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           To overcome those problems caused by repeated and 

indiscriminate uses of conventional insecticides, it is necessary to 

seek environmentally safe and low-cost alternatives for pest 

control. Among the effective alternatives are anti-JH compounds. 

The present article was prepared aiming to present an updated 

overview of different categories of compounds possessing anti-JH 

activity and their effects on survival, growth, development, 

metamorphosis, and reproduction of several insects of different 

orders. This article focused, also, on the effects of these 

compounds of other physiological processes in insects, such as 

polyphenism, behavior, diapause, metabolism, enzymatic 

activities, chemoreceptors and pheromone production, as well as 

their antifeedant effects against some insect pests. Compounds 

with anti-JH activity are considered as new representatives of 

IGRs lacking some disadvantages of juvenoid-type chemicals. In 

this review we described some advantageous uses of some anti-JH 

compounds, imidazoles in particular, in the sericulture and silk 

research fields. In addition, it shed some light on the action 

mechanisms of anti-JH agents and described the fate of them in the 

insect body. It is obvious from the present review that the practical 

use of anti-JH compounds in the pest management has been 

challenged by some limitations and restrictions. These compounds 

should be assessed against different insect pests under field 

conditions. However, these anti-JH agents can be considered as 

new leads for devising fourth generation insecticides. On the other 

hand, some of the anti-JH analogues of imidazoles have been 

successfully used in the practical production of natural silk in the 

world. 
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1. Introduction: 

          For fighting against insect pests, conventional insecticides have a major 

contribution to agriculture and health. As a result of indiscriminate and intensive uses, 

these insecticides usually exhibit various detrimental impacts on the human health and 

beneficial animals as well as cause serious toxicological problems to the ecosystems 

because these chemicals have a long half-life (Van Der Gaag, 2000; Tiryaki and 

Temur, 2010). Furthermore, the conventional insecticides have a tendency to 

accumulate in several trophic levels of the food net (Damalas and Eleftherohorinos, 

2011; Chowański et al., 2014). In addition, the excessive and repeated uses of many 

conventional insecticides have enhanced resistant insect strains to emerge 

(Mosallanejad and Smagghe, 2009). Therefore, eco-friendly insecticides have received 

global attention in recent years as alternative for these conventional insecticides. These 

alternative compounds should be characterized by shorter half-life and lower toxicity 

to non-target organisms than conventional insecticides, as well as they should be 

effective at low concentrations (Gade and Goldsworthy, 2003). Also, they are 

biodegradable into harmless compounds, which allows for avoiding the problems of 

environmental pollution (Tiryaki and Temur, 2010; Walkowiak et al., 2015; Li et al., 

2017).  

         It is important to point out that the moulting, growth, development and 

metamorphosis of insects are regulated by prothoracicotropic hormone (PTTH), 

produced by neurosecretory cells of brain and some other parts in central nervous 

system, ecdysone or moulting hormone (MH), produced by prothoracic gland (PG) and 

juvenile hormone (JH), produced by the corpora allata (CA) (Nijhout, 1994; Xiang et 

al., 2005). In some insects, PG, ovary and testis produce ecdysteroids but PG is the 

principal organ responsible for ecdysone production and secretion. Also, the secretory 

action of PG is regulated by PTTH and JH (Xu and Xu, 2001). The balance in levels of 
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MH and JH defines the outcome of each developmental transition. During the larval 

development, MH causes larval-larval molts in the presence of JH in haemolymph. 

After the CA stop secreting JH in the last larval instar, insect tissues change their 

commitment, and MH enhances the larval-pupal and pupal-adult molts (Riddiford et 

al., 2003; Dubrovsky, 2005). In some insects, JH controls the ovarian development and 

maturation in adult females through some aspects, such as the promotion of 

vitellogenin synthesis. Thus, JH is usually known as 'gonadotropic hormone' (Nijhout, 

1994). In addition, JHs play important roles in several other physiological processes, 

such as reproduction, diapause, behaviour, polymorphism, migration, metabolism and 

innate immunity (for detail, see Riddiford, 1994; Gilbert et al., 2000; Mitsuoka et al., 

2001; Tatar et al., 2001a,b; Truman and Riddiford, 2007; Riddiford, 2008; Flatt et al., 

2008; Denlinger et al., 2012; Amsalem et al., 2014a).  

    On the other hand, the use of JH or JH-based compounds for pest control was early 

suggested by some authors (Williams, 1967; Sláma, 1971; Staal, 1982) as "third 

generation insecticides". Screening new targets involving JH-biosynthesis within the 

CA had been a subject of investigation during the past four decades (Bede et al., 2001). 

Therefore, compounds that interact with the JH, stimulate or inhibit JH-biosynthesis 

and/or interfere with its catabolism, can be utilized as new effective agents for 

controlling the insect pests (Nandi and Chakravarty, 2011). These compounds have 

been collectively known as 'insect growth regulators' (IGRs). Thus, IGRs belong to a 

group of compounds which are not directly toxic, but act selectively on normal growth, 

development, metamorphosis and/or reproduction in insects via disrupting the 

hormonally regulated physiological processes (Wang and Liu, 2016). Because of their 

desirable characteristics, such as high selectivity, low toxicity, less environmental 

pollution and low impact on natural enemies and human health, IGRs are used to 

control various insect pests (Wang and Wang, 2007; Resmitha and Meethal, 2016). 

Depending on the available literature, IGRs are classified according to several 

parameters. On the basis of mode of action, IGRs had been clssified in three 

categories: (i) Juvenile hormone analogues (JHAs) (also called as Juvenoids), (ii) 

Ecdysteroid agonists and (iii) Chitin synthesis inhibitors (CSIs) or moult inhibitors 

(Oberlander and Silhacek, 2000). Also, they had been grouped in CSIs and substances 

interfering with the insect hormones (i.e. JHAs and ecdysteroids)(Tunaz and Uygun, 

2004). 

         From the early research works on JHs and JHAs, disruption of the JH activity, at 

a critical stage in an insect's development, would offer a promising approach to 

selective insect control (for reviews, see: Staal et al., 1981; Kramer and Staal, 1981; 

Staal, 1982). There are different ways to remove JHs. Removal operation of the CA 

(allatectomy) is possible in some insects when there is a conjunction of skilled 

microsurgery with favorable size and anatomy of the glands. This microsurgerical 

operation consumes time and effort as well as it is not applicable for pest control. Thus, 

discovery of Ageratochromes (precocenes), plant compounds causing precocious 

metamorphosis in insects, can be called "chemical allatectomy"(Bowers et al., 1976).  

        An extensive review of the effects of precocenes on pests belonging to various 

insect orders was provided by Staal (1986). However, Precocene-I (7 methoxy-2,2-

dimethylchromene, PI) and Precocene-II (6,7-dimethoxy-2,2-dimethylchromene, PII) 

have  been used  as  insect  regulators  by  inducing  symptoms  of JH-deficiency  in  

insects  (Ghosh et al., 2012). Consequently, this inhibition can disrupt the embryonic 

development, induce premature metamorphosis, and disturb the insect behavior 

including aggression, mating behavior, flight behavior, maternal defensive behavior 

and sexual behavior, beside their effects as antifeedants and repellents (Rankin, 1980; 
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Srivastava and Kumar, 1997; Kight, 1998; Khan and Kumar, 2000; Pathak and 

Bhandari, 2002; Khan and Kumar, 2005; Chen et al., 2005a; Ringo et al., 2005; Gaur 

and Kumar, 2009; Lu et al., 2014).  

         PI and PII have been shown to impair the reproductive potential in adults of 

many insects by prevention of the normal vitellogenesis of the oocytes, leading to 

sterility (Kumar and Khan, 2004; Ringo et al., 2005; Amiri et al., 2010). As reported 

by some authors (Staal, 1986; Singh and Bhathal, 1994; Hoffmann and Lorenz, 1998), 

precocenes either inhibit JH biosynthesis or are inhibitors of the enzyme action. In 

most cases the physiological, but not all the behavioral effects, were reversible by JH 

replacement therapy (Pathak and Bhandari, 2002; Chen et al., 2005a). With a view to 

promoting the bioactivity profile of precocenes, it was proposed to discover growth 

regulatory activity of some compounds related to precocenes. Keeping this in mind, 

synthetic strategies for 2, 2-dimethyl chromenes were developed (Banerji and Goomer, 

1984; Banerji and Kalena, 1989) and used for the preparation of precocene analogues 

(precocenoids). On the other hand, these synthetic analogues acted as stimulators or 

inhibitors of JH degradation or acted in an antagonistic manner at the target tissue 

level, i.e. JH receptor levels (Tunaz and Uygun, 2004; Minakuchi and Riddiford, 

2006). Thus, discovery of precocenes paved the way for the development of several 

new compounds with anti-JH activity based on natural/synthetic products which inhibit 

JH-biosynthesis of insect pests (Bowers, 1985; Kuwano et al., 1985; Barton et al., 

1989). Moreover, precocenes and their synthetic analogues received a great attention 

by entomologists due to their twin advantage; using as a physiological probe in the 

former avoiding surgical allatectomy and as an effective agent in devising 'fourth 

generation insecticides' in future (Staal, 1986; Muraleedharan et al., 1986; Sariaslani et 

al., 1987; Moya et al., 1997; Szczcpanik et al., 2005; Singh and Kumar, 2011).  

        From the terminology view of point, the term "anti-allatotropins", originally 

suggested to describe the precocenes (Bowers, 1976; Bowers et al., 1976), has become 

no longer valid and precocenes may be more appropriately classified as anti-

allatogenic and/or allatotoxic agents. The term "proallatocidins" may possess a wide 

acceptance if one wishes to emphasize the necessary need for intensive tissue-specific 

bioactivation to the ultimate allatocidin (Pratt et al., 1981). In the present article, we 

prefer to use the term "anti-JH agents" or "JH-antagonists" to designate those 

chemicals which induce JH deficiency syndrome, including precocious metamorphosis 

in principal. It is conceivable that these compounds should function, in one way or 

another, to impede JH regulatory mechanisms leading eventually to a deficiency in JH.  

          It is interesting to refer that the design of JH mimics or anti-JH agents is an 

effective strategy for insecticide discovery (Bede et al., 2001) but the chemicals having 

anti-JH activity are potentially superior to JH mimics for control many insect pests 

where most of the damage is caused by the harmful feeding immature stages (El-

Ibrashy, 1982). In other words, compounds with anti-JH activity are considered as new 

representatives of IGRs lacking some disadvantages of juvenoid-type compounds 

(Bowers, 1982; Staal, 1982).  

          The present article was prepared for some objectives. Primarily, it aimed to 

comprehensively review and update several aspects of the insect biology and 

physiology being affected by anti-JH compounds. This article focused, also, on the 

modes of action of these compounds and their metabolic fates. Insights into the 

practical uses of these compounds for pest control had been taken into consideration. 

Secondarily, this article described some advantages of the anti-JH compounds, 

imidazoles in particular, in the sericulture and silk research fields. 
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2. Botanical Origin of the Anti-JH Compounds: 

          In an attempt to compensate their immobility, plants produce diverse chemicals 

known as 'allelochemicals' which make them suitable for utilization by phytophagous 

insects and other herbivores by imparting repellency, toxicity, unpalatibility or 

biochemical alienation of necessary biochemical or physiological functions (Koul and 

Smirle, 1994; Banerji, 1994; Agrawal, 1998; Arimura, et al., 2000).  All insects appear 

to have determinant receptors which interact with certain kind of allelochemicals 

which deter the insects from ingesting possible toxins (Banerjee et al., 2008). As for 

example, Ageratum plant (Asteraceae) has an ingenious measure for protecting itself 

from insect attacks (for review, see Kumar, 2014).  

           In this respect, it is important to point out that there are many plant species 

contain allelochemicals exhibiting anti-JH activities against some insect species. Early, 

Bowers (1976) and Bowers et al. (1976) isolated two ageratochromenes from the 

common bedding plant Ageratum houstonianum and then coined the compounds as 

precocene I (PI) and precocene II (PII) because of their anti-JH activity leading to 

precocious metamorphosis in some insects (Bowers, 1992). Recently, 35 active 

constituents had been identified in the essential oil of A. houstonianum, among which 

PII was found in 62.68% and PI was found in 13.21% (Lu et al., 2014). The discovery 

of these active constituents opened a wide gate for searching and isolation of 

precocenes from other plant species. The plant Ageratum conyzoides is another species 

in the genus Ageratum from which Singh and Rao (1999, 2000) isolated PI and PII. 

Also, the same precocenes, among the main constituents in the essential oil of A. 

conyzoides, were identified in different percentages (Nogueira et al., 2010; Abdelkader 

and Lockwood, 2011; Bayala et al., 2014). In addition, Ageratum vulgaris contains 

precocenes, as active principles (Renuga and Sahayaraj, 2009).  

          Apart from Ageratum spp., PI had been isolated from the essential oil of 

Plastostoma africanum (Lamiaceae)(Onayade et al., 1989). PI and PII had been 

isolated from the plants of genus Nama (Hydrophyllaceae), such as N. lobbii, N. 

sandwicens and N. hispidum (Binder et al., 1991). Among the major components of 

essential oil of Hyptis suaveolens (Lamiaceae), PI represented 23.02% (Jaya et al., 

2011). Bowers and Aregullin (1987) isolated an anti-JH compound, polyacetylenic 

sulfoxide, from Chrysanthemum coronarium (Asteraceae) which produced sterile 

adults in the large milkweed bug Oncopeltus fasciatus. Arborine is a quinazoline 

alkaloid compound isolated from Glycosmis pentaphylla (Rutaceae) leaves. This 

compound inhibited the JH-biosynthesis in the CA of adult females of the field cricket 

Gryllus maculates in vitro (Muthukrishnan et al., 1999). Adfa et al. (2010, 2011) 

isolated the Scopoletin (7-hydroxy-6-methoxycoumarin) from Protium javanicum 

(Burseraceae) and synthesized some derivatives which are structurally similar to 

precocenes. Arivoli and Tennyson (2011) reported an anti-JH activity of the crude leaf 

extracts of Abutilon indicum (Malvaceae) against the vector mosquitoes, viz., Aedes 

aegypti, Anopheles stephensi and Culex quinquefasciatus but the active ingredients 

could not be isolated. 

        Outside the higher plants, organic extracts of mycelium and culture broth of 21 

Penicillium isolates had been assessed against O. fasciatus. A strong in vivo anti-JH 

activity was detected in the culture broth extracts from P. brevicompactum P79 and 

P88 isolates (Castillo et al., 1999).  
3. Categorization of Anti-JH Agents: 

        As previously mentioned, the anti-JH agents inhibit the JH biosynthesis in CA of 

many insects.  The disturbance of this hormone leads to some abnormalities in those 

biological processes which are already controlled by JH (Staal, 1986; Darvas et al., 
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1990; Goodman and Granger, 2005). Since Bowers et al. (1976) discovered the insect 

anti-JHs (PI and PII), several precocenoids have been synthesized and some anti-JH 

compounds have been so far reported to exhibit activities interfering with JH in insects. 

According to the available literature, these compounds include Fluoromevalonate 

(Quistad et al., 1981); ETB (Staal et al., 1981); EMD (Staal et al., 1981; Staal, 1986); 

J-2710 (Jurd et al., 1979; Farag and Varjas, 1983);  compactin (Monger et al., 1982; 

Hiruma et al., 1983); dichloroallyl hexanoate (Quistad et al., 1985); several terpenoid 

imidazoles (Kuwano et al., 1983) and 1,5-disubstituted imidazoles (Castillo et al., 

1998), such as KK-22 (Kuwano et al., 1983), KK-42 (Kuwano et al., 1985) and KK-

110 (Kuwano et al., 1988); and brevioxime (Moya et al., 1997; Castillo et al., 1998). 

The majority of these compounds had been found to induce precocious metamorphosis 

in a number of insects (Darvas et al., 1990). Also, certain compounds, such as 

piperonyl butoxide and thiolcarbamates, induce black pigmentation (a symptom of JH 

deficiency) in the larvae of tobacco hornworm Manduca sexta (Kramer et al., 1983). 

However, other anti-JH compounds should be reviewed in the present section. 

3.1. Precocenes: 

           As previously described, precocenes are plant-derived chromenes (2H-1-

benzopyran)(Bowers, 1976; Proksch et al., 1983; Isman et al., 1986). Bowers et al. 

(1976) isolated two ageratochromes from A. houstonianum and coined them as PI (7-

methoxy-2,2-dimethylchromene) and PII (6,7- dimethoxy-2, 2-

dimethylchromene)(Bowers, 1992). The discovery of the precocenes provided an 

interesting alternative to microsurgical removal of the CA, since  they have  been  

shown  to  be  cytotoxic  to  CA in insects,  thus  prohibiting  the biosynthesis or 

preventing the production  of  JH  (Pratt  et  al.,  1980; Schrankel  et  al., 1982).  

3.1.1. Insect Sensitivity to Precocenes: 

    A pertinent point of this context is to shed some light on the insect sensitivity to 

precocenes. A vast range of biological, physiological and behavioral changes have 

been caused by precocenes (Bowers, 1983). Of the major insect taxa, paurometabolous 

insects appear to be the most sensitive to precocenes, such as grasshoppers and 

cockroaches (Chênevert et al., 1980; Kiss et al., 1988). However,  it  has  been 

reported  that  the phytophagous Sunn pest  Eurygaster integriceps (Hemiptera) was an  

insensitive  target  for  PII  (Polivanova et al., 1983) but sensitive to PI (Amiri et al., 

2010).  

           On the other hand,  larvae  of some holometabolous  insects  are  less  

susceptible  to  the  action of  precocenes  (Burt  et  al.,  1979).  As for example, the 

mealworm beetle Tenebrio rnolitor (Coleoptera) is insensitive to precocene in vivo but 

was found to be intrinsically sensitive in vitro. Its CA had been inactivated by exposure 

to a precocene analogue in a time- and dose-dependent course. These observations 

indicated that sequestration and detoxification could be the main reason for the 

apparent insensitivity of holometabolous insects (Haunerland and Bowers, 1985). 

However,  holometabolous  insects,  such  as the lawn armyworm  Spodoptera  

mauritia and the Egyptian cotton leafworm  Spodoptera littoralis  (Lepidoptera), have  

been  reported  to  be  sensitive  to precocenes  (Mathai  and  Nair,  1984;  Khafagi and 

Hegazi, 2001). 

3.1.2. Multiple Effects of Precocenes: 

           The second pertinent point is to shed some light on the multiple effects of 

precocenes on insects. These compounds exhibit multiple effects on metamorphosis 

(precocious metamorphosis) during the pre-adult stages of different non-social insect 

species (Khan and Kumar, 2000; Khan and Kumar, 2005; Gaur and Kumar, 2009) and 

on reproduction in adults of several insect orders since they prevent normal 
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vitellogenic development of the oocytes or disturb the embryonic development (Staal, 

1986) leading to sterility (Kumar and Khan, 2004; Ringo et al., 2005; Amiri et al., 

2010). Precocenes, also, act on the induction of diapause (Bowers, 1983). However, 

the effects of PII, in particular, on different aspects of insect physiology had been 

studied by several researchers (Khan and Kumar, 2000; Ergen, 2001; Kumar and Khan, 

2004; Chen et al., 2005b; Mathai and Nair, 2005; Ringo et al., 2005). Moreover, PII  

was  found  to  be  a  more potent  analog  and  selectively  destroys  the  CA  of insects 

(Adebayo et al., 2010).  

          In addition, precocenes affect several aspects of behavior in the non-social insect 

species, such as aggression (Chen et al., 2005a), mating behavior (Walker, 1978), 

flight behavior (Rankin, 1980), maternal defensive behavior (Kight, 1998) and sexual 

behavior (Pathak and Bhandari, 2002; Ringo et al., 2005). They inhibit the production 

of sex pheromone (Bowers, 1983). Also, they have potential as antifeedants and 

repellents against several insect species (Khafagi, 2004; Lu et al., 2014). In most cases 

the physiological, but not all the behavioral effects, were reversible by JH replacement 

therapy (Kight, 1998; Pathak and Bhandari, 2002; Chen et al., 2005a).  

          Apart from anti-JH effects, precocenes, also, exerted some JH-like actions on 

green stink bug Nezara viridula (Mukhopadhyay et al., 1988) and brown plant hopper 

Nilaparvata lugens (Pradeep and Nair, 1989). This dual effect will be discussed later in 

the present article.  Outside the insect world, PII had been reported to completely 

inhibit two species of fungi, Rhizoctonia solani and Sclerotium rolfsii (Iqbal et al., 

2004). 

3.1.3. Precocenes and Beneficial Insects: 

           In the precocene context, it is important to shed some light on the precocene 

effects on natural enemies and beneficial insects. De Loof et al. (1979) recorded a 

failure of precocene to induce diapause in larvae of the parasitoid wasp Nasonia 

vitripennis, whatever the topical application was conducted on the maternal generation, 

or eggs. PII demonstrated compatibility with Diaeretiella rapae, the endoparasite of 

the green cabbage aphid Brevicoryne brassicae (Faraq et al., 1985). PII did not 

interfere with the growth of developing larvae or adults of the honey bee Apis mellifera 

(Dietz et al., 1979). Also, Fluri (1983) reported that PII has no anti-JH activity against 

the adults of honey bees. 

          On the contrary, only at doses of 50µg/larva and more, PII exhibited toxic 

effect on the 1- and 2-day-old worker larvae of honey bee (Rembold et al., 1979). PII 

appears to be toxic to the parasitoid Nasonia vitripennis (De Loof et al., 1979). Hegazi 

et al. (1998) and Khafagi (2004) studied the effects of both PI and PII on M. 

rufiventris, administered via its host S. littoralis. These precocenes were found to 

reduce the parasitoid production.  

3.1.4. Synthetic Precocenoids: 

           With a view to enhance the bioactivity profile of precocenes or to optimize 

allatocidal activity of the natural precocenes, it was proposed to explore some 

functionally related compounds. Several precocene derivatives, such as azaprecocenes, 

fluorinated precocenes, and crown-ether precocenes, had already been synthesized 

(Brooks et al., 1979; Camps et al., 1980). Rational synthetic strategies for 2, 2-

dimethyl chromenes were developed for the preparation of precocene analogues. As 

for example, PII and 3,4-Epoxyprecocene 2 deuterated analogues were prepared by 

Camps et al. (1985). The sulfur analogs of precocenes (2,2-Dimethyl-2H-

thiochromenes) were synthesized by Tércio et al. (1987). Also, PII was synthesized 

(Timar and Jaszberenyi, 1988). Precocene-III (7-ethoxy-precocene 2) was synthesized 

and assessed against the grasshopper Aiolopus thalassinus (Osman, 1988). Precocenes 
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and related analoges were synthesised in good yields using hydrogen peroxide 

(Kulkarni and Paradkar, 1992). Starting from PI and PII, Szczepanik et al. (2005) 

synthesized four of their derivatives with a lactone moiety. Banerjee et al. (2008) 

synthesized a number of precocenoids and tested them for their toxicity and growth 

regulating activity against the cotton stainer bug Dysdercus koenigii. The precocenoids 

6-hydroxy-DMC and 6-bromo-DMC had been synthesized and bioassayed on the 5
th

 

instar nymphs of D. koenigii (Banerjee et al., 2008). However, the synthetic analogues 

of precocenes are stimulators or inhibitors of JH degradation or acted in an antagonistic 

manner at the target tissue level, i.e. JH receptor levels (Singh and Bhathal, 1994; 

Hoffmann and Lorenz, 1998).  

3.2. Terpenoid Imidazoles (Phenylimidazoles):  

             In the intensive research attention to anti-JH compounds, a new class of 

compounds with anti-JH activity against the mulberry silkworm Bombyx mori has been 

classified in a group of terpenoid imidazoles (KK compounds) (Kuwano and Eto, 

1983; Kuwano et al., 1983, 1984). The most active compounds of this group were KK-

22, KK-42 and SSP11 (Akai et al., 1984).  

            KK-22 (1-citronellyl-5-phenylimidazole) was reported to be effective, in a 

dose-dependent course, for inducing precocious metamorphosis in 3
rd

 instar of B. mori. 

This effect was always accompanied by prolongation of the larval instar (Asano et al., 

1984a). Asano et al. (1984 b) demonstrated that the action of this compound was 

different from that of precocenes in its rate of precocious induction and influence on 

larval feeding and growth. The anti-JH activity of KK-22 was vanished when the JHA 

methoprene was applied immediately after KK-22 treatment (Asano et al., 1986). 

         KK-42 (1-benzyl-5-[(E)-2,6-dimethyl-1,5-heptadienyl]imidazole is a synthetic 

IGR since it was found to affect the normal growth and development of several insect 

species (Kuwano et al., 1992; Kadano-Okuda et al., 1994).  Additionally, it caused 

precocious metamorphosis in B. mori when applied to the penultimate instar larvae 

(Kuwano et al., 1985; Akai and Mauchamp, 1989). KK-42 was found, also, to inhibit 

JH biosynthesis and ecdysone synthesis in vitro, retarded ovarian growth and adult 

emergence when applied to the newly ecdysed pupae of B. mori (Kadono-Okuda et al., 

1987). It was reported to delay/inhibit the ecdysteroid production in European corn 

borer Ostrinia nubilalis (Gelman et al., 1995) and desert locust Schistocerca gregaria 

(Wang and Schnal, 2001). It has been shown by Hirai et al. (2002) that KK-42 acts as 

an JH-esterase antagonist in B. mori. In the study of Soltani-Mazouni et al. (2000), 

when KK-42 was applied onto the newly emerged adult females of T. molitor, the 

hormonal amounts in ovaries had been reduced. However, when its lowest dose was 

applied later, i.e. on 2-day old females corresponding to the beginning of the 

vitellogenesis, no significant effect on the ovarian ecdysteroids was observed. 

          In addition to KK-22 and KK-42, other imidazoles had been synthesized and 

bioassayed on some insects, such as KK-110 [5-(2-ethoxyphenyl)-l-

neopentylimidazole] and KK-135 [1-neopentyl-5-(4-chlorophenyl) imidazole] 

(Kuwano et al., 1988). Anti-JH activities of these imidazoles were evaluated against B. 

mori and their activities could be abolished by simultaneous administration of 

methoprene (Kuwano et al., 1990). Also, other imidazole compounds had been 

synthezied, such as SSP11 (E-4-chloro-a, a, a-trifluoro-N-[(C1H-imidazole-1- yl)-2-

propryethy-lidene]-O-toluidine) (Kiuchi et al., 1985) and SM1 (Lu and Li, 1987). The 

compound SDIII had been reported to exert strong anti-JH and anti-ecdysteroid actions 

on silkworms (Tan et al., 1992). The imidazole compound triflumizole (E)-4-chloro-

alpha,alpha,alpha-trifluoro-N-[1(1H-imidazole-1yl)-2-propoxyethylidene] -o-toluidine 

was found to possess anti-JH activity against B. mori (Miyajima et al., 2001).  
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3.3. Fluoromevalonates: 

           According to the available literature, one of the major groups of anti-JH 

compounds is Fluoromevalonate or Fluoromevalonolactone, FMev (tetrahydro-4-

fluoromethyl-4-hydroxy-2H-pyran-2-one). This group was known for its 

hypocholesteremic activity in mammals (Nave et al., 1985). As reported by Sánchez et 

al. (2015), FMev is a competitive inhibitor of mevalonate diphosphate decarboxylase 

and exhibits inhibitory effect on cholesterol biosynthesis, cell proliferation and cell 

cycle progression in human leukaemic HL-60 and MOLT-4 cells.   

          In insects, FMev was reported to exhibit anti-juvenile hormone activity against 

seven lepidopterous species: M. sexta (Sphingidae), Samia cynthia (Saturniidae), 

Phryganidia californica (Dioptidae), Galleria mellonella (Pyralidae), Spodoptera 

exigua, Heliothis virescens (Noctuidae), and Hyphantria cunea (Arctiidae) (Quistad et 

al., 1981). Anti-JH activity of FMev was expressed by the precocious metamorphosis 

or prepupal behavior (Quistad et al., 1981; Farag and Varjas, 1983). Edwards et al. 

(1985) adverted the anti-JH activity of FMev in the American cockroach Periplaneta 

americana which was mediated through in vivo inhibition of JHIII-biosynthesis, so 

they suggested that FMev could have a much wider range of insect species than was 

previously expected. The anti-JH activity (precocious metamorphosis) of FMev could 

be, completely or partially, deleted in vivo by concurrent application of a JHA, like 

hydroprene (Quistad et al., 1981; Farag and Varjas, 1983; Staal, 1986) or farnesoic 

acid in vitro (Cusson et al., 2013).  

          On the other hand, no anti-JH activity was recorded for FMev in the non-

lepidopterous species, such as those belong to orders Diptera, Coleoptera, Heteroptera, 

and Orthoptera (Menn, 1985). Therefore, FMev might be a useful compound for 

"chemical allatectomy" in Lepidoptera (Benz and Ren, 1986). Synthetic efforts to 

optimize the anti-JH activity of FMev have only resulted in a number of compounds 

with anti-JH activity inferior to that of FMev (Quistad et al. 1982).  

3.4. Benzoate and methy dodecanoate compounds: 

    The benzoate compound ETB (ethyl-4-[2-(tert-butyl carbonyloxy)butoxy] benzoate) 

was originally developed in 1975 (Kondo et al., 1977) as a juvenoid. Edwards et al. 

(1983) reported that the application of ETB on larvae of M. sexta resulted in a 

reduction of endogenous JH titer. It is active on larvae of B. mori, causing precocious 

metamorphosis at lower concentrations, which is partially rescued by the 

administration of JHA (Kiguchi et al., 1984). For preparing effective ETB analogues, 

Ishiguro et al. (2003) found that the 4- ethoxycarbonyl group on the benzene ring was 

apparently essential for activity. Among ETB analogues, Fujita et al. (2005) prepared a 

series of ethyl 4-[2-(6-methyl-3-pyridyloxy)alkyloxy]benzoates and tested their 

activities on larvae of B. mori. Among the tested compounds, ethyl 4-[4-methyl-2-(6-

methyl-3-pyridyloxy)pentyloxy]benzoate was the most effective to induce precocious 

metamorphosis after topical application onto 1-day old 3
rd

 instar larvae. Furuta et al. 

(2006) synthesized a number of alkyl 4–(2–phenoxyhexyloxy)benzoates and related 

compounds and evaluated their activities to induce precocious metamorphosis in larvae 

of B. mori. Of these compounds, only the methyl and ethyl esters showed precocious 

metamorphosis–inducing activity. Fujita et al. (2007) synthesized two ETB analogues: 

Ethyl 4-[2-(6-methyl-3-pyridyloxy)hexyloxy]benzoate and ethyl 4-(2-

phenoxyhexyloxy)benzoate which induced precocious metamorphosis in larvae of B. 

mori. Recently, Yamada et al. (2016) synthesized a series of ethyl 4-[(7-substituted 

1,4-benzodioxan-6-yl) methyl]benzoates and evaluated their anti-JH activities on B. 

mori. The compound Ethyl 4-[(7-benzyloxy-1,4-benzodioxan-6-yl) methyl]benzoate 
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showed the most potent activity, since JH I and JH II titers of 3
rd

 instar larvae 

decreased within 24 hr of treatment.   

        KF compounds are structurally derived from ETB. Some KF compounds had 

been prepared and bioassyed against B. mori. KF-13S and KF-13 induced precocious 

metamorphosis in B. mori (Furuta et al., 2007; Fujita et al., 2008).  

       Although EMD (ethyl-[E]-3-methyl-2-dodecanoate) had been reported to exhibit 

an anti-JH activity on the tobacco budworm Heliothis virescens and M. sexta (Staal et 

al., 1982), no precocious metamorphosis was induced by it in the 3
rd

 and 4
th

 instar 

larvae of B. mori (Kuwano et al., 1988).  On the other hand, Balamani and Nair (1989) 

conducted a study on the activity of EMD against S. mauritia. Neck-ligated post-

feeding last instar larvae were topically treated with lower doses of EMD. It induced 

the formation of larval-pupal intermediates whereas those treated with higher dose 

moulted into either pupae or larval-pupal intermediates. Co-application of JHA with 

different doses of EMD induced pupation in majority of the ligated larvae and thus 

appears to a certain extent to counteract the effects of treatments of same doses of 

EMD alone. Thus, EMD failed to exhibit an anti-JH activity but JH-like activity. 

3.5. FGL-amide Allatostatins: 

         A great deal of effort has nowadays been directed towards the Allatostatins 

(ASTs) which constitute a class of regulatory neuropeptide hormones in insects. As 

reported by Hult et al. (2008), these compounds occur, also, in diverse invertebrate 

phyla. By using their consensus sequences, Stay and Tobe (2007) classified ASTs, in 

insects, in three families: the cockroach type representing the FGL-amide-AST family, 

the cricket type representing the W(X)6 Wamide-ASTs family and the PISCF/ASTs 

family.  

        In the present article, our attention will be paid to FGL-amide-AST family and 

little types of ASTs. These FGL-amides represent a family of insect neuropeptides 

originally isolated from the viviparous cockroach Diploptera punctata (Pratt et al., 

1991; Stay et al., 1994), crickets (Lorenz et al., 1995) and termites (Yagi et al., 2005, 

2008). As reported in the available literature, H17 (FGL-amide AST 

neuropeptidemimic) was quite potent as an inhibitor of JH biosynthesis (anti-JH 

activity) and was able to inhibit the basal oocyte growth in D. punctata (Bendena and 

Tobe, 2012). Lehmann et al.  (2015) studied the population dependent differences in 

diapause induction of the Colorado potato beetle Leptinotarsa decemlineata 

(Coleoptera) in response to negative and positive manipulation of JH III levels. In their 

study, application of H17 did not induce overwintering related burrowing. Using the 

H17, as the lead compound, Xie et al. (2016) designed new AST analogues which 

exhibited strong potency to inhibit JH production by CA of D. punctata. Recently, Wu 

et al. (2017) designed and synthesized 30 analogues, modified with various 

substituents on the benzene ring at the N-terminus of the lead compound H17. 

Depending on their results, all analogues exhibited various effects on JH biosynthesis 

by CA of D. punctata. For detail, see Kai et al. (2009, 2010, 2011); Xie et al. (2011, 

2015) and Wu et al. (2016). 

        Ketomethylene and methyleneamino pseudopeptide analogues of ASTs, were 

designed by Piulachs et al. (1997) and had been found to inhibit the JH biosynthesis in 

vitro by CA of virgin German cockroach Blattella germanica. Also, synthesized 

Dippu-AST analogues had been reported to inhibit JH biosynthesis (Nachman et al., 

1999; Garside et al., 2000).  

3.6. Benzodioxoles and Benzylphenols: 

           As a group of compounds with anti-JH activity, Benzodioxoles and 

benzylphenols were studied by Van Mellaert et al. (1983). According to these authors, 
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these compounds displayed anti-JH activity against the greater wax moth Galleria 

mellonella (Lepidoptera) but less active on Lepidoptera than FMev. It should be 

mebtioned that Benzyl-l,3-benzodioxoles had been previously known as 

chemosterilants against several Diptera (Jurd et al., 1979). Van Mellaert et al. (1983) 

theorized that the known chemosterilant action of these compounds in the house fly 

Musca domestica and the flesh fly Sarcophaga bullata (Diptera) is associated with 

anti-JH effects. However, blocking of the JH receptor would result in disruption of 

events leading to egg maturation (Menn, 1985). However,  the  suggestion  that  these 

compounds  have  a  JH antagonist  action  is  controversial (Staal, 1986; Langley and 

Pimley, 1986). For examples, the compound J-2581 (5-ethoxy-6-[4-

methoxyphenyl]methyl-1,3-benzodioxole) was found a relative chemosterilant against 

the Mediterranean fruit fly Ceratitis capitata (Hsu et al., 1989) and the oriental fruit fly 

Dacus dorsalis (Hsu et al., 1990), but no information is available in the current 

literature concerning its anti-JH activity against insects.  

         The compound J-2710 (5-methoxy-6-[l-(4-methoxyphenyl)ethyl]-l,3-benzodi-

oxole) was first synthesized by Jurd et at. (1979) and described as a fly chemosterilant. 

This compound has been reported to exhibit anti-JH activity against G. mellonella, but 

there is no evidence of similar activity against larvae of other insect species (Kuwano 

et al., 1988). Thereafter, Darwas et al. (1990) assessed J-2710 on S. bullata, the 

treatment resulted in the precocious pupation indicating an anti-JH activity of this 

compound. In contrast, Readio et al. (1987) assessed the anti-JH activities of six 

benzyl-1,3-benzodioxole derivatives against 4
th

 instar larvae of the mosquito Culex 

pipiens (Diptera) and did not  observe clear anti-JH effects.  

3.7. Bisthiolcarbamate: 

           In the context of anti-JH compounds, bisthiolcarbamate (N-ethyl-l,2-bis(S-

isobutylthiocarbamoyl)ethane) should be gained some attention. This compound was 

initially described as an unusual example of non-terpenoid compounds exhibiting JH 

activity against several insect species (for detail, see Pallos et al., 1976; Menn, 1980; 

Brooks, 1987). Treatment of 3
rd

 instar larvae of M. sexta with 50-250 µg 

bisthiolcarbamate/animal resulted in suppression of JH titer in the subsequent instar. 

The in vivo effects were only manifested by black pigmentation of larvae treated 

topically (25 µg/ larva) or by feeding (10 ppm); no precocious pupation was observed 

following treatment with this compound. At higher doses, however, typical JH effects 

(paleness) were observed. However, the weak activity of bisthiolcarbamate may be due 

to its rapid degradation in vivo (Kramer et al., 1983).  

3.8. Sulfoxides: 

           It is well known that thiolcarbamates are rapidly metabolized in vivo and in 

vitro to reactive sulfoxides and possibly very short-lived sulfones (DeBaun et al., 

1978). Some years later, a study of Bowers and Aregullin (1987) was the first to reveal 

the anti-JH activity of the compound polyacetylenic sulfoxide and inducing the sterility 

in adults of O. fasciatus. Nevertheless, this may be an interesting model for possible 

additional synthesis of more active and stable analogues (Menn, 1985). 

         A series of fluorinated vinyl sulfoxides had been developed in the late 1980s. 

These sulfoxides showed promise as potent and selective anti-JHs against Lepidoptera 

(Carney and Brown, 1989). The design of these compounds was based on the weakly 

active EMD and on analogues of dimethylallyl diphosphate (Quistad et al., 1985). 

Topical application of fluorinated vinyl sulfoxides onto lepidopterous larvae caused 

premature pupation that was recoverable by co-administration of farnesol (Cusson et 

al., 2013). 
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3.9. Fungi- and Bacteria-derived Compounds with Anti-JH Activity: 

           Depending on the available literature, a little research attention had been paid to 

the anti-JH agents from fungi and bacteria. In this respect, it is important to focus on 

three fungi-derived compounds: Brevioxime, Compactin, Fluvastatin and one of the 

bacteria-derived compounds, Cycloheximide. Activities of these compounds have been 

assessed against different insect species. Thereafter, these compounds had been 

chemically synthesized.  

             Brevioxime has been isolated from the entomopathogenic fungus Penicillium 

brevicompactum. It was reported to possess anti-JH activity against insects, since it 

showed a strong in vitro inhibition of JH III biosynthesis in CA of the migratory locust 

Locusta migratoria (Moya et al., 1997; Castillo et al., 1998). This compound shows a 

sesquiterpene-like structure, corresponding to an empirical formula of C15H22N2O3. 

Two natural products were isolated from P. brevicompactum P79: N-(2-methyl-3-

oxodec-8-enoyl)-2-pyrroline and 2-hept-5-enyl-3-methyl-4-oxo-6,7,8,8a-tetrahydro-

4H-pyrrolo[2,1-b]-1,3-oxazine. They were found to possess strong anti-JH activities 

against O. fasciatus (Castillo et al., 1999). Synthesis of racemic Brevioxime and 

related model compounds had been conducted (Clark, 2000; Clive and Hisaindee, 

2000; Karadogan and Parsons, 2001). Structures related to brevioxime, and possessing 

anti-JH activity, have been identified (Cantín et al., 1999). 

          Compactin is a fungal metabolite which had been reported as a potent inhibitor 

of HMG-CoA R enzyme invertebrates (Monger et al., 1982) and also causes 

hypocholesteremia in mammals (Polivanova et al., 1983). In insects, compactin was 

found to be more potent inhibitor of JH biosynthesis in M. sexta (Monger et al., 1982), 

the cabbage moth Mamestra brassicae (Hiruma et al., 1983) and P. americana 

(Edwards and Price, 1983). Only repeated injection of compactin into M. sexta larvae 

induced the black pigmentation characteristic of JH deficiency (Monger et al., 1982). 

A study on the in vitro and in vivo effects of compactin, either free or encapsulated into 

liposomes, on virgin females of B. germanica was conducted by Belles et al. (1988). 

Depending on their results, neither compactin nor liposomes were able to inhibit the 

formation of the first ootheca, although the encapsulated compactin (at certain doses) 

induced a significant delay in the gonotrophic cycle.  Sparks et al. (1987) observed 

deformed pupae after treatment of the last instar larvae of cabbage looper Trichplusia 

ni with compactin analogues L-643, 049-01K01 and DPH (3,3-dichloro-2-propenyl 

hexanoate).  

          Fluvastatin (3-hydroxy-3-methyl-glutaryl-CoA reductase) contains a 

disubstituted indole core in place of the hexahydronaphthalene found in the fungal 

fermentation products. In Medicine, fluvastatin belongs to a class of medications called 

'statins' and is used to reduce plasma cholesterol levels and prevent cardiovascular 

disease (Jokubaitis, 1996). In Entomology, fluvastatin had been assessed against a few 

numbers of insects. Injection of fluvastatin into the locust L. migratoria led to 

inhibition of JH-regulated metamorphosis. Otherwise, its activity was low in vitro 

(Debernard et al., 1994). Fluvastatin inhibited JH acid biosynthesis by CA of the black 

cutworm Agrotis ipsilon when injected in males 4 h before the bioassay (Duportets et 

al., 1996).  

          Cycloheximide (3-[(2R)-2-[(1S, 3S, 5S)-3,5-dimethyl-2-oxocyclohexyl]-2-

hydroxyethyl] glutarimide) is reported as RNA and protein synthesis inhibitor. It was 

originally isolated from the bacterium Streptomyces griseus (Siegel and Sisler, 1963; 

Baliga et al., 1969).  Cycloheximide represents the most common laboratory reagent 

used to block protein synthesis and is widely used in studies regarding trafficking of 

epidermal growth factor receptor (Wiepz et al., 2010). As an antibiotic, cycloheximide 
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was earlier applied clinically in the treatment of disseminated candidiasis and 

meningitis (Schmidt and Dikic, 2010).  

          In the agricultural applications, cycloheximide was found as an inhibitor of 

protein synthesis and irreversible inhibitor of multiplication nuclear polyhedrosis virus 

in the fall armyworm Spodoptera frugiperda (Kelly and Lescott, 1976). Cycloheximide 

inhibits the growth, in culture, of many plant pathogenic fungi (MacBean, 2012). With 

regard to insects, the interference of cycloheximide with the hormonal regulation of 

developmental process and metamorphosis was studied. Ferkovich et al. (1977) 

reported that cycloheximide inhibited JH-binding protein in the tissue culture of fat 

body of the Indianmeal moth Plodia interpunctella. So, general esterases could 

degenerate JH causing a deficiency in its level. Cycloheximide induced 60% inhibition 

of RNA synthesis in 4
th

 and 5
th

 instar nymphs of L. migratoria (Phillips and Loughton, 

1979).   

3.10. Additional Anti-JH Compounds: 

          In seeking other candidates for pest control, various compounds show anti-JH 

activities and act as potential inhibitors of the JH-biosynthesis in CA of insects. In the 

following paragraphs, a variety of these compounds and their functions will be 

concisely reviewed. Piperonyl butoxide (2-(2-butoxyethoxy)ethyl 6-propylpiperonyl 

ether) is one of the best known mixed-function oxidase inhibitors and a potent 

insecticide synergist.  It shows moderate anti-JH activity in M. sexta in vivo and 

depression of JH biosynthesis in CA culture assays (Staal, 1982). Quinolones and 

fluoroquinolones are synthetic bactericidal antibiotics. Quinolone has been reported to 

cause precocious metamorphosis in B. mori (Murakoshi et al., 1977). Pyridone has 

been reported to cause precocious metamorphosis in B. mori (Murakoshi et al., 1977). 

