GROWTH PROMOTORS AND THE DURABILITY OF MEAT

A.F. El-Kholy

Department of Animal Production, Faculty of Agriculture, University of Cairo, Giza, Egypt

SUMMARY

The microbial contamination of carcasses has been reported to have significant effect on the shelf life of meat. Refrigeration-storage (at 0°C) of meat to prolong its shelf-life recommended by many authors. The flavomycin is antibiotic used as veterinary drug and as feed additive to promote the growth of cattle and buffalo. The aim of this work is to study the effect of flavomycin on the durability of chilled beef and buffalo's meat. Sixteen calves, 8 each of Friesian and buffalo, four animals of each fed on 20 mg/day flavomycin (growth promotor) and other four are untreated (control), sample of each carcass were kept at 0°C±1 and examined every 2 hr 5, 10, 15 and 20 day bacteriological quality (Aerobic plate for Enterobacteroceae C., Coliforms C., Pyshrotrophic C. and Staphylococcus aureus C. Analysis of muscle, liver, kidney and intestine for detection the presence of flavomycin residues.

The obtained results proved that the flavomycin has an effect on the initial bacterial count and the bacterial count during the periods of cold storage. The absence of flavomycin in the tissue was also observed this may attributed to the fact that flavomycin is poorly observed from the digestive tract. Therefore, it could be concluded that the flavomycin can be safely used as growth promotor.

Keywords: Growth promotor, shelf-life, Friesian, Buffalo, bacterial count, storage

INTRODUCTION

Meat as sensitive raw material requires special care during production and storage in order to remain its natural properties and nutritive value.

The main microbial problems involved in meat production and storage are represented in the consumer protection from foodborne diseases as well as its spoilage.

Muscular tissues of healthy animals at slaughter are virtually free from microorganisms and that contamination is connected only with human handling (Zender et al., 1958; Ingram 1964; Hasegawa et al., 1970; Ingram and Dainty (1971) and Gilland Netwon (1977).

It has been established that the potential sources of microbial contamination come from hide, hair, hoofs, soil, contents of the gastro-intestinal tract, water used for washing the carcasses, air borne contamination, cloths, knives and finally the personnel (Ayres, 1955; Frazier and Westhoff, 1978 and Thomton, 1977). Because of these varied sources of contamination, the quality and quantity of microorganisms which are likely contaminate carcasses will also be varied.

The microbial contamination of carcasses has been reported to have a significant effect on the shelf life of meat. Moreover, the initial contamination can be directly correlated with the keeping quality of beef meat, Greer and Jeremiah (1980). In connection with this, many investigators have stressed the importance of the rapidly decreasing temperature of meat without freezing as a precise method to inhibit or even stop the subsequent multiplication of initial contaminants, particularly, the mesophilic ones (Ayres, 1955 and Elliott and Michener, (1965). Hence, refrigeration-storage of raw meat to prolong its shelf and acceptable life is now a universally accepted principle in the field of meat storage.

In practice, refrigeration storage of meat carcasses has not stopped the process of psychrotrophic or psychrotrophilic microbial growth which has most often been the cause of surface discoloration, slime formation, undesirable odors, rancidity of fat or even spoilage of refrigerated meat (Ayres, 1960; Elliott and Michener, 1965; Ingram and Dointy, 1971; Elmosalami and

Wassef, 1973; Bala <u>et al</u>., 1977; and Gill and Newton, 1977).

During storage of meat, total number of bacteria may be increased specially psychrotrophic strains. Ayres (1955) stated that chilling of meat inhibits the growth of microorganisms other than psychrophiles.

The keeping quality of meat is not affected only by the initial count of the bacteria, but also by the temperature and relative humidity of the storage room. Storage of edible meat in chilling chambers adjusted at 0°C and relative humidity 88-90% recommended by Roushdy et al. (1982) as meat retain its freshness for a relatively long duration.

Hapke and Grahwit (1987) stated that the application of veterinary drugs is a necessity for prophylactic and therapeutic reasons both in individual animal and in large scale farming. By this the health of the animals is maintained and good performance is ensured. Thus, in many cases the prophylactic application of drug until short time before is unavoidable.

The aim of the present study is to clarify the effect of flavomycin antibiotic as a growth promotor on the durability of chilled beef and buffalo's meat.

The flavomycin is an antibiotic related to the flavophospholipol group, and is used as feed additive. Thus, corresponding to its primary purpose, has an absorption ratio of only 0.25% from the digestive tract. It does not create residue levels in the animal's tissue (Mirna, 1971).

MATERIALS AND METHODS

Sixteen calves, 8 each of Friesian and buffalo. Four animals of each species fed on 20 mg/day flavomycin (growth promotor) during fattening period untill three days before slaughter (450 Kg) and the other 4 are untreated (control). From each carcass the fore shank and hind shank are collected and placed in plastic bags in a refrigerated container for transport to the laboratory with a minimum of delay.

The muscle samples were kept on refrigerator at 0° C ±1 and examined every 2 hr, 5, 10, 15 and 20 days for bacteriological quality as follows:

1. Aerobic plate count (APC):

Samples were prepared and examined according to the technique recommended by ICMSF (1978), where the drop method was used and the plates were incubated at 30° C for 48 hr.

2. Psychrotrophic count:

The technique adopt simulates what has been stated on APC. Standard plate count agar was used according to A.P.H.A. (1976) and incubated at 7° C for 10 days.

3. Enterobacteriaceae count:

The same technique of the drop plate method was applied using violet red bile glucose agar (ICMSF, 1978), with incubation temp. 37° C for 24 h.

4. Staphylococcus aureus count:

(ICMSF, 1978), using Baird parcker medium.

5. Enumeration of coliform (MPN):

The three tube method recommended by ICMSF, (1974) and ISO, (1975) was applied.

In addition samples of liver, kidneys and intestine were collected for detection of flavomycin residue.

Detection of flavomycin residues in different tissues. The technique adopted was that recommended by Levetzow and Weise (1979) using Bacillus subtilise strain.

Statistical analysis were adopted according to Snedecor and Cochran (1968).

RESULTS AND DISCUSSION

The results in Table (1) showed the associative growth pattern of the initial bacterial population in beef meat (control) during cold storage.

The highest mean APC (Aerobic plate count) 3.7×10^6 $\pm 1.4 \times 10^6$ was obtained after 20 days at 0° C while the lowest mean APC was $3.0 \times 10^2 \pm 1.3 \times 10^2$ after 2 hours. These findings fall close to the observation reported by Abd Al-Menom (1986).

Dealing with coliforms most probable number (MPN), it showed a gradual increase up to 31.5 after 20 days in beef untreated with flavomycin, 12.1 in beef treated with flavomycin, 19.6 in buffaloes untreated and 12.1 in buffaloes treated (Table 2), these findings agree with

post-morlom				188	1000
post-morlom	eus C. APC	E.C.	C.C. Ps)	PSY.L. S.aul eus	S
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	20 <2×10 ²		b	<2×10 ²	<105
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		2 2x102	15	4×105	<104
\$\begin{array}{cccccccccccccccccccccccccccccccccccc			5.05	1.5×10 ²	0
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	1 3×102		3.03	82.9	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 00			2	2
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc		V	2	0.00	101 202
3x102	<102 102		19	8×102	-01>
1.1x103 CXX10 1.1x103 0 0 9x102 5.6 0 0 50 6x104 103 3 6x103 1.6x104 7x102 3 3x102 1.3x104 0 0 8.7x102 1.3x104 0 0 8.7x102 1.3x104 0 0 8.7x102 2x105 2x103 12 103 6x105 6x105 103 9.75 6.8x104 4.1x104 3x102 1.2 1.8x104		~	8.0	4.5×102	0
5.6 0 0 50 5.6 0 0 50 5.6 0 0 50 1.6×10 ⁴ 10 ² 3 2×10 ² 1.6×10 ⁴ 7×10 ² 3 3×10 ² 1.3×10 ⁴ 6×10 ² 6 10 ⁴ 2×10 ⁵ 2×10 ² 12 10 ⁴ 1.2×10 ⁵ 14×10 ⁵ 9.75 6.8×10 ⁴ 4.1×10 ⁴ 3×10 ² 1.2 1.8×10 ⁴		-	3.8	1.4×10	0
103 4×102 3 2×103 1.6×104 7×102 3 3×102 1.3×104 0 0 8.7×102 1.3×104 0 0 8.7×102 2×105 2×103 12 104 2×105 2×103 12 105 4.1×104 3×102 1.2 1.8×104 6×105 103 9.2 8×105					
103 4×10 ² 3 6×10 ⁴ 10 ³ 3 1.6×10 ⁴ 7×10 ² 3 1.3×10 ⁴ 0 0 8 2×10 ⁵ 2×10 ² 12 1.2×10 ⁵ 1.4×10 ² 9.75 6 4.1×10 ⁴ 3×10 ² 1.2 1		37.0			c
6x104 4x102 3 1.6x104 7x102 3 1.6x104 7x102 3 1.3x104 0 0 8 2x105 2x102 6 2x105 2x102 12 1.2x105 1.4x103 9.75 6 4.1x104 3x102 1.2	887.0	102	15	104	<102
6×10, 4×10; 3 1.6×10, 7×10; 3 1.3×10, 7×10; 3 1.3×10, 0 10, 6×10; 6×10; 12 2×10; 2×10; 12 1.2×10; 1,4×10; 9.75 6×10, 10, 3×10; 1.2	20		27	8x10"	<105
6×10° 10° 3 1.6×10° 7×10° 3 1.3×10° 0 0 8 10° 6×10° 3 1.2×10° 2×10° 10° 12 1.2×10° 2×10° 12 1.2×10° 1.4×10° 9.7° 6 4.1×10° 3×10° 1.2 1	2002	201	18 75	4.5×104	0
1.6×10° 7×10° 3 1.3×10° 0 0 8 1.3×10° 0 0 8 2×10° 2×10° 12 1.2×10° 1.4×10° 1.2 4.1×10° 3×10° 1.2 6×10° 10° 9.2			2 8 8	40147 6	o
1.3x10 ⁴ 0 0 8 10 ⁴ 6x10 ² 6 2x10 ⁵ 2x10 ³ 12 1.2x10 ⁵ 1.4x10 ² 9.75 4.1x10 ⁴ 3x10 ² 1.2 6x10 ⁵ 10 ³ 9.2	OLXY.S 0	0	6.33	2 < 6)
10 ⁴ 6×10 ² 6 2×10 ⁵ 2×10 ³ 12 1.2×10 ⁵ 1.4×10 ³ 9.75 6 4.1×10 ⁴ 3×10 ² 1.2 1 6×10 ⁵ 10 ³ 9.2	0				
104 6×102 6 2×105 2×105 12×104 1.2×105 1.4×105 9.75 6 4.1×104 3×102 1.2 1 6×105 103 9.2		6 7		2	200
2×105 2×105 1.2×105 1.2×105 1.2×105 1.2×105 1.2×105 1.2×105 1.0×105 1.2×105 1.	<102 8×102	0° 2×10°	15	701	<102
1.2x10 ⁵ 1.4x10 ² 9.75 6 4.1x10 ⁴ 3x10 ² 1.2 1 6x10 ⁵ 10 ³ 9.2		02 2x102	32	2×105	-0L>
$\frac{1.2 \times 10^4}{4.1 \times 10^6}$ $\frac{1.2 \times 10^5}{3 \times 10^2}$ $\frac{9.2}{1.2}$ $\frac{6 \times 10^5}{10^5}$ $\frac{10^2}{3}$ $\frac{9.2}{9.2}$		o2 7x102	21.25	1.7×10	0
$4.1x10^{5}$ $3x10^{-}$ 1.2 1 $6x10^{5}$ 10^{2} 9.2	L'AL	n5 2 8x103	6.1	2×10 ⁴	0
6×105 103 9.2					
6×10 ⁵ 10 ³ 9.2				4	0
2:4 201 VIVO	<10 ² 8x10 ²	02, 6x105	20	8x107	401
2000				8x10,	~10 <u>-</u>
6×10 6×103	2 7×106	14	M	4.2x10_	0
1.9x10 4.3x10 12.1	0127			1.5×10	0
1.2x10" 1.4x10"	0	2			
# 13.5°		-	00	= Coliform count	count (MPN)

Table 2. The effect of feeding growth promotors on bacteriological quality of chilled beef meat

Section Cario Ca		-		Treated					Control		
Hours post-morlom Cario		APC	E.C. C	.C. Psy		eus C.	APC		C.C. Ps	Psy.C. S.at	S.aureus C.
-2x10 ² -2x10 ² -3 -2x10 ² -10 ² -4.0x10 ² -2x10 ² -2x10 ² -10x10 ² -2x10 ² -2x10 ² -10x10 ² -2x10 ² -10x10 ² -2x10	2 hours post-morlom										
-2x10 ² -2x10 ² -3 -2x10 ² -10 ² -4.0x10 ² -2x10 ² -0 0 0 0 2.5x10 ² -0 0 0 0 0 0.5x10 ² -0 0 0 0 0.5x10 ² -0 0 0 0 0.5x10 ² -0 0 0 0.5x10 ² -0 0 0 0.5x10 ² -0 0.0x10 ² -0 0 0.5x10 ² -0 0.0x10 ² -0	- E	<2x10 ²	<2×4n2	N	200,00	500	5 2	6	į	.0	
2x10 ² <2x10 ² <2x10 ² <3 8.0x10 ² <10 ² 6.0x10 ² <2x10 ² <10 ² 5.0x10 ² <10 ² 5.	Max.	<2x10 ²	<2×102	7 7	132.00	2000	CX102		0	<2x105	400
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	Moam		3	7 9	26410	012	4.0X107		M	<2x10 ⁴	×104
\$\congruent \congrue{\co	o. o.	0	00	0	0	o c	2.5×10-		K 3	00	0
\$\begin{array}{c} \cdot \frac{2x\10^2}{5x\10^2} & \cdot	dava					ı		7))	> (
2.0x10 ²		2	•		•		8.0x10 ⁵	<2x10°	gw [*]	6 AVINS	1406
5x10 ² - 2x10 ² - 3	AD.	<2x105	<2×10 ⁴	V	8.0×10 ⁴	>400	6 nu 103	100		2000	5
2.0x10 ² 3 x10 ² 3 4.0x10 ² 4.0x10 ⁴ 6.0x10 ² 7.0x10 ⁴ 8.0x10 ² 1.4x10 ⁴ 7.3x10 ² 3 5.0x10 ⁴ 6.0x10 ² 1.4x10 ⁴ 1.3x10 ² 3 3.4x10 ² 0 4.3x10 ⁴ 1.1x10 ³	Max.	5x103	<2x102	2	2 04403	500	10.00 C	201		9	5
2.0x10 ² 3 x10 ² 3 4.0x10 ³ <10 ² 5.0x10 ⁴ 6.0x10 ² 8.0x10 ² 1.4x10 ² 1.4x10 ⁴ 1.3x10 ²	Moss	1 24103	2) <	20000	200	2.CX102	4.0x103			0
2.0x10 ² 3 x10 ² 3 x.02 ² 3 4.0x10 ³ <10 ² 5.0x10 ⁴ 6.0x10 ² 8.0x10 ⁴ 7.3x10 ² 3 3.4x10 ² 0 4.3x10 ³ 1.1x10 ³ 1.4x10 ⁴ 1.3x10 ² 0 8.9x10 ⁴ <10 ² 4.0x10 ⁴ 1.3x10 ⁴ 1.3x10 ² 8 3.0x10 ⁴ <10 ² 4.0x10 ⁴ 10 ³ 1.1x10 ³ 1.3x10 ⁴ 1.3x10 ⁴ 1.2x10 ⁴ 1.3x10 ⁵ 1.9x10 ³ 1.9x10 ³ 1.3x10 ⁴ 1.3x10 ⁴ 1.0x10 ³ 1.2x10 ⁵ 1.2x10 ⁵ 1.2x10 ⁵ 1.2x10 ⁵ 1.2x10 ⁵ 1.3x10 ⁵	w. w.	5.7x10 ²	00	o c	52 1	D 6	1.1x10	1.9×10		2.9×10 ⁴	0
2.0x10 ² 3 x10 ² 3 4.0x10 ³ <10 ² 5.0x10 ⁴ 6.0x10 ³ 1.8x10 ⁴ 7.3x10 ² 3 7.0x10 ³ <10 ² 5.3x10 ⁴ 5.4x10 ³ 1.4x10 ⁴ 0 4.3x10 ⁴ 1.1x10 ³ 1.1x10 ³ 1.3x10 ⁴ 1.3x10 ² 1.2x10 ³ 1.2x10 ⁴ 1.3x10 ⁴ 1.3x10 ⁴ 1.2x10 ³ 1.2x10 ⁴ 1.3x10 ⁴ 1.3x10 ⁴ 1.2x10 ³ 1.2x10 ⁴ 1.3x10 ⁴ 1.3x10 ⁴ 1.2x10 ³ 1.3x10 ⁴ 1.3x10 ³ 1.2x10 ³ 1.2x10 ⁴ 1.2x10 ⁴ 1.2x10 ⁴ 1.2x10 ⁴ 1.3x10 ⁴ 1.3x10 ³ 1.3x10				,		>					
2.0x10 ² 3 x10 ² 3 4.0x10 ³ <10 ² 5.0x10 ⁴ 6.0x10 ³ 1.8x10 ⁴ 2 x10 ² 3 7.0x10 ³ <10 ² 5.5x10 ⁴ 2.4x10 ³ 1.8x10 ⁴ 1.3x10 ² 0 4.3x10 ³ 1.1x10 ³ 1.4x10 ⁴ 1.3x10 ² 0 8.9x10 ⁴ (10 ² 4.3x10 ³ 1.1x10 ³ 1.1x10 ³ 1.3x10 ⁴ 1.3x10 ⁴ 1.2x10 ⁴ 1.2x10 ⁴ 1.2x10 ⁴ 1.2x10 ⁴ 1.2x10 ⁴ 1.3x10 ⁴ 1.2x10 ³ 1.2x10 ⁴ 1.2x10 ⁴ 1.3x10 ⁴ 1.2x10 ⁴ 1.2x10 ⁴ 1.3x10 ⁵ 1.2x10 ⁵ 1.2x10 ⁵ 1.2x10 ⁵ 1.2x10 ⁵ 1.3x10 ⁵	0 days						4000		1	P	c
8.0x10 ⁵ 2 x10 ² 3 7.0x10 ² <10 ² 5.5x10 ⁶ 2.4x10 ² 1.8x10 ⁶ 1.3x10 ² 1.1x10 ² 1.4x10 ⁶ 1.3x10 ⁶ 1.3x10 ² 1.1x10 ² 1.3x10 ⁶ 1.3x10 ² 1.2x10 ⁶ 1.3x10 ⁶ 1.3x10 ⁶ 1.2x10 ⁶ 1.2x10 ⁶ 1.3x10 ⁶ 1.2x10 ⁶	Min.	2 00.403		P	1	2.2	01X0-4	6-0x102		£,	×10°
1.8x10 ⁴ 7.3x10 ² 3 3.4x10 ² 0 4.3x10 ³ 1.1x10 ³ 1.4x10 ⁴ 1.3x10 ⁴ 0 8.9x10 ⁵ 0 4.3x10 ³ 1.1x10 ³ 1.3x10 ⁴ 1.2x10 ⁵ 1.2x10 ⁵ 1.9x10 ³ 1.9x10 ³ 1.2x10 ⁵ 1.3x10 ⁵	>03	90.40		7	\$. UX 107	<101	5.0x10,	6.0x10.	5	6.0x10°	×10/
1.4x10 ⁴ 7.3x10 ² 8 3.4x10 ² 0 4.3x10 ³ 1.1x10 ³ 2x10 ⁴ 9.0x10 ² 8 3.0x10 ⁴ <10 ² 4.0x10 ⁴ 10 ³ 4x10 ⁵ 5.0x10 ³ 12 2.0x10 ⁵ <10 ² 6.0x10 ⁴ 10 ³ 1.3x10 ⁴ 3.2x10 ² 1.20 2.1x10 ⁴ 0 5.5x10 ⁴ 1.9x10 ³ 1.9x10 ³ 8.0x10 ⁵ 2.0x10 ³ 9.2 6.0x10 ⁵ <10 ² 2.0x10 ⁵ 6.0x10 ³ 1.9x10 ³ 1.2x10 ⁴ 1.3x10 ⁵ 1.0x10 ⁵ 1.0	Maria	8. UX10,		m	7.0x102	×104	5.5x104	2.4×10 ³	10 5	30546 2	c
1.4x10 ⁴ 1.3x10 ² 0 8.9x10 ² 0 7.0x10 ⁴ 10 ³ 2x10 ⁴ 10 ³ 2x10 ⁴ 10 ³ 2x10 ⁴ 10 ³ 1.3x10 ⁴ 1.7x10 ³ 1.7x	House	1.8x10"	7.3×10 ⁵	M	3.6x102	c	4 34103	4 4 403			> (
2x10 ⁴ 9.0x10 ² 8 3.0x10 ⁴ <10 ² 4.0x10 ⁴ 10 ³ 4x10 ⁵ 5.0x10 ⁴ 10 ³ 12 2.0x10 ⁵ <10 ² 6.0x10 ⁴ 10 ³ 1.3x10 ⁵ 1.7x10 ³ 9.75 7.2x10 ⁴ 0 5.5x10 ⁴ 5.3x10 ³ 4.3x10 ⁵ 1.2x10 ⁵ 1.20 2.1x10 ⁴ 0 4.3x10 ³ 1.9x10 ³ 7.0x10 ⁵ 9.0x10 ³ 7.0x10 ⁵ 9.0x10 ³ 15.0 4.0x10 ⁵ <10 ² 2.0x10 ⁵ 6.0x10 ⁵ 12.1 2.4x10 ⁶ 0 3.7x10 ⁵ 9.0x10 ³ 1.3x10 ⁴ 1.3x10 ⁵ 1.0 3.1x10 ⁵ 0 1.4x10 ⁵ 8.7x10 ⁵ 8.7x10 ⁵ 1.4x10 ⁵ 1.5x10 ⁵ 1.5x	***	1.4×104	1.3×10²	0	8.9×10 ²	0	2	0.41.	6.63	ULXC.I	o
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	7	7	•			,	33				
4x10 ² 5.0x10 ³ 12 2.0x10 ³ (10 ² 6.0x10 ⁴ 10 ⁴ 10 ⁴ 1.3x10 ⁵ 1.7x10 ³ 9.75 7.2x10 ⁴ 0 5.5x10 ⁴ 5.3x10 ³ 4.3x10 ³ 1.2x10 ² 1.20 2.1x10 ⁴ 0 4.3x10 ³ 1.9x10 ³ 7.0x10 ⁵ 9.0x10 ³ 9.2 6.0x10 ⁵ (10 ² 2.0x10 ⁵ 6.0x10 ³ 7.0x10 ⁴ 9.0x10 ³ 15.0 4.0x10 ⁴ (10 ² 2.0x10 ⁵ 6.0x10 ³ 1.3x10 ⁴ 1.3x10 ⁴ 1.6x10 ³ 1.0 3.1x10 ⁵ 0 1.4x10 ⁵ 8.7x10 ² 8.7x10 ² 1.4x10 ⁵ 8.7x10 ⁵ 1.4x10 ⁴ 1.4x10 ⁴ 8.7x10 ⁴ 1.4x10 ⁴ 1.4	O Gays	2x10,	9.0×10 ²	60	3.0x104	<105×	40100 7	200		2000	200
1.3×10 ⁵ 1.7×10 ² 9.75 7.2×10 ⁴ 0 5.5×10 ⁴ 5.3×10 ³ 4.3×10 ⁴ 3.2×10 ² 1.20 2.1×10 ⁴ 0 4.3×10 ³ 1.9×10 ³ 7.0×10 ⁵ 8.0×10 ⁵ 2.0×10 ⁵ 6.0×10 ⁵ 6.0×10 ⁵ 6.0×10 ⁵ 7.0×10 ⁶ 9.0×10 ³ 15.0 4.0×10 ⁶ 6.0×10 ⁵ 6.0×10 ³ 1.3×10 ⁶ 1.3×10 ⁶ 1.6×10 ³ 1.0 3.1×10 ⁵ 0 1.4×10 ⁵ 8.7×10 ² 8.7×10 ² 1.4×10 ⁵ 8.7×10 ⁵ 1.4×10 ⁵ 8.7×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.5×10 ⁵ 1.5×10 ⁵ 1.0 3.1×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.4×10 ⁵ 1.5×10 ⁵ 1.0×10 ⁵ 1.5×10	Eio.	4×102	5.0×10 ³	5	2 04105	20%	40000	300	4	2.0X105	201
8.0x10 ⁵ 2.0x10 ³ 9.2 6.0x10 ⁵ <10 ² 2.0x10 ³ 1.9x10 ³ 7.0x10 ⁵ <10 ² 2.0x10 ⁵ 6.0x10 ⁵ 7.0x10 ⁵	Max.	1.3×10 ⁵	1 7×103	K	7 22404	2	2000	103		8.0x10.	<10L
8.0x10 ⁵ 2.0x10 ³ 9.2 6.0x10 ⁵ <10 ² 2.0x10 ⁵ 6.0x10 ³ 7.0x10 ⁶ 9.0x10 ³ 15.0 4.0x10 ⁶ <10 ² 2.0x10 ⁵ 6.0x10 ³ 15.1 2.4x10 ⁶ <10 ² 3.7x10 ⁵ 9.0x10 ³ 1.0 3.1x10 ⁵ 0 1.4x10 ⁵ 8.7x10 ²	Modern	40402 7	2000		70000	5 (2.2X10	5.5X102		6.1×10,	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S.E.*	2000	3.5410		7.1X10	0	4.3×10	1.9×10	2	1.7x10 ³	0
7.0x10	0 days	8 0~105	50,403	c	5000	2.5				,	¢
7.0X10 9.0X10 15.0 4.0X10 10 0 10 10 10 10 10 10 10 10 10 10 10	E:S	90000	5.00.0	7.6	0.UXIU	4105	2.0x102	6.0x10,		100	<105
2.1x10 4.4x10 12.1 2.4x10 0 3.7x10 9.0x10 1.3x10 1.6x10 1.0 3.1x10 0 1.4x10 8.7x10 8.7x10		1.0×10	SOLXO. V	15.0	4.0×10°	×10+	0	104		8 0×10	2007
1.3x10° 1.6x10° 1.0 3.1x10° 0 1.4x10° 8.7x10°	Hax.	2.1×10	4.4×102	12.1	2.4×10°	0	3.7×10 ⁵	0.0×103		27106	7
018/00 01840	Moam	1.3×10°	1.6×10 ³	1.0	3.1×10 ⁵	c	1 44105	0 7.402		90,40	0
	S.E.*					>	0144	0.7810	9	DIX*.	0
APC = Aorobic plate count	a Aorobic plate count		4	1			-				150

that reported by Shultwz and Olson (1960) and Abd Al-Monem (1986).

From the results reported in Tables (1 and 2) it is evident that the mean psychrotrophic count showed a gradual increase in the cold store. Beef untreated with flavomycin, the lowest count was obtained after 2 hours (1.5×10^2) while the highest one after 20 days (4.2×10^7) but treated beef the lowest in and highest psychrotrophic count were 0/gm and 1.1 10, respectively. Buffaloes untreated with flavomycin showed the lowest psychrotrophic count 0/gm after 2 h.p.m. while the higher one after 20 days was $4.3 \times 10^{\circ}$.

Psychrotrophic count in the samples from treated beef with flavomycin were 0/gm and 1.1×10^6 after 2 h.p.m. and 20 days at 0°C. While the count in treated buffaloe's meat samples were 0 and 2.4×10^6 . This finding is expected as psychrotrophic organisms found in favourable conditions to survive and multiply, besides removal of competitors that can't withstand such holding temperature. The obtained results were agreed with that reported by Ayres et al. (1950) and Abd Al-Monem (1986).

Hamdy et al. (1986) studied the effect of chilling on staph aureus and reported that there was an initial decrease followed by gradual increase of count. The authors attributed this phenomena to the cold shock, then to the adaptation of the microorganism to low temperature.

The analysis of muscle, liver, kidney and intestine for the presence of flavomycin residues were revealed no any of such antibiotic in them. This may attributed to the fact that flavomycin is poorly absorbed from the digestive tract (Mima, 1971).

Many public health problems may arise from antibiotic resistant strains (Garrod, 1964), allergic reaction and toxicity (Corry et al., 1983).

It could be concluded that the flavomycin can be safely used as a growth promoter. In addition, it was proved that the flavomycin had an effect not only on the initial bacterial counts but also on the bacterial counts during the periods of cold storage.

REFERENCES

Abd Al-Monem, K.M., 1986. Microbial association in cool stored beef. M. Sc. (Meat hygien), Fac. of Vet.

- Med., Cairo Univ.
- A.P.H.A., 1976. American Public Health Association, Subcommittee in Methods for the Microbiological Examination of Foods. 2nd ed. New York, American Public Health Association Inc.
- Ayres, J.C, 1955. Microbiological implication in the slaughtering and dressing of meat animals. In Mark, E.M. ed. Advances in Food Research. 6, 109.
- Ayres, J.C, 1960. The relationship of organisms of the genus Pseudomonas to the spoilage of meat, poultry and eggs. J. Appl. Bacteriol. 23, 471.
- Ayres, J.C, W. Sogiloy and G.F. Sterwart, 1950. P.M. changes in stored meats M.O. associated with development of slime on eviscerated cut poultry. Food Technology, 4, 199-205.
- Bala, K., R.T. Marshall, W.C. Stringer and H.D. Naumann, 1977. Effect of Pseudomonas fragi on the color of beef. J. Food Sci., 42, 1176.
- Corry, J.E.L., M.R. Sharma and M.L. Bates, 1983. Detection of antibiotic residues in milk and animal tissues. Technical Series, Society for Applied Bacteriology, 18, 349.
- Elliott, R.P. and H.D. Michener, 1965. Factors affecting the growth of psychrophilic microorganisms in foods. A. Review, U.S. Dept. Agric. Tech. Bull, No. 1320, Agr. Res. Serv.
- El-Mossalami, E. and N. Wassef, 1971. Pathogenic microorganisms as surface contaminants of meat. Vet. Sci., 8, 71.
- El-Mossalami, E. and N. Wassef, 1973. The effect of both type and number of existing organisms on the keeping quality of meat prepared and handed under prevailing conditions in Cairo. Egypt. Vet. Med. J. Fac. of Vet. Med. Cairo Univ., 22, 129.
- Frazier, W.C. and D.G. Westhoff, 1978. Contamination, preservation and spoilage of meats and meat products. In Food Microbiology. 3rd ed. USA, McGraw-Hill, Inc.
- Garrod, L.P., 1964. Sources and hazards to man of antibiotic in foods. Proc. R. Soc. Med., 57, 1087.
- Gill, C.O. and K.G. Newton, 1977. The development of Aerobic spoilage flora on meat stored at shelf temperatures. J. of Applied Bacteriol., 36, 356.
- Greer, G.G. and L.E. Jeremiah, 1980. Influence of retail display temperature on psychrotrophic bacterial

- growth and beef case. J. Food Prot., 43, 542.
- Hamdy, M., M. Nouman and M. Halem, 1986. Influence of cold storage on staphylococcus aureus. J. Egypt. Vet. Med., Ass. 46, 1, 13-21.
- Hapke, H.J. and G. Grahwi, 1987. Residues of veterinary drugs, Feed additives and environmental chemicals. World Animal Science B6, Chapter 7, p. 219-244.
- Hasegawa, T.M., A.M. Pearson, J.F. Price, J.H. Rampton and R.V. Lochowich, 1970. Effect or microbial (growth upon sarcoplasmic and urea-soluble proteins from muscle. Food Sci., 35, 720.
- ICMSF ,1974. Microorganisms in foods. 2 Sampling for Microbiological analysis, principles and specific applications. Univ. of Toronto Press, Toronto, Canada.
- ICMSF ,1978. Microorganisms in foods. No. 1. Their significance and methods of enumeration, 2nd ed. Univ. Toronto Press, Toronto, Canada.
- Ingram, M., 1964. Feeding meat animals before slaughter.
 Vet. Rec., 76, 1305.
- Ingram, M. and R.H. Dainty, 1971. Change, caused by microbes in spoilage of meat. J. Appl. Bacteriol., 34, 21.
- ISO, 1975. Meat and meat products. Detection and enumeration of presumptive coliform bacteria and presumptive E. coli (References method).

 International Standard ISO/DIS, 3811.
- Levetzow, J.H. and K.O. Weise, 1979. Methods Zum Nachweis von Ruckatanden and baketeriell wirksmar substanzen in frischem Fleish Institute Vet. Medicine (Meat Hygiene), Berlin, Berlin, (Self communication).
- Mima, A., 1971. Zusatzstoffe Hiliosstoffe und Ruckstande in fleisch and fleischwarn. Wien. Tieratztl. Mschr. 58,369-402.
- Roushdy, S.A., M.F. Sedik and M. Zeidan, 1982. Effect of chilling on the storage life of meat. Assiut Vet. Med. J. 10, 19.
- Snedecor, G.W. and W.G. Cochran, 1986. Statistical Methods, 5th ed. The Iowa State Univ. Press, Iowa, USA.
- Shuitwz, W.D. and J.C. Jr. Olson, 1960. Studies on psychrophilic bacteria. I. Distribution in stored commercial dairy products. J. Dairy Sci., 43, 346-350.

Thornton, H., 1974. "Test Book of Meat Inspection". 3rd ed. Baulliere, Tindall and Cassell, London.

Zender, R., C. Lataste-Dorolle, R.A. Collet, P. Rowinski and R.F. Mouton, 1958. Aseptic autotysis of muscle: Biochemical and microscopic modification occurring in rabbit and lamb muscle during aseptic and an aerobic storage. Food Res., 23, 305.

منشطات النمو وعلاقتها بصلاحية اللحوم ومدة الحفظ بالتبريد

أحمد فريد الخولى

قسم الإنتاج الحيواني، كلية الزراعة، جامعة القاهرة، الجيزة، مصر.

اجريت هذه الدراسة فى قسم الانتاج الحيوانى - كلية الزراعة -جامعة القاهرة - وذلك باستخدام ستة عشر عجل - ثمانية منها من الغريزيان والثمانية من الجاموس المصرى. تم تغذية أربعة عجول من كل نوع على ٢٠ مللجرام فلافوميسيين يوميا (كمنشط للنمو) - والأربعة الأخرى استخدمت بدون معاملة (للمقارنة) .

حفظت العينات من كال ذبيحة على درجة صفر م + 1 واختبر المحتوى الميكروبي في هذه العينات كل ٢ ساعة، ٥، ١٠، ١٠ يوم - كما أجرى تخليل كل من العضلات والكبد والكلية والأمعاء للكشف عن خلوها من آثار الفلافوميسيين •

وكان الهدف من هذه الدراسة هو دراسة تأثير الفلافوميسيين وعلاقته بإطالة مدة حفظ اللحم تحت درجات التبريد العادية في لحوم العجول البقرى والجاموس وقد تلخصت أهم النتائج فيمايلي :

۱- كان للفلافوسيين تأثير معنوى على العدد الأولى للبكتريا والعدد البكتيرى أثناء فترات التبريد للذبيحة بين أول فترة (ساعتين) ۱۰ ۲ ۱۰ × ۱۰ ۲ ركان أعلى بعد ۲۰ يوم من الحفظ (۲۰×۱۰ ۲ ± ۱۰×۱۰ ۲) بالنسبة للبكتريا الهوانية (Aerobic plate count)

أما بالنسبة لمجموعة القولون coliform كان العدد في مجموعة الفريزيان المعاملة أقل (١٢,١) عنه في نفس النوع في الحيوانات غير المعاملة عند ٢٠ يوم وبنفس الإتجاه - بالنسبة للحوم الجاموس فكانت ١٩,٦ لمجموعة المقارنة بالنسبة للمجموعة المعاملة (١٢,١) .

- بينما بالنسبة لمجموعة psychrotrophic كانت الزيادة تدريجية فى التخزين بالتبريد من ساعتين وحتى ٢٠ يوم من التبريد بالنسبة للفريزيان , والجاموس ٠

- بالنسبة لمجموعة staph aureus حدث انخفاض مبدئى ثم تبعه زيادة تدريجية في العدد

Y- بتحليل عينات العضلات والكبد والكلية والأمعاء ثبت غياب الفلافوسيين في القناء في العينات مما يؤكد أن الفلافوسيين يمتص أثناء وجوده في القناه الهضمية .

وبناء عليه أوضحت الدراسة أنه يمكن استخدام الفلافو ميسسيين كمنشط للنمو بصورة أمنة ، بالإضافة أن الفلافوسيين لم يؤثر فقط على العدد الأولى للبكتريا ولكن أيضا على أعداد البكتريا أثناء فترات الحفظ بالتبريد ،