from 4 to 48 minutes. As expected, the recognition performance is enhanced after the 
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segment size is increased. This is because the segment becomes more informative and 

discriminative. Table.5 and Table.6 illustrate the improvement in the recognition performance 

with respect to the corresponding results reported in Table.1 and Table.3, respectively.  

5. Conclusions 

We proposed a framework for automatic diagnosis of RAN faults. Experiments are 

conducted on data collected from live networks. The proposed framework achieved high 

diagnostic accuracy and can be easily implemented in an operator live network. It is worth 

to mention that although the proposed model was validated on diagnosing problems in the 

radio access of GSM networks only, the proposed method is also directly applicable in 

generic radio access networks (i.e. 3G Access Network) if the appropriate models are used. 

Since alarms as symptoms are normally available in the NMS of all operators, this makes 

the proposed automated tool easily to be implanted for different operators. A model has 

been built based on knowledge of GSM experts and databases from a real network to 

support the theoretical contributions of this paper.  

Proposed tool can be easily extended to gather a lot of symptoms from different 

management systems to be used in the complex networks end to end fault diagnosis. That’s 

drive down operational costs in the future cellular networks achieving fast fault recovery. 

Accordingly, it’s expected to significantly improve the overall operational efficiency and 

enhance customer experience. 
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 نظام تشخيص الأعطال الآلي للشبكات الخلوية

 على أساس نموذج ماركوف الكامن

 الملخص العربى:

الخلييو   للأنظمو  (RAN) في شبكات النفاذ الراديوي  (TS) التشخيص الآلي واستكشاف الأخطاء وإصلاحها 

فوي ذوذا الب،و ،  .من  مهام التشغيل  الأساسي ، كذلك تعتبر مطليبو  لموماا اتسوتخ ام الفعواو لموياشد الشوبك 

فوي . TSأساليب العشيائي  والت،ليول المميولأ لأتمتو  ذوذم المهوام  :ون،ن الت،قيق في استخ ام تقنيات التعلم الآلي

لآلووي م وول الطوورو العشوويائي  وت،ليوول التمووايلأ لميكنوو  مهووام ذووذا الب،وو ،  منووا بتطوويير اسووتخ ام تقنيووات الووتعلم ا

، ومبو أ (HMM)الإطواش المقتوري ينوتن  الوي نمويذك مواشكيف الكوامن  . TSاستكشواف الأخطواء وإصولاحها 

. فوي مرحلو  الوتعلم، يوتم اسوتخراك اتدلو   (FLD)ووتقنيوات فيشور للتموايلأ الخطوي  (PCA)ت،ليول المركبوات 

وينتخ م  .(. ثم يتم استخ امها لإنشاء نميذك للعطلNMSشبك  من نظام إداشة الشبك  )المتعلق  بالأخطاء في ال

النتوائ  المعلنو  للتشوخيص الآلوي  .ذذا النميذك لت، ي  اتعطاو الغير معروف  باستخ ام أ رب مصون  متاواوش

وكذلك أذميت   TSفعلي  تيضح كفاءة الإطاش المقتري تستكشاف الأخطاء وإصلاحها  RANباستخ ام  ياسات 

 .لمشغلي الشبكات المتنقل 

 

 

 

 