The precocious metamorphosis induced by 3-pyridine  derivatives  was fully  

counteracted  by  a  simultaneous  application  of  tebufenozide (an  ecdysteroid  

agonist) suggesting  that  the  3-pyridyl  ethers temporarily act as anti-ecdysteroids 

(Yoshida et al., 2000). Lovastatin (known, also, as Mevinolin) was reported to inhibit 

the JH biosynthesis in insect CA in vitro (Feyereisen and Farnsworth, 1987). LC50 

values of Lovastatin against M. sexta and D. punctata were estimated in 99.45 and 

884.7 µM, respectively (Couillaud, 1991). Arborine is originally a quinazolone 

alkaloid product of plants (Sreejith et al., 2012).  It was found to inhibit the JH 

biosynthesis in vitro of CA from 3 day-old females of G. bimaculatus (Muthukrishnan 

et al., 1999). Among Allyl alcohols, Quistad et al. (1985) synthesized three analogues 

of 3,3-dimethyl-2-propenol (dimethylallyl alcohol) and evaluated their anti-JH 

activities against some lepidopterous species. The most active compound (3,3-

dichloro-2-propenyl hexanoate) caused precocious metamorphosis in M. sexta. The 

oxathiole is a powerful inhibitor for JH biosynthesis having approximately the same 

potency of precocenes or better. When applied on the 4
th

/5
th

 instar of O. fasciatus, 

oxathiole induces precocious metamorphosis. This effect can be rescued with JH-

agonists, indicating a true anti-JH action of oxathiole (Brooks et al., 1984a). Brooks et 

al. (1984 b) reported that 8-methoxynaphth-(1,2-d]-1,3-oxathiole is a potent inhibitor 

of JH-biosynthesis in CA of P. americana and O. fasciatus in vitro.  

        It has been demonstrated that furanyl ethers have potent anti-JH activity in O. 

fasciatus and triatomine bugs, inducing precocious metamorphosis and other 

modifications in these insects (Bowers et al., 1995; Azambuja et al., 1996). The 

synthetic compound 2-(2-ethoxyethoxy) ethyl furfuryl ether was topically applied onto 

larvae of the reduvid bugs Rhodnius prolixus, Triatoma infestans and Panstrongylus 

herreri (Hemiptera). A variety of biomorphological alterations had been observed, 

including precocious metamorphosis into small adultoids with adult abdominal cuticle, 
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ocelli and rudimentary adultoid wings (Jurberg et al., 1997).  Recently, Li et al. (2017) 

determined the LC50 values of Pitavastatin, HMG-CoA) reductase, against M. sexta 

and D. punctata as 5.23, and 395.2 µM, respectively.  

4. Bioefficacy of Anti-JH Compounds Aagainst Insects: 

4.1. Toxicity: 

           It is well documented that the non-neurotoxic insecticides exhibit their 

toxicities against insects through different routes other than the central nervous system 

as performed by the conventional insecticides. Literature sources show various toxic 

effects of a large number of JHAs on several insect species, such as pyriproxyfen 

against L. migratoria (Hu et al., 2012) and S. mauritia (Resmitha and Meethal, 2016); 

kinoprene against C. pipiens (Hamaidia and Soltani, 2014); methoprene against A. 

ipsilon (Khatter, 2014); methoxyfenozide against C. pipiens (Hamaidia and Soltani, 

2016); tebufenozide against the Mediterranean flour moth Ephestia kuehniella 

(Lepidoptera: Pyralidae)(Tazir et al., 2016) and cyromazine against the flies M. 

domestica, Stomoxys calcitrans and Fannia canicularis (Diptera)(Donahue et al., 

2017).  

          However, several anti-JH compounds possess toxic potencies against various 

insect species as reviewed herein. PII exhibited a nymphicidal effect on the human 

body louse Pediculus humanus (Feldlaufer and Eberle, 1980).  Both PI and PII 

exhibited larvicidal activities against several mosquito species, such as Aedes aegypti, 

Anopheles sacharovi and An. stephensi (Saxena et al., 1994; Yasyukevich and 

Zvantsov, 1999). When  the newly  hatched  nymphs  of white-backed planthopper 

Sogatella furcifera were  released on  rice  plants  treated  with  500  ppm  of PII and  

continuously  contacted  with  it,  about  half  of  the  insects  died  within  the  first  

instar (rapid  toxicity)(Miyake and Mitsui, 1995). Different doses of PII were topically 

applied onto the 3
rd

 instar larvae of the grey flesh fly Parasarcophaga dux and toxic 

effects were observed on larvae and pupae, in a dose-dependent course (Nassar et al., 

1999). PIII was topically applied onto eggs, 5
th

 instar nymphs, and newly hatched adult 

females of the grasshopper Aiolopus thalassinus (Orthoptera). It caused a high 

mortality in all of the treated stages (Osman, 1988). 

         As reported in the late two decades, PII exhibited toxic effect on the castor hairy 

caterpillar Pericallia ricini (Lepidoptera)(Khan and Kumar, 2000). PІ and PIІ were 

topically applied onto the 2
nd

 larval instar of L. decemlineata (Coleoptera) in 

laboratory. Both precocens caused larval mortalities, in a dose-dependent course 

(Farazmand and Chaika, 2008). A toxicological effect of PII was reported by Abdullah 

(2009) against larvae of the red palm weevil Rynchophorus ferrugineus (Coleoptera). 

PI had no acute toxicity against E. integriceps adults after treatment of 2
nd

 instar 

nymphs but treatment of the 3
rd

 instar nymphs caused increasing mortality, in a dose-

dependent course (Amiri et al., 2010). PII exhibited stronger acute toxicity than PI 

against the booklice Liposcelis bostrychophila (Psocoptera)(Lu et al., 2014). After 

exposure of the newly moulted 2
nd

 or 4
th

 (penultimate) instar nymphs of the 

grasshopper Euprepocnemis plorans to some doses of PII, various mortality 

percentages were recorded among the treated nymphs of different instars and the 

emerged adults (Ghoneim and Basiouny, 2017). Banerjee et al. (2008) synthesized 

some precocenoids and tested them against D. koenigii. Among different tested 

compounds, 8-acetyl-7-hydroxy-5-methoxy-dimethylchromene (alloevodinol) was 

more toxic at very low dose. PII treatment of 0-96 hr-old pupae of the blowfly 

Chrysomya megacephala (Diptera) resulted in mortality during pupation (Singh and 

Kumar, 2011). PII exhibited larvicidal activity against the 4
th

 instar larvae of the Asian 

tiger mosquito, Aedes albopictus (Diptera)(Liu and Liu, 2014).  
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         Apart from precocenes, Arborine showed larvicidal properties against the the 

southern house mosquito Culex quinqeufasciatus (Hoffmann and Lorenz, 1998). 

Kuwano et al. (1988) synthesized EMD which exhibited acute toxicity on the 3
rd

 instar 

larvae of B. mori. Shuto et al. (1988) synthesized some analogues of FMev and 

assessed their toxicities against B. mori. The compound (R)-(-)-FMev was 

predominantly toxic and the larval mortality increased. Among ten anti-juvenile 

hormone compounds tested by Connat (1988) against the cattle tick Boophilus 

microplus females, the most toxic compound was FMev, which proved to be lethal at 

dose 200 μg/female. Basiouny and Ghoneim (2017) topically applied four doses of 

FMev onto the newly moulted 5
th

 (penultimate) instar larvae and newly moulted 6
th

 

(last) instar larvae of S. littoralis. FMev exhibited a weak toxicity against larvae, pupae 

and adults. Lee et al. (2015) developed effective in vitro anti-JH compounds screening 

system using yeast cells transformed with the mosquito Aedes aegypti JH receptors, 

(methoprene-tolerant, Met) and FISC. Among 53 compounds with anti-JH activities, 

penfluridol showed high toxicity against larvae of the mosquito Aedes albopictus. 

Anti-JH activity increased in proportion to the concentration of penfluridol (Lee et al., 

2018).  
          In respect of the LD50 values of various anti-JH compounds against different 

insects, LD50 of PII against D. koenigii has been found to be 85.46 and 82.37 mgl
-1

 for 

4
th

 and 5
th

 instar nymphs, respectively (Banerjee et al., 2008). After treatment of 4
th

 

instar larvae of A. albopictus with PI and PII, LC50 values were estimated in 41.63 

μg/ml and 43.55 μg/ml, respectively (Liu and Liu, 2014). LC50 of PII against L. 

bostrychophila was calculated in 30.4𝜇g/cm
2
 but LC50 of PI was found as 64.0𝜇g/cm

2
 

(Lu et al., 2014). LC50 of PI against the cat flea Ctenocephalides felis was estimated as 

10.97 ppm, respectively (Rust and Hemsarth, 2017). LD50 values of PII against E. 

plorans were 0.388 and 17.022 µg/cm
2
 after topical treatment of newly moulted 2

nd
 

and 4
th

 (penultimate) instar nymphs, respectively (Ghoneim and Basiouny, 2017). 

Against S. littoralis, LD50 values of FMev were estimated in 42.03 and 629.20 

µg/larva, after treatment of 5
th

 and 6
th

 larval instars, respectively (Basiouny and 

Ghoneim, 2017). Among the HMG-CoA reductase inhibitors, LC50 values of 

Fluvastatin against M. sexta, A. mellifera and D. punctata were estimated in 5.11, 

18.10 and 150.0 µM, respectively (Li et al., 2017). LC50 values of Lovastatin against 

M. sexta and D. punctata were estimated in 99.45 and 884.7 µM, respectively (Li et 

al., 2017). LC50 values of Pitavastatin against M. sexta and D. punctata were estimated 

in 5.23, and 395.2 µM, respectively (Li et al., 2017).  

           However, LD50 (or LC50) value of a compound depends on several factors, such 

as susceptibility of the insect and its treated stage or instar, lethal potency of the tested 

compound and its concentration levels, method and time of treatment, as well as the 

experimental conditions (Ghoneim et al., 2017a, b).   

4.2. Inhibited Growth and Influenced Development: 

4.2.1. Affected Body Weight and Growth: 

          In insects, the larval growth is usually determined in the growth rate, growth 

index or coefficient of growth. In addition, the body weight and hence the weight gain 

can be considered as a valuable indicator to the larval growth of an insect (Armbruster 

and Hutchinson, 2002; Ghoneim et al., 2014a). After topical application of different 

doses (5-75 µg/larva) of PII onto 1- or 2-day-old worker larvae of A. mellifera, the 

larval weight gain decreased in dose-dependent course (Rembold et al., 1979). The 

larval and pupal weights of S. bullata were reduced after treatment with the anti-JH 

compounds PII, J-2710 and KK-110 (Darwas et. al., 1990). The insect kinins (an insect 

neuropeptide family) have been isolated from a number of insects. The insect kinins, 
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and/or analogs, have been reported to inhibit weight gain in larvae of H. virescens and 

corn earworm Helicoverpa zea (Seinsche et al., 2000; Nachman et al., 2002). Yoshida 

et al. (2000) synthesized 3-pyridine derivatives and evaluated their activities against B. 

mori.  Among these compounds, the compound 3-(2-methyl-l-phenyl-l-

propenyl)pyridine was applied onto 4
th

 instar larvae, body weights of the ecdysed 5
th

 

instar larvae increased rapidly reaching to the maximum.  

         Depending on the available literature, few studies have examined the effects of 

anti-JH agents on the insect growth as being reviewed herein. Several chromene 

derivatives inhibited the growth of last instar larvae of T. molitor (Roberto et al., 

1998). PI and PII exhibited growth-inhibiting activities against the mosquitoes Ae. 

aegypti, An. sacharovi and An. stephensi (Saxena et al., 1994; Yasyukevich and 

Zvantsov, 1999). Treatment of early and late 3
rd

 instar larvae of C. megacephala with 

PII adversely affected the normal growth of larvae (Singh and Kumar, 2011). After 

exposure of newly moulted 2
nd

 or 4
th

 (penultimate) instar nymphs of E. plorans to 

different doses of PII, the nymphal growth of both 4
th

 and 5
th

 instars had been slightly 

inhibited after treatment of 2
nd

 instar nymphs, but remarkably reduced after treatment 

of 4
th

 instar nymphs (Ghoneim and Basiouny, 2017). Four doses of FMev had been 

topically applied (once) onto the newly moulted 5
th

 (penultimate) instar larvae and 

newly moulted 6
th

 (last) instar larvae of S. littoralis. FMev inhibited the larval growth 

when applied onto 5
th

 instar larvae but promoted it after treatment of 6
th

 instar larvae 

(Basiouny and Ghoneim, 2017). Larvae of M. sexta were fed on Fluvastatin, Lovastatin 

or Pitavastatin-treated food, starting with 1
st
 instar. Significantly slow growth rate was 

recorded for the treated larvae (Li et al., 2017). 

4.2.2. Influenced Development: 

         The developmental rate of an insect stage is usually reversely related to the 

developmental duration, i.e. shorter duration indicates faster rate and vice versa 

(Ghoeneim et al., 2014a). In this respect, various anti-JH agents exhibited different 

effects on the development of some insects, as reported in the present section.  

        Treatment of 4
th

 instar nymphs of the locust S. gregaria with PII resulted in a 

prolongation of the duration of both 4
th

 and 5
th

 nymphal instars (Eid et al., 1982). 

Treatment of 6
th

 instar larvae of S. mauritia with single or repeated daily doses of PII 

resulted in prolongation of the larval–pupal period (Mathai and Nair, 1984). The 

nymphal period of the grasshopper A. thalassinus was prolonged after topical 

application of PIII onto 5
th

 instar nymphs (Osman, 1988). Treatment of the tobacco 

caterpillar Spodoptera litura larvae with PI, PII or ethoxyprecocene (a synthetic analog 

of PII) resulted in prolongation of larval period (Srivastava and Kumar, 1999). After 

treatment of 4
th

 instar nymphs of D. koenigii with PII, duration of the successfully 

moulted 5
th

 instar nymphs was prolonged (Banerjee et al., 2008). Treatment of early 

and late 3
rd

 instar larvae of the blowfly C. megacephala with PII adversely hampered 

the development (Singh and Kumar, 2011).  

        Apart from precocenes, Farag and Varjas (1983) recorded a prolongation of larval 

duration after topical application of FMev doses onto caterpillars of three late instars of 

the fall webworm Hyphantria cunea. Similar results were obtained after treatment of 

the 3
rd

 instar of B. mori with KK-22 (phenylimidazoles)(Asano et al., 1984a). 

Debernard et al. (1994) assayed Fluvastatin on the locust L. migratoria and recorded a 

prolongation of the 4
th

 nymphal instar. Yoshida et al. (2000) synthesized 3-pyridine 

derivatives and evaluated their activities against B. mori. Among the tested 

compounds, the compound 3-(2-methyl-l-phenyl-l-propenyl) pyridine prolonged the 

larval period. Treatment of the 4
th

 instar nymphs of the locust S. gregaria with 

cycloheximide extended the duration of the 4
th

 nymphal instar only (Eid et al., 1982).  
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         On the contrary, the larval and/or pupal durations in some insects were 

significantly shortened after treatment with certain anti-JH compounds, such as the 

grey flesh fly P. dux after treatment of the 3
rd

 instar larvae with different doses of PII 

(Nassar et al., 1999); the flesh fly S. ruficornis after treatment of the last instar larvae 

with PI, II or III (Srivastava and Kumar, 1996); M. domestica after treatment of the 

larvae with PII (Gaur and Kumar, 2009); B. mori after treatment of the 3
rd

 and 4
th

 

instars with the imidazole compound, SSP-11 (Kiuchi et al., 1985). Four doses of 

FMev had been topically applied (once) onto the newly moulted 5
th

 instar larvae and 

newly moulted 6
th

 (last) instar larvae of S. littoralis. The larval duration was 

remarkably shortened, but the pupal duration was slightly or remarkably prolonged, 

depending on the treated larval instar (Basiouny and Ghoneim, 2017).  

          Moreover, no action was exerted by a number of anti-JH compounds on the 

developmental (larval and/or pupal) duration of some insects, such as PII after topical 

application onto the worker larvae of A. mellifera (Rembold et al., 1979); PІ and PIІ 

after topical application onto the 2
nd

 larval instar of the beetle L. decemlineata 

(Farazmand and Chaika, 2008). Khafagi and Hegazi (2004) investigated the effects of 

PI and PII on the parasitoid wasp M. rufiventris after topical treatment of the host 

larvae of S. littoralis. The parasitoid developmental duration did not be affected. 

4.3. Perturbation of Metamorphosis: 

         As previously mentioned in the present review, different physiological processes 

in insects, including embryogenesis, post-embryonic development and metamorphosis 

have been regulated by JH or JHs which are synthesized and discharged by the CA 

(Wyatt and Davey, 1996; Flatt et al., 2005; Li et al., 2007). The most important 

developmental hormones are 20-hydroxyecdysone (20-E) and JH. Balance in levels of 

these two hormones defines the outcome of each developmental transition. JH 

deficiency, in particular, leads to precocious metamorphosis, viz., omitting or skipping 

off the last larval instar and production of dwarf pupae in holometabolous insects and 

non-viable adultoids in hemimetabolous insects (Minakuchi et al., 2008; Triselyova, 

2012).  

          The JH deficiency can be reached by disturbance of its biosynthesis owing to 

destruction of the CA, microsurgically (allatectomy) or chemically, as well as 

degradation of JH after release in the haemolymph (Bowers et al., 1976; Ohta et al., 

1977). Therefore, special attention should be paid to the chemical compounds 

interfering with the JH biosynthesis, such as those known as anti-JH agents, i.e., the 

effects of some anti-JH compounds inducing precocious metamorphosis in various 

insects should be discussed in this section. 

4.3.1. Precocious Metamorphosis: 

            In the hemimetabolous insects, precocenes had been reported to induce 

precocious metamorphosis as expressed in the precocious appearance of adult 

characteristics in nymphal instars (Pratt et al., 1980). The production of such features 

has been explained by the prevention of JH synthesis in the sensitive insect (Brooks 

and McCaffery, 1990). On the other hand, larvae of the holometabolous insects, with 

few exceptions, are less responsive than hemimetabolous insects to the action of PII 

(Burt et al., 1978). In general, anti-JH agents induce precocious metamorphosis in a 

restricted number of insect species (Darvas et al., 1990).  

        Among Lepidoptera, treatment of S. litura larvae with PI, PII or ethoxyprecocene 

(a synthetic analogue of PII) resulted in formation of adultoids (Srivastava and Kumar, 

1999). Treatment of the eri silkworm Philosamia ricini with PII resulted in precocious 

pupation (Khan and Kumar, 2000).  
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        Within Hemiptera/Homoptera, precocious metamorphosis was induced in the 

kissing bugs  Rhodnius  prolixus and Triatoma  dimidiata by contact  exposure  to or 

fumigation with PII (Tarrant  et  al.,  1982); in the  lime seed bug  Oxycarenus  

lavaterae after application  of  PII  onto  3
rd

  instar nymphs (Belles and Baldellou, 

1983); in the brown planthopper, Nilaparvata lugens by PII (Ayoade et al., 1996). 

Also, precocious metamorphosis of the green peach aphid Myzus persicae 

(Homoptera), was induced by the precocene analogue 6-methocy-7-ethoxy-2,2-

dimethylchromene (Hales and Mittler, 1981). 

         In Orthoptera, exposure of 4
th

 instar nymphs of the locust S. gregaria to 15 

µg/cm
2
 of PI1 induced precocious adults (Salem et al., 1982 a). Different doses of PI 

or PII (20-100 μg/insect) were topically applied onto the 3
rd

 instar nymphs of 

Mediterranean splendid grasshopper Heteracris littoralis. Different degrees of 

precocious metamorphosis were irreversible with time, at the subsequent moults 

(Alrubeai, 1986). Pener et al. (1986) treated the late embryos or newly hatched 1
st
 

instar nymphs of the locust L. migratoria with precocenes and observed precocious 

appearance of adult features after the second larval molt, but not earlier. Exposure of 

2
nd

 instar nymphs of the grasshopper E. plorans to a low dose of PII led to precocious 

moulting into 4
th

 instar, skipping off 3
rd

 instar. Also, exposure of 4
th

 instar nymphs to 

PII, some treated nymphs precociously metamorphosed into adultoids, omitting the 5
th

 

instar (Ghoneim and Basiouny, 2017).  

          In respect of Coleoptera, topical application of PI or PIІ onto the 2
nd

 larval instar 

of L. decemlineata led to early formation of pupal characteristic on larvae and 

formation of adultoids (precocious adults) (Farazmand and Chaika, 2008).   

        With regard to Diptera, treatment of S. bullata larvae with PII resulted in 

precocious pupation (Darwas et. al., 1990). In S. ruficornis, precocene treatment 

resulted in precocious metamorphosis due to JH deficiency because the precocene 

effects could be rescued by application of JH (Srivastava and Kumar, 1996). 

Precocious abnormal adultoids of M. domestica were observed after treatment of larvae 

with PII (Gaur and Kumar, 2009). Treatment of early and late 3
rd

 instar larvae of the 

blowfly C. megacephala with PII resulted in the precocious metamorphosis (Singh and 

Kumar, 2011).  

       Apart from precocenes, many anti-JH compounds had been assessed on various 

lepidopterous species. With regard to the anti-JH activity of FMev, Farag and Varjas 

(1983) recorded precocious metamorphosis after topical application of FMev onto 

caterpillars of three late instars of H. cunea, In M. sexta, the 3
rd

 instar larvae treated 

with FMev exhibited visible symptoms of JH deficiency following the moult to 4
th

 

instar, such as precocious pupation (Edwards et al., 1983). The synthesized (R)-(-)-

FMev induced precocious metamorphosis in the 4
th

 instar larvae of B. mori by skipping 

off the 5
th

 instar (Shuto et al., 1988). Neck-ligated post-feeding last instar larvae of S. 

mauritia were topically treated with FMev. The treated larvae appeared with complete 

inhibition of metamorphosis (Balamani and Nair, 1989).  

       In respect of ETB and some of its analogues, Kuwano et al. (1988) synthesized 

ETB and bioassayed on the 3
rd

 instar larvae of B. mori. ETB induced precocious 

pupation in the treated larvae. After topical application of ETB analogue ethyl 4-[4-

methyl-2-(6-methyl-3-pyridyloxy)pentyloxy]benzoate onto 1-day old 3
rd

 instar larvae 

of B. mori, Fujita et al. (2005) observed precocious metamorphosis of larvae. Fujita et 

al. (2007) synthesized two ETB analogues: Ethyl 4-[2-(6-methyl-3-

pyridyloxy)hexyloxy]benzoate and ethyl 4-(2-phenoxyhexyloxy)benzoate which 

induced precocious metamorphosis in larvae of B. mori. KF compounds are 

structurally derived from ETB. Furuta et al. (2007) reported that KF-13S strongly 
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induced precocious metamorphosis in B. mori. Also, Hexyl (KF-13) and heptyl 

analogues induced precocious metamorphosis in B. mori, at low doses (Fujita et al., 

2008).  

         Considering the synthetic imidazole compounds, KK-22 was reported to induce 

precocious pupation in B. mori (Asano et al., 1984b). However, there was no 

significant difference in the induction of precocious pupation in this insect among the 

administration methods (Asano et al., 1986). KK-42 caused precocious metamorphosis 

in B. mori when applied onto the penultimate instar larvae (Akai and Mauchamp, 

1989). Treatment of S. bullata larvae with KK-110 or the benzodioxole compound J-

2710 resulted in precocious pupation (Darwas et. al., 1990). Lu and Li (1987) recorded 

the inducion of tetramolter silkworms into trimolters (precocious metamorphosis in 

silkworms) after treatment with the imidazole compounds SM1 and SDIII. Yoshida et 

al. (2000) synthesized 3-pyridine derivatives and evaluated their activities against B. 

mori. Among the tested compounds, 3-(2-methyl-l-phenyl-l-propenyl) pyridine 

induced precocious pupation after treatment of 4
th

 instar larvae. The imidazole 

compound triflumizole induced the trimolter silkworm. Percentages of trimolter 

induced by the treatment in the 3
rd

 instar were higher than those in the 4
th

 instar 

treatment (Miyajima et al., 2001). In addition, topical application of fluorinated vinyl 

sulfoxides onto larvae of some Lepidoptera caused premature pupation that was 

recoverable by simultaneous application of the JHA farnesol (Cusson et al., 2013). 

    For interpretation of the induction of precocious metamorphosis in insects by anti-

JH compounds, it was suggested that the apparent insensitivity of many 

holometabolous insects to precocene in vivo may not be due to the lack of intrinsic 

sensitivity of their CA to these compounds, but may be due to detoxification in tissues, 

like fat body (Soderlund et al., 1980). To solve the puzzle of molecular basis of JH 

action, Wilson (2004) reported that the effects of JH may be due to interference with 

the expression or action of certain genes, particularly the broad complex (br-C) 

transcription factor gene, that direct changes during metamorphosis, such as the pupal 

development. Therefore, JHAs or anti-JH compounds cause misexpression of br-C 

which then leads to improper expression of one or more downstream effector genes 

controlled by br-C gene products. In the hemimetabolous insects (no pupal stage), 

Erezyilmaz et al. (2006) determined the role of br in O. fasciatus. Induction of a 

precocious adult molt by application of PII to 3
rd

 instar nymphs of O. fasciatus caused 

a loss of br mRNA at the precocious adult molt.  

4.3.2. Failure of Some Anti-JH Compounds to Induce Precocious Metamorphosis: 

           It is important to point out that the induction of precocious metamorphosis in 

insects by anti-JH compounds have been observed for some but not all tested 

compounds or all treated insect species. Thus, a pertinent point of this article is to shed 

some light on the reported cases of failure to induce precocious metamorphosis. No 

precocious metamorphosis was induced in the sun pest E. integriceps after topical 

application of PI onto the nymphs (Tarrant et al., 1982); in the lawn armyworm S. 

mauritia after treatment of 6
th

 instar larvae with single or repeated daily doses of PII 

(Mathai and Nair, 1984) and in the desert locust S. gregaria after topical application of 

nymphs with PII (Islam, 1995).   

          Apart from precocenes, no precocious metamorphosis was induced in the 

silkworm B. mori after treatment of 4
th

 instar larvae with the synthesized compound 

(S)-(+)-FMev (Shuto et al., 1988). FMev doses were topically applied (once) onto 1-

day-old larvae of the gypsy moth Lymantria dispar. All treated larvae on day-2 

developed normally, with few exception of incomplete moulting to the last instar 

(Fescemyer et al., 1992). FMev could not induce the precocious metamorphosis in the 
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codling moth Cydia pomonella after treatment of 3
rd

 and 4
th

 instar larvae (Benz and 

Ren, 1986). Also, no anti-JH activity was exhibited by FMev in the non-lepidopterous 

species, such as those belong to orders Diptera, Coleoptera, Heteroptera, and 

Orthoptera (Menn, 1985). After treatment of the 3
rd

 instar larvae of B. mori with the 

synthesized EMD or its analogues, no precocious metamorphosis was induced 

(Kuwano et al., 1988).  

4.4. Can Anti-JH Compounds Exhibit a dual Effect (Anti-JH Activity and JH-like 

Activity)? 

          In insects, metamorphosis can be impaired after treatment with some IGRs. The 

major symptoms or features of the impaired metamorphosis have been described as 

inhibited pupation, blocked adult emergence, production of larval-pupal and/or pupal-

adult intermediates, appearance of deformed larvae and/or pupae, production of giant 

larvae (superlarvae) and supernumerary larval instars (extra moult) as well as 

appearance of permanent larvae (as expression of suspended development). However, 

some of these features were observed in various insects as responses to the exogenous 

JH or treatment with JHAs or other IGRs, such as the green lacewing Chrysoperla 

rufilabris as response to fenoxycarb (Liu and Chen, 2001); C. pipiens as response to 

kinoprene (Hamaidia and Soltani, 2014); the pink bollworm Pectinophora gossypiella 

(Ghoneim et al., 2017a) and the olive leaf worm Palpita unionalis (Ghoneim et al., 

2017b) as response to Novaluron.  

            It is known from the literature sources that few anti-JH agents can exhibit a 

dual effect on certain insects, i.e., anti-JH activity and JH-like activity, depending on 

some factors, such as the treated larval instar, the age of larvae and insect sensitivity as 

well as the time of treatment, the applied dose level, method of application and the 

proptery of the compound itself. For examples, precocene exhibited some JH-like 

effects on the brown planthopper Nilaparvata lugens (Pradeep and Nair, 1989). Some 

authors (Sparks et al., 1979; Staal, 1986; Riddiford et al., 1983; Kiguchi et al., 1984) 

reported a dual effect of ETB on M. sexta and B. mori, depending on the dose, because 

at low doses it induced precocious metamorphosis (a clear JH–deficiency symptom), 

but at higher doses it induced JH-like activity, since larval-pupal intermediates had 

been observed. Staal et al. (1981) and Staal (1986) recorded weaker anti-JH effect of 

EMD than ETB against the lepidopterous insects M. sexta and H. virescens. It too 

shows mixed JH activity and anti-JH activity.  

         Among the structurally derived compounds from ETB, some KF compounds had 

been prepared. Furuta et al. (2010) designed new anti-JH agents among which KF-38 

was found to possess a dual property, strong anti-JH activity and weak JH-like activity. 

Hexyl (KF-13) and heptyl analogues, which induced precocious metamorphosis in B. 

mori at low doses, had relatively high JH activity (Fujita et al., 2008). In addition to 

precocenes, some authors (El-Gammal, 1983; Salem et al., 1982a; Ghoneim, 1988; El-

Gammal et al., 2004) recorded a dual effect of cycloheximide on S. gregaria nymphs: 

JH-like activity and anti-JH activity, depending on the applied dose. Recently, 

Basiouny and Ghoneim (2017) recorded the failure of FMev to exhibit anti-JH activity 

but a JH-like activity against larvae of S. littoralis. 

          In the context of the JH-like activity of certain anti-JH compounds in some 

cases, production of larval-pupal intermediates was recorded in S. litura after treatment 

of larvae with PI, PII or ethoxyprecocene (a synthetic analog of PII) (Srivastava and 

Kumar, 1999); in the wasp M. rufiventris parasitizing its host S. littoralis after 

treatment of this host with PI or PII (Khafagi and Hegazi, 1999); and in S. mauritia 

after treatment of last instar ligated larvae with the compound EMD (Balamani and 

Nair, 1989). Production of pupal-adult intermediates was recorded in P. ricini after 
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treatment of larvae with PII (Khan and Kumar, 2000); in S. ruficornis after treatment 

of larvae with PII (Khan and Kumar, 2005) and in C. megacephala after treatment of 

0-96 hr-old pupae with PII (Singh and Kumar, 2011). In addition to precocenes, 

Balamani and Nair (1989) investigated the ability of EMD to prevent the JH dependent 

phase of larval-pupal transformation of S. mauritia. EMD-treatments of the last instar 

ligated larvae with lower doses induced the formation of larval-pupal intermediates 

whereas those treated with higher dose moulted into either pupae or larval-pupal 

intermediates. To understand the production of intermediate forms in insects, the 

induction of a rapid molt did not provide enough time for the completion of larval-

pupal transformation. Thus, the insects molted to non-viable forms between the stages 

(Tateishi et al., 1993). Molts induced during the early phase of the last instar produce 

larval-like individuals, while those formed in the late phase generate pupal-like 

individuals (Eizaguirre et al., 2007).  

        In this context, also, the production of extra molt (supernumerary larval instar) 

depends on some of the aforementioned factors. However, the extra moult and 

production of supernumerary larval instar evidently indicated a high juvenilizing 

activity of the tested compound. Induction of supernumerary nymphal instar was 

reported for some insects as response of JH-like activity of a very few of anti-JH 

compounds, such as S. gregaria after exposure of the 2
nd

 instar nymphs to PII (at 15 

µg/cm
2
) (Salem et al., 1982a) and the white-backed  rice  planthopper Sogatella 

furcifera after feeding of the newly  hatched  nymphs  on  rice  plants  treated  with  

500  ppm  of PII (Miyake and Mitsui, 1995).  

        In contrast to the induction of precocious development and production of 

intermediates and extra moult in insects by certain anti-JH compounds, a feature of the 

suspended development is known as "permanent larvae". After exposure of the newly 

moulted 2
nd

 instar nymphs of the grasshopper Euprepocnemis plorans to 20 µg/cm
2
 of 

PII, some 'permanent nymphs' were induced in 2
nd

 and 4
th

 instars (Ghoneim and 

Basiouny, 2017).  
4.5. Deranged Morphogenesis: 

          After treatment of an insect with JHA or IGR, in general, the production of 

pupal and/or adult deformities usually indicates the interference of this compound with 

the morphogenesis program. For examples, deranged pupal morphogenesis was 

reported in some insect species by different IGRs, such as the red flour beetle 

Tribolium castaneum by cyromazine (Kamaruzzaman et al., 2006), S. frugiperda by 

methoxyfenozide (Zarate et al., 2011), the rice moth Corcyra cephalonica by 

fenoxycarb (Begum and Qamar, 2016), P. gossypiella (Ghoneim et al., 2017a) and P. 

unionalis (Ghoneim et al., 2017b) by Novaluron.  

         As reported in the current literature, some anti-JH compounds have disrupting 

the insect morphogenesis, by a mechanism, resulting in malformation of the 

subsequent stages. For examples, production of abnormal puparia was recorded in S. 

ruficornis after treatment of the last instar larvae with PI, PII or PIII (Srivastava and 

Kumar, 1996); P. dux after treatment of the 3
rd

 instar maggots with highest dose of PII 

(Nassar et al., 1999); and M. domestica after treatment of larvae with PII (Gaur and 

Kumar, 2009). Production of malformed pupae was observed in S. litura after 

treatment of larvae with PI, PII or ethoxyprecocene (a synthetic analog of PII) 

(Srivastava and Kumar, 1999) and in the parasitic wasp M. rufiventris after treatment 

of its host S. littoralis with PI or PII (Khafagi and Hegazi, 1999, 2004). Also, various 

morphogenic abnormalities and morphological deficiencies had been observed in A. 

thalassinus after topical application of PIII onto eggs or 5
th

 instar nymphs (Osman, 

1988); in T. molitor after topical application of several chromene derivatives onto 
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larvae (Roberto et. al., 1998); in E. integriceps after treatment of larvae with PI (Amiri 

et. al., 2010).  

        In addition to precocenes, FMev induced various morphogenic abnormalities and 

death before pupation in S. mauritia (Nair and Rajalekshmi, 1988). Application of 

FMev onto last instar larvae of the cabbage looper moth Trichoplusia ni resulted in the 

formation of abnormal pupae (Newitt and Hammock, 1986; Sparks et al., 1987). Its JH 

deficiency effects, both in vivo and in vitro, could be fully deleted by co-administration 

of JHAs in vivo and JH biosynthesis is restored by farnesoic acid in vitro (Cusson et 

al., 2013). Four doses of FMev had been topically applied onto the newly moulted 5
th

 

or 6
th

 (last) instar larvae of S. littoralis by Basiouny and Ghoneim (2017). Treatment of 

6
th

 instar larvae resulted in the production of morphologically abnormal pupae, at the 

higher three doses. Sparks et al. (1987) observed morphological aberrations in T. ni 

after treatment of last instar larvae with compactin analogues L-643, 049-01K01 and 

DPH (3,3-dichloro-2-propenyl hexanoate). 

5. Disruptive Effects of Anti-JH Compounds on Adult Performance in Insects:   

          The present article focuses on the most important aspects of the adult 

performance, viz., emergence, survival, morphogenesis and longevity, including the 

total longevity and its main compartments: pre-oviposition period (ovarian maturation 

period in many insects), oviposition period (sometimes known as 'reproductive life-

time') and post-oviposition period. Disturbances of these parameters of the adult 

performance by the anti-JH compounds should be discussed in this section.   

5.1. Blocked Adult Emergence:  

          The adult emergence in insects, as a crucial metamorphosis process, is regulated 

by the eclosion hormone. The disturbance of this hormone results in partial or 

complete blocking of the adult appearance. It is known from the literature sources that 

the adult emergence of many insect species was partially or completely blocked after 

larval treatment with various JHAs, such as the vinegar fly Drosophila melanogaster 

after topical application of 3
rd

 instar larvae with pyriproxyfen (Benseba et al., 2015); 

the mosquitoes C. quinquefasciatus and Ae. albopictus after larval treatments with 

pyriproxyfen or methoprene (Khan et al., 2016). Moreover, adult emergence was 

completely prevented in C. cephalonica after treatment of 4
th

 instar larvae with 

fenoxycarb (Singh and Tiwari, 2016). 

         Depending on the currently available literature, also, few studies have examined 

the effects of anti-JH compounds on adult emergence in insects. Among these few 

studies, Khan and Kumar (2005) recorded an inhibition of adult emergence in flesh fly 

S. ruficornis after larval treatment with PII. The adult emergence of the blowfly C. 

megacephala was blocked after treatment of early and late 3
rd

 instar larvae with PII 

(Singh and Kumar, 2011). Recently, Ghoneim and Bosly (2017) topically applied five 

sublethal doses of PI (once) onto 1-day old larvae of 5
th

 and 6
th

 (last) larval instars of S. 

littoralis. They recorded a slight or drastic blockage of adult emergence, depending on 

the dose and larval instar under treatment. Apart from precocenes, the 3
rd

 instar larvae 

of B. mori ingesting diet containing 50-200 ppm of the anti-JH compound KK-22 (a 

terpenoid imidazole) metamorphosed to pupae but failed in the adult emergence 

(Asano et al., 1984a). Another terpenoid imidazole, KK-42, was reported to inhibit the 

adult emergence of the same silkworm when applied to newly formed pupae (Kadono-

Okuda et al., 1987). Four doses of FMev had been topically applied (once) onto the 

newly moulted 5
th

 or 6
th

 (last) instar larvae of S. littoralis. The adult emergence was 

considerably blocked (Basiouny and Ghoneim, 2017).  

        As previously mentioned (section of 'precocious metamorphosis'), the effects of 

JH may be due to interference with the expression or action of the broad complex (br-
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C) transcription factor gene, that direct changes during metamorphosis (Wilson, 2004). 

Therefore, JHAs or anti-JH compounds cause misexpression of br-C which then leads 

to improper expression of one or more downstream effector genes controlled by br-C 

gene products. On this molecular basis, symptoms of impaired metamorphosis, like 

blocking of adult emergence, can be explained (Nandi and Chakravarty, 2011).  

5.2. Affected Adult Survival:  
 

           The available literature has been enriched with many reported results of IGRs' 

toxicities against adults of several insect species, such as S. littoralis after treatment of 

larvae with novaluron (Hamadah et al., 2015); the onion fly Delia antique after 

treatment of larvae with pyriproxyfen (Zhou et al., 2016); P. gossypiella after 

treatment of the newly hatched larvae with novaluron (Hassan et al., 2017) and P. 

unionalis, after treatment of newly moulted last instar larvae with 0.10 and 1.00 ppm of 

novaluron (Hamadah et al., 2017). In contrast, very few studies have examined the 

effects of anti-JH compounds of the adult survival. Different doses of PII were 

topically applied to the 3
rd

 instar larvae of P. dux. Toxic effects were observed on 

adults, in a dose-dependent course (Nassar et al., 1999). Injection of a single dose (50 

or 150 µg) of PII into 4-day old adults of S. gregaria led to high mortality of adults 

(Tawfik et al., 2014). Five sublethal doses of PI had been topically applied (once) onto 

1-day old larvae of 5
th

 or 6
th

 (last) larval instar of S. littoralis. PI exhibited a slightly 

extended toxic effect on the adult females only with the higher two doses (Ghoneim 

and Bosly, 2017). 
 

           Needless to say the adult life in insects depends on healthy immature stages. 

Digestive disorders, such as starvation, metabolism disturbance and degeneration of 

peritrophic membranes, as well as accumulation of faecal materials at the hindgut, may 

be the cause of adult mortality (Soltani, 1984). Also, the adult mortality, after treatment 

of larvae with anti-JH agents, can be explained by the retention and distribution of 

these compounds in the insect body as a result of rapid transport from the gut by direct 

and rapid transport via the haemolymph to other tissues, and/or by lower detoxification 

capacity of adults against the tested compounds (Osman et al., 1984). However, for 

interpretation of adulticidal effects of IGRs on some insects see Kartal et al. (2003). 
 

5.3. Impaired Adult Morphogenesis:  

            Impaired adult morphogenesis, as expressed in the production of deformed 

adults after larval treatment of various insects with different JHAs, is widely reported 

in the available literature, such as T. castaneum and T. confusum after treatment with 

cyromazine (Kamaruzzaman et al., 2006); E. integriceps after treatment with 

pyriproxyfen (Mojaver and Bandani, 2010); C. cephalonica after treatment with 

fenoxycarb (Begum and Qamar, 2016); etc.  With regard to anti-JH compounds, some 

results of their disruptive effects on adult morphogenesis in different insects can be 

reported herein. Adult malformations were observed in P. dux after topical application 

of PII onto the 3
rd

 instar larvae (Nassar et al., 1999); P. ricini after topical application 

of PII onto larvae (Khan and Kumar, 2000); S. ruficornis after topical application of 

PII onto larvae (Khan and Kumar, 2005); C. megacephala after topical application of 

PII onto the early and late 3
rd

 instar larvae (Singh and Kumar, 2011); S. littoralis after 

larval treatment of with PI and PII (Khafagi and Hegazi, 1999); L. decemlineata after 

topical application of PІ and PIІ onto 2
nd

 instar larvae (Farazmand and Chaika, 2008); 

M. domestica after treatment of larvae with PIІ (Gaur and Kumar, 2009) and S. 

gregaria  after injection of a single dose (50 or 150 µg) of PII into the 4-day old adults 

(Tawfik et al., 2014). Recently, Ghoneim and Bosly (2017) topically applied five 

sublethal doses of PI onto 1-day old larvae of 5
th

 and 6
th

 (last) larval instars of S. 
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littoralis and observed some adult deformities after treatment of 6
th

 instar larvae. In 

addition, the development of some adult structures and organs, as affected by anti-JH 

compounds, had been investigated. After treatment of 4
th

 instar or 5
th

 instar larvae of 

D. koenigii with certain doses of PII or the precocenoid compounds 6-hydroxy-DMC 

and 6-bromo-DMC, the emerged adults appeared with small pale body and 

underdeveloped wing pads/wings (Banerjee et al., 2008). Treatment of 5
th

 instar larvae 

or prepupae of large fruit-tree tortrix Archips podana with 300, 450, and 600 µg 

precocene/insect, morphogenesis of the adult antennae was deranged (Triselyova, 

2012).  

5.4. Disturbed Adult Longevity:  

         After the attainment of sexual maturity, insects often show degenerative changes 

in some tissues and organs which can be called 'senility' or 'aging'. The affected adult 

longevity can be considered as an informative indicator for the adult aging, i.e., 

prolongation of longevity may denote a delay of aging and vice versa, although the 

death is usually the density of all creatures (Ghoneim et al., 2015; Hamadah et al., 

2017; Tanani and Ghoneim, 2017) 

         The available literature contains contradictory results of effects of JHAs, or 

IGRs in general, on the adult longevity in insects. The total adult longevity in some 

insects was shortened after larval treatment with some IGRs, such as S. littoralis by 

methoxyfenozide (Pineda et al., 2009) and novaluron (Hamadah et al., 2015); S. exigua 

by methoxyfenozide (Luna et al., 2011) and G. pyloalis by lufenuron (Aliabadi et al., 

2016). On the contrary, adult longevity in other insects was prolonged after larval 

treatment with some IGRs, such as P. gossypiella by chromafenozide (Kandil et al., 

2012) and pyriproxyfen (Sabry and Abdou, 2016) and the mustard aphid Lipaphis 

erysimi by pyriproxyfen (Liu and Chen, 2001).  

         With regard to the effects of anti-JH compounds on the adult longevity in insects, 

the available literature contains rarely reported results. After topical application of PII 

onto the 3
rd

 instar larvae of P. dux, the total adult longevity was significantly shortened 

(Nassar et al., 1999). After topical application of the dose of 25 mg l
-1

 of the 

precocenoid compound 6-hydroxy-DMC onto the 5
th

 instar nymphs of D. koenigii, the 

emerged adults lived shorter longevity than the control adults (Banerjee et al., 2008). 

Khafagi and Hegazi (2004) investigated the effects of PI and PII on the parasitoid wasp 

M. rufiventris after topical treatment of the host larvae of S. littoralis. Longevity of the 

parasitoid adult females was shortened. In a study conducted by Ghoneim and Bosly 

(2017), five sublethal doses of PI had been topically applied onto 1-day old larvae of 

5
th

 or 6
th

 (last) larval instars of S. littoralis. The emerged adult females spent longer 

longevity than their control congeners. Also, both pre-oviposition and oviposition 

periods had been slightly, or considerably, shortened.  

         The affected total longevity of adult females in insects may be attributed to the 

interference of anti-JH compounds with the hormonal regulation of adult longevity 

since a close relation between certain hormones and adult longevity was reported in 

some insects, such as Drosophila (Broughton et al., 2005; Carbone et al., 2006; 

Chamseddin et al., 2012). In insects, it has been reported that the fat body serves many 

important functions (Arrese and Soulages 2010). Therefore, it is not surprising to 

suggest the occurrence of a longevity mechanism within the fat body (Hwangbo et al. 

2004). However, the exact mode of action of anti-JH compounds on the biochemical 

sites in adults is hitherto unknown. 

6. Anti-gonadotropic Activity of Anti-JH Compounds Against Insects:  

          As previously reported in the present article, JH, produced by CA in insects, is 

an important regulator of development and physiology in immatures. In adults of many 
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insect species, JH takes on functions other than development regulation, such as 

reproductive physiology. JH is responsible for protein metabolism specifically needed 

for the egg maturation. Yin et al. (1990) reported that vitellogenesis in most insects 

depends on the vitellogenin production by the fat body and/or follicle cells which are 

promoted by ecdysteroids, JH, or both in addition to other hormones. In their study, 

Yamamoto et al. (2013) reported that the reduced JH limits the reproduction by 

inhibiting the production of yolk-filled eggs in D. melanogaster, and this may arise 

because JH is required for the post-eclosion development of the vitellogenin-producing 

adult fat body.  

         IGRs or JHAs, in particular, have been reported to cause sterility in insects or 

reduce their fecundity. However, effects of IGRs on the insect reproduction can be 

grouped into: 1) reproductive behaviour, 2) oviposition, 3) egg hatchability (ovicidal 

and embryocidal), and 4) sterilization of adults (Mondal and Parween, 2000; Ghoneim 

et al., 2014b).  

         Shortly, JH functions as gonadotropin in insect adults (Amsalem et al., 2014a). 

Therefore, a JH deficiency, caused by anti-JH compounds, can affect some or all of the 

reproductive processes. For examples, reproductive potential of the parasitic wasp M. 

rufiventris, reared on its host S. littoralis, was reduced after topical application of PII 

onto larvae of the host (Khafagi, 2000). After application of compactin on virgin 

females of B. germanica, gonotrophic cycle was significantly delayed (Belles et al., 

1988).  The synthetic activity of male accessory reproductive glands of S. litura was 

partially blocked by cycloheximide treatment (Sridevi and Ray, 1988). Topical 

treatment of the adult females of P. americana with FMev led to delay of the 

production of oöthecae (Edwards et al., 1985). In contrast, precocene failed to exhibit 

specific anti-gonadotropic effect on the mosquito Ae. aegypti (Kelly and Fuchs, 1978). 

6.1. Oocyte Growth and Ovarian Maturation:  
          As reported by many authors (Bownes, 2004; Flatt et al., 2005; Raikhel et al., 

2005; Schwedes and Carney, 2012), there is a direct correlation between CA activity 

and the oocyte growth and ovarian maturation, in part through its regulation of yolk 

protein uptake while ecdysone, derived from the follicle cells, induces yolk protein 

synthesis in fat bodies. In adults of various insect species, treatment with an 

appropriate dose of precocenes prevents the ovarian maturation because it selectively 

destroys CA resulting in JH deficiency. Meanwhile, replacement therapy of JH or JHA 

restores, to some extent, the normal ovarian maturation (Woodard and Rankin, 1980; 

Kumar and Khan, 2004).  

      There is a large body of literature on the inhibitory activity of different anti-JH 

compounds against oocyte growth and ovarian maturation in many insects. In 

hemimetabolous insects, precocene suppressed the development and maturation of 

ovaries, such as Diploptera punctata (Feyereisen et al., 1981), O. fasciatus (Masner et 

al., 1979) and Nilaparvata lugens (Ayoade et al., 1996). For some detail, after 

exposure of the D. melanogaster adult females to PI and PII, the number of 

vitellogenic oöcytes was reduced in a dose-dependent manner at 43 hr after exposure.  

In addition, precocene directly acts on the CA since it inhibited the oocyte 

development in decapitated females (Wilson et al., 1983). The effects of PII on an 

apterygote insect were investigated by Bitsch and Bitsch (1984) for the first time in 

adult females of the firebrat Thermobia domestica. Depending on their results, a single 

application of 10 μg/insect, at the beginning of the post-ecdysial period, onto the non-

inseminating adult females caused inhibition of oöcyte maturation. The ovarian 

maturation in the grasshopper H. littoralis was inhibited after topical application of PII 

(doses of 20-100 μg/insect) onto the 3
rd

 instar nymphs (Alrubeai, 1986). In blow fly 
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Phormia regina, oocyte development was drastically retarded after treatment with PII 

and application of a JHA methoprene reversed the the inhibitory effects of precocene 

on the oocyte development (Yin et al., 1989).  
        Application of two sequential doses of PII onto the young-adults of face fly 

Musca autumnalis led to inhibition of vitellogenesis (Burks et al., 1992). The ovarian 

maturation in M. domestica was retarded after topical application of PII (20 μg/fly) 

onto the newly-emerged females (Li et al, 1993). It appeared that precocene caused 

inhibition of development of vitellogenic oocyte of Sarcophaga ruficornis due to 

deficiency of JH (Srivastava and Kumar, 1996). The oocyte growth and ovarian 

maturation in N. lugens had been inhibited after exposure of 5
th

 instar nymphs to 

different doses of the PII (Pradeep and Nair, 2000a). To a great extent, similar results 

had been obtained after topical application of PII onto 0-, 1- and 2-day old eggs of the 

red cotton stainer bug Dysdercus cingulatus (Gayathri-Elayidam and Muraleedharen, 

2001). In a wild-type strain of D. melanogaster, PI reduced the ovarian maturation 

(Ringo et al., 2005). Also, treatment of the newly emerged adult females of S. 

ruficornis with PII resulted in suppression of different processes in ovaries, such as egg 

chamber development, oocyte growth and uptake of yolk granules (Kumar and Khan, 

2004). Injection of PI restrained the ovarian maturation of short-winged females of the 

wing dimorphic cricket Velarifictorus ornatus when the dosage was over 50 μg, but 

had no effect when the dosage was lower (Zhao and Zhu, 2013).  

           Apart from precocenes, the ovarian maturation in B. mori was retarded after 

treatment of the newly formed pupae with the imidazole compound KK-42 (Kadono-

Okuda et al., 1987). After application of compactin on the virgin females of B. 

germanica, gonotrophic cycle was significantly delayed (Belles et al., 1988). The anti-

gonadotropic activity of FMev was evaluated against M. sexta after injecting only very 

high dose (2.5 mg/adult) into the adult females 1-2 h after emergence. The oogenesis 

was inhibited (Quistad et al., 1981). The FGL-amide AST neuropeptidemimic, H17, 

was found quite potent as an anti-JH compound but able to inhibit the basal oocyte 

growth in D. punctata (Bendena and Tobe, 2012). 

6.2. Oviposition Efficiency:  

         In insects, the oviposition rate can be used as an informative indicator for the 

oviposition efficiency. The oviposition rate of different insect species regressed as a 

response to various IGRs, such as S. littoralis as a response to tebufenozide (Bakr et 

al., 2005) and Novaluron (Ghoneim et al., 2014b); S. gregaria as a response to 

tebufenozide (Al-Dali et al., 2008); the cowpea seed beetle Callosobruchas maculates 

as a response to cyromazine (Al-Mekhlafi et al., 2011); P. gossypiella as a response to 

novaluron (Hassan et al., 2017) and P. unionalis as a response to methoxyfenozide 

(Hamadah et al., 2017). Effects of anti-JH compounds on this important reproductive 

parameter had been scarcely reported in the current literature. Exposure of D. 

melanogaster females to 0.14 μmol of PI resulted in remarkably regressed oviposition 

rate (Ringo et al., 2005). Larval treatment of E. integriceps with PI led to decreasing 

egg-laying rate (Amiri et. al., 2010). After topical application of PI onto 5
th

 instar 

larvae of S. littoralis, the oviposition rate was drastically regressed only at the lower 

two doses. After treatment of 6
th

 instar larvae with PI, the oviposition rate was 

remarkably depressed in a dose-dependent course (Ghoneim and Bosly, 2017). The 

prohibited oviposition efficiency may be explained as a result of the inhibition of 

ovarian DNA synthesis or the interference of IGRs or anti-JH compounds with 

vitellogenesis via certain biochemical processes. However, these compounds may exert 

a reverse action to those exerted by the ecdysteroid agonists which stimulate the 

neurosecretory cells to release a myotropic ovulation hormone (Parween et al., 2001).  
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6.3. Reproductive Capacity:  

        The third pertinent point in this context is the reproductive capacity including 

fecundity (mean number of eggs/female) and fertility (hatching percentage of eggs laid 

by female). The effects of anti-JH compounds on these reproductive parameters should 

be reviewed as follows.  

6.3.1. Fecundity:  

        Treatment of immatures of some insects with precocenes or other anti-JH 

compounds resulted in inhibition of fecundity. On the basis of the available literature, 

treatment of female crickets Acheta domesticus and Nemobius fasciatus, beginning 12 

hr after adult emergence, with PI or PII resulted in decreasing of egg production, in a 

dose-dependent course (Bradley and Haynes, 1991). Topical application of PII (doses 

0.125 and 0.0625 mg) onto the 3
rd

 instar larvae of P. dux inhibited the female natality 

(Nassar et al., 1999). Exposure of 5
th

 instar nymphs and newly ecdysed brachypterous 

females of N. lugens to different doses of the PII resulted in fecundity reduction, in a 

dose-dependent manner (Pradeep and Nair, 2000a). Repeated daily topical application 

of PI or PII onto S. littoralis larvae led to reduction in fecundity of its parasitic wasp 

M. rufiventris (Khafagi and Hegazi, 2004). After treatment of E. integriceps nymphs 

with PI, fecundity of adult females was reduced (Amiri et al., 2010). According to 

Ghoneim and Bosly (2017), sublethal doses of PI had been topically applied onto 1-

day old larvae of 5
th

 or 6
th

 (last) larval instars of S. littoralis. The fecundity of adult 

females was dramatically reduced. On the contrary, precocenes failed to affect the 

female fecundity of some insects, such as the blood-sucking bug Panstrongylus 

megistus after treatment of males with PII or ethoxyprecocene II (Cavalcante and 

Regis, 1992).  

        Apart from precocenes, FMev was reported to exhibit an anti-gonadotropic 

activity (as recorded in reduced egg production) against different insects, such as Pieris 

brassicae (Pieridae), Cydia pomonella (Tortricidae) and Ephestia kuehniella 

(Pyralidae), when these insects were treated in the sensitive period where the JH-

dependent vitellogenesis takes place (Benz and Ren, 1986). Among ten anti-JH 

compounds tested by Connat (1988) against the cattle tick Boophilus microplus 

females, the most active compound was FMev which caused reduction in fecundity at 

doses as low as 5 μg. The anti-gonadotropic effect of FMev on the tick Ornithodoros 

moubata was studied by Connat and Nepa (1990). Depending on their results, topical 

application of dose 100 μg onto the mated females 1 day after feeding led to reduction 

of fecundity in the ovipositing treated females. As found by Lehmann et al. (2015), 

application of the anti-JH compund H17 reduced the fecundity of L. decemlineata. 

6.3.2. Fertility and Sterility:  

           As reported in the early literature, sterility was recorded in female offsprings of 

the tse tse fly Glossina morsitans after treatment of parent females with precocenes 

(Samaranayaka-Ramasamy and Chaudhury, 1982). PIII was topically applied onto 

eggs, 5
th

 instar nymphs, and newly hatched adult females of the grasshopper A. 

thalassinus. Sterile adult females had been recorded (Osman, 1988). In the late two 

decades, the phenolic chromene and a hydroxyethyl chromene (isolated from A. 

conyzoides) were found to cause sterility in the bug Dysdercus flavidus (Okunade, 

2002). The hatching percentage of laid eggs of E. integriceps was reduced after 

treatment nymphs with PI (Amiri et al., 2010). PII treatment of 0-96 hr-old pupae of C. 

megacephala resulted in the metamorphosis of sterile adultoids (Singh and Kumar, 

2011). Recently, Ghoneim and Bosly (2017) topically applied five sublethal doses of 

PI onto 1-day old larvae of 5
th

 or 6
th

 (last) larval instars of S. littoralis. They recorded 

complete sterility of adult female moths after treatment of 5
th

 instar larvae with 
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different doses but complete sterility after treatment of 6
th

 instar larvae only with only 

150 and 30 µg/larva. In contrast, precocenrs failed to affect the egg fertility of a few 

number of insects, such as P. megistus in which no effect was observed on the egg 

hatching after topical application of PII or ethoxyprecocene II onto males (Cavalcante 

and Regis, 1992). Apart from precocenes, the anti-JH compound, polyacetylenic 

sulfoxide, was reported to produce sterile adults in O. fasciatus (Bowers and Aregullin, 

1987). FMev exhibited powerful anti-gonadotropic activity against S. littoralis, since 

complete sterilization was recorded after topical treatment of newly moulted 5
th

 or 6
th

 

(last) instar larvae with FMev. It may be considered as chemosterilant against this pest 

(Basiouny and Ghoneim, 2017). The mode of action of anti-JH compounds on the 

fertility of some insects could be partially discussed by some authors (Sevela and 

Davey, 1990; Sevela et al., 1995). 

7. Roles of Anti-JH Agents in the Insect Polyphenism: 

7.1. Hemiptera/Homoptera-wing Dimorphism: 

           Aphids (Homoptera) live in all climatic regions covering temperate to tropical 

conditions. They are detrimental pests of grain crops around the world (Hollis and 

Eastop, 2005). The serious negative economic impacts of aphids are mostly due to their 

transmission of phytopathogenic viruses and high reproduction rate (Figueroa et al., 

2007). In nature, life cycle of aphids comprises a range of strategies that allows them to 

survive the cold winters as overwintering eggs, increase their population when 

resources are available in spring and autumn (as parthenogens) and migrate to new 

hosts when food sources are unfavorable (Dixon, 1987). The aphid life cycles can 

include at least two different forms of polyphenism, (1) cyclic switching between 

asexual reproduction (viviparous parthenogenesis) and sexual reproduction (associated 

with the overwintering after fertilization), and (2) switching between a wingless morph 

(apterae), and a winged morph (alatae) capable of fly and dispersal. The switch from 

wingless to winged morphs can occur in two different situations in nature (for review, 

see Hartfelder and Emlen, 2012). 

          It is worth pointing out that aphids were the predominant model used during 

several decades to investigate the endocrine control of 'wing dimorphism'. The 

observation that wingless nymphs and adults are morphologically similar led early 

some researchers to suggest that high titer of JH induces the wingless nymphs to retain 

the juvenile characteristics in adults. Attempts to correlate the activity of the organs 

producing and secreting JH (CA), with the production of wingless morphs have yielded 

equivocal results. Several studies showed that 3
rd

 - and 4
th

 -instar nymphs without wing 

buds possess larger CA and subsequently high JH titer (Kennedy and Stroyan, 1959; 

Elliot, 1975; Hardie et al, 1985; Braendle et al., 2006). 

        As plentifully reported in the current literature, precocenes promote the 

production of alatae in some aphid species (Kambhampati et al., 1984), since exposure 

to these anti-JH compounds induced the production of winged offspring in 

Acyrthosiphon pisum and Macrosiphum euphorbiae (Hardie, 1986), as well as the 

prenatal PII application could induce the entire suite of characteristics found in the 

alatae (Hardie et al., 1995). On the contrary, the synthetic precocenoid, PIII, was 

reported to inhibit the production of winged morph, at least in A. pisum (Gao and 

Hardie, 1996). 

          These contradictory effects of precocenes on the induction of winged morph can 

be probably understood because their effects are not mediated by JH. Although PII is 

able to induce alate progeny in several aphid species, the majority of studies suggested 

that it fails to induce precocious development, the classic JH-mediated hallmark of 

precocenes (Hardie et al., 1996). Moreover, although the inhibition of alate production 
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caused by PIII is accompanied by precocious metamorphosis and destruction of CA 

(Hardie et al., 1996), the application of JH is capable of rescuing precocious 

metamorphosis without reversing the inhibition of winged morphs (Gao and Hardie, 

1996). In many cases, JH-agonists (JHAs) or JH-antagonists affect on the alate form of 

aphids as a result of an abnormal disruption of metamorphosis (juvenilization) rather 

than induction of the apterous morph (apterization). In other cases, JH-agonists or JH-

antagonists produce inconsistent effects, or no effects at all (Gao and Hardie, 1996).  

         In conclusion, results of several research works suggested that the precocenes 

exert their alate-promoting property on the wing polyphenism independently of JH, 

and instead depend heavily on the population density. The previously reported results 

for precocenes, as well as a dearth of clear positive evidence for regulation by JH, 

leave the issue of hormonal regulation of aphid wing-induction under debate (Hardie et 

al., 1995; Zera and Denno, 1997; Braendle et al., 2006).  

         Another point of interest is the wing dimorphism in planthoppers (Hemiptera). 

Wing dimorphism in these insects is known to be a common and ecologically 

important trait. Planthoppers often occur in both winged and wingless forms (Denno 

and Perfect, 1994). Also, adults of the brown planthopper Nilaparvata lugens can be 

either short-winged (brachypterous) or long-winged (macropterous). Long-winged 

adults possess long-distance migration ability, and could initiate populations in other 

new areas, creating difficulties in controlling these pests (Huang et al., 2003). The 

endocrine regulation of wing polyphenism had been best studied in N. lugens. A 

number of studies indicated that the topical application of JH strongly redirected the 

development from long-winged to short-winged morph (Ayoade et al., 1999; Dai et al., 

2001; Hartfelder and Emlen, 2012). According to results obtained by Ayoade et al. 

(1996) on two strains of N. lugens adults with specific wing form under highly 

crowded conditions over 70 generations, long-winged adult morph developed from 

presumptive short-winged morph after treatment with PII. The sensitive periods to PII, 

affecting wing dimorphism, differed between the two strains. PII induced formation of 

long-winged individuals in a genetic stock that normally produces short-winged 

individuals, and the effect of this antagonist could be obviated by simultaneous 

application of JH (Bertuso et al., 2002). 

7.2. Orthoptera-phase Transition in Locusts:  

           Locusts (Acrididae) are among the most dangerous agricultural pests and have 

long served as a model for insect physiology, neuroscience, and behavior. Phase 

change in locusts lies at the heart of locust swarming and outbreaks because the 

migratory swarms are one of the world’s most devastating plagues (Lindsey, 2002; 

Ceccato et al., 2007; Ghoneim, 2015). Phase polyphenism is common in several 

species of locusts, but the best studied locusts are the migratory locust Locusta 

migratoria and the desert locust Schistocerca gregaria. As pointed out by many 

authors (Tawfik et al., 1999; Pener and Simpson, 2009; Gordon et al., 2012; Harano et 

al., 2012), S. gregaria has two phases, solitary and gregarious, which differ 

considerably in many aspects including morphology, behaviour and physiology.  

           Gradual phase transition from solitary to gregarious morphs, and vice versa, was 

one of the earliest investigated types of polyphenism (Uvarov, 1921). In order to 

control the plague of locusts in recent years, many research studies have been devoted 

for finding the key factor(s) regulating phase transformation in S. gregaria. These 

studies have focused on the changes from gregarious to solitary phase, since only 

gregarious locusts form large migratory swarms capable of invading and inflicting 

serious damage to crops (for reviews see Pener and Simpson, 2009; Sword et al., 

2010). The change in body color in locusts is a remarkable indicator during the phase 
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transition. Gregarious locusts display a contrasting pattern of black and orange, with 

little to no variation in pattern among individuals in the same crowd. Solitarious 

locusts are cryptic and range from green to brown depending on the external 

environmental factors, such as humidity and temperature (for detail, see Pener, 1991; 

Tanaka, 2006).  

         Although the present article was prepared for reviewing the anti-JH agents and 

their effects on different aspects of insects, it is important to shed some light on the 

endocrine regulation of phase transition in locusts, with special reference to S. 

gregaria. For some decades, the endocrine system, and in particular the CA (JH-

producing organs) was suggested as the main control center (Couillaud et al., 1987). 

Allatectomy (microsurgerical removal of CA) resulted in no gregarious behavior in 

locusts (Richard et al., 2001). Such observation rationally explained the higher activity 

of CA in solitary S. gregaria causing higher titer of JH in haemolymph and a green 

colouration of the cuticle, but surgical implantation of CA or administration of JH 

restored yellowing (Uvarov, 1966; Pener and Lazarovici, 1979; Langewald and 

Schmutterer, 1995), i.e., the solitarious phase is characterized by a higher JH level than 

the gregarious phase (Dale and Tobe, 1986). This effect was demonstrated, also, in L. 

migratoria (Couillaud et al., 1987).  

           The mechanism(s) by which endocrine organs control the phase color 

polyphenism in L. migratoria and S. gregaria had been studied in detail. The JH is a 

key regulator of the induction of green body color (Applebaum et al., 1997). 

Implantation of extra CA, or injection of synthetic JH (or JHAs), induced the 

gregarious L. migratoria nymphs to turn green in colour. However, green solitarious 

nymphs lost their green color after being allatectomized or treated with PIII but did not 

develop the body coloration of gregarious nymphs (Pener et al., 1992). Tawfik et 

al.(1999) identified a dark-color-inducing neuropeptide, [His
7
]-corazonin, from the 

corpora cardiaca of S. gregaria and L. migratoria. However, [His
7
]-corazonin did not 

induce the bright yellow background body color characteristic of last instar gregarious 

nymphs of S. gregaria (Tanaka, 2001). In addition to the interaction between JH and 

[His
7
]-corazonin, the control factors involved in the regulation of yellow coloration are 

still unknown. Several genes or metabolites have important roles in the regulation of 

locust phase change. Also, epigenetic mechanisms and non-coding RNAs have been 

implicated in the regulation of phase change in locusts, but their functional roles have 

not yet been determined (for review, see Wang and Kang, 2014). However, the 

involvement of endocrine factors in the regulation of locust phase transformation had 

been extensively reviewed (Tawfik and Sehnal, 2003; Pener and Simpson, 2009; 

Tawfik, 2012; Tawfik et al., 2014). 

          On the pheromone basis, the existence of ‘gregarization pheromone’ was 

postulated for phase transition in locusts (Nolte, 1963; Gillett and Phillips, 1977). In 

locusts, pheromone communication may be regulated by the neuroendocrine system 

(Tawfik and Sehnal, 2003; Pener and Simpson, 2009; Tawfik, 2012). Pheromone 

production in gregarious adult males of S. gregaria was shown to depend on the 

presence of CA (Loher, 1961; Norris and Pener, 1965; Amerasinghe, 1978). After 

topical application of JH III onto the gregarious 5
th

 instar nymphs of S. gregaria, 

pheromone production was inhibited and the external colouration changed to the 

solitary character (Ismail et al., 1997). PII was topically applied by Tawfik et al. 

(2014) onto the last (5
th

) instar nymphs and injected into the newly emerged adults of 

gregarious phase of S. gregaria. Both application methods of PII resulted in fading of 

the yellow color of crowded adult males instead of the bright yellow color 

(characteristic of normal gregarious adult males). In conclusion, their results showed 
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that PII plays a role in the regulation of pheromone production in the desert locust S. 

gregaria. 

         As far as our literature survey could ascertain, very few studies examined the 

effects of anti-JH agents on phase transition in locusts. Injection of cycloheximide into 

4
th

 instar nymphs of L. migratoria led to the inhibition of JH esterase activity resulting 

in 5
th

 instar nymphs with a solitary green colour, as a result to the high level of JH 

(Phillips and Loughton, 1976, 1979). A similar result was recorded in S. gregaria (El-

Gammal, 1983). Also, El-Gammal et al. (2004) assessed cycloheximide against 4
th

 

instar nymphs of S. gregaria and obtained results suggesting the anti-JH activity in the 

5
th

 nymphal instar, but  the lower doses (20, and 10 µg /insect) induced the solitary 

green colour, that considered as an indicator for the high level of JH in their 

haemolymph.  

         From the practical point of view, the elevation of the JH level in gregarious 

locusts should induce a solitarization tendency, and thus the locust invasion can be 

avoided, since the gregarious phase is responsible for swarming and subsequently the 

plague. The exact role(s) of precocenes and other anti-JH agants in the phase transition 

of locusts is still under debate!!  

7.3. Hymenoptera-caste Differentiation in Social Insects: 

           Prior to the discussion of roles of anti-JH compounds in caste differentiation in 

social insects, it is important to emphasize that the caste differentiation in social insects 

has a necessary role in establishment of an effective division of labor. Improper 

regulation can lead to an over-abundance or disappearance of specific castes, resulting 

in an inefficient or even impossible colony tasks (Tarver et al., 2009). In various 

species of social insects, it has been found that the queen can help to maintain the 

reproductive division of labor through the emanation of specific signals, which 

indicates her greater fertility, and to whom the worker individuals respond by 

remaining sterile (Le Conte and Hefetz, 2008). It is thought that worker task 

specialization enhances colony efficiency and therefore, improves colony fitness 

(Waibel et al., 2006).  

         With regard to the caste polyphenism in ants, experimental results of JH 

application indicated that the high level of JH stimulates the queen development 

(Passera and Suzzoni, 1979; Wheeler, 1990; Hartfelder and Emlen, 2012). To regulate 

the caste of their brood, queens can use the in situ JH-III, in their eggs (Wheeler, 

1986). Such maternal effect had been reported in the ant Pheidole pallidula, where 

topical application of JH-III onto queens was found to promote sexualization of the 

female brood, while PII prevented such sexualization (Passera, 1982). Also, PII 

application prevented the wing shedding in queenless alates of the red imported fire ant 

Solenopsis invicta but JH application rescued the dealation (Burns et al., 2002). 

          In respect of the caste determination in bees, social conditions have a strong 

impact on the endocrine system, and thus on the switch from worker to queen 

development in the individual larvae (Cnaani et al., 2000). The JH application 

experiments on bees revealed a prominent role of JH in the caste development 

(Hartfelder, 1990). As reported by some authors (Rachinsky, 1994; Rachinsky, 1996), 

a set of peptides, such as Manse- ATS-like peptide, from the brain and subesophageal 

ganglion as well as biogenic amines, may modulate JH biosynthesis to generate the 

caste-specific profile. On the other hand, it is difficult to assert that a Manse-ATS-like 

peptide involved in the regulation of CA activity during the critical stages of caste 

determination. Depending on the currently available literature, there are no studies 

revealing the role of anti-JH compounds in cast determination of bees, since PII did not 

play a role in queen induction in the honey bee Apis mellifera, and it also did not 
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interfere with growth of the developing larvae or adults (Dietz et al., 1979). Also, Fluri 

(1983) reported that PII has no anti-JH activity against adult honey bees.  

          To shed some light on the role of hormonal compounds, particularly the anti-JH 

compounds, in the cast determination of termites, termite caste differentiation can 

proceed along two routes; the imaginal (winged) or the apterous (wingless) route 

(Lainé and Wright, 2003; Miura, 2004). Caste polyphenism in termites differs from 

that of the holometabolous Hymenoptera in three important ways (for discussion, see 

Hartfelder and Emlen, 2012). JH has long been reported to play an important role in 

the caste differentiation. Nijhout and Wheeler (1982) proposed a model for caste 

differentiation of termites, in which continuous low JH titers would induce alate adult 

differentiation, while high JH titers followed by low titers would induce neotenic 

reproductive differentiation (Cornette et al., 2008). It has been hypothesized that 

termite soldiers may play a role in regulating worker differentiation to other caste 

phenotypes (Henderson, 1998).  

          Reducing effect of precocene on the soldier differentiation in termites was early 

studied (Krecek et al., 1981). Korb et al. (2003) investigated the influence of PI on the 

soldier development in the dry wood termite Cryptotermes secundus. Depending on 

their study, soldierless colonies produced fewer soldiers after treatment with PI. Hence, 

PI simultaneously promoted the development of adult traits, probably by reducing the 

JH level.  Mao et al. (2010) assessed the effects of PI and PII on the soldier caste 

formation in the Formosan subterranean termite Coptotermes formosanus.  According 

to their study, PI (but not PII) significantly delayed the formation of the first soldier 

and reduced the proportion of soldiers in the colony for 40 days. Their results may 

reflect the importance of PI in caste control and a reduced importance in biogenic 

amines to the synthesis or suppression of JH in termites. On the other hand, Gotoh et 

al. (2008) evaluated the effects of precocenes on the CA and the JH titer in the damp-

wood termite Hodotermopsis sjostedti. They concluded that precocenes were not 

effective as anti-JH agents in the focal termite species. 

8. Roles of Anti-JH Compounds in the Behavioral Patterns of Insects: 

8.1. Behavioral Patterns of Non-Social Insects: 

              In the last few decades, a considerable research interest in the 

neuroendocrine or hormonal control of insect behavior had been achieved (Truman and 

Riddiford, 1974; Kimura et al., 2005; Cachero et al., 2010). Many authors (Walker, 

1978; Rankin, 1980; Kight, 1998; Pathak and Bhandari, 2002; Ringo et al., 2005; Chen 

et al., 2005a) reported that precocenes affect several aspects of behavior in the non-

social insect species, such as aggressive behavior, mating behavior, flight behavior, 

maternal defensive behavior, sexual behavior, etc. In most cases, not all the behavioral 

effects were averted by JH replacement therapy (Li et al., 1993). Roles of the anti-JH 

compounds for regulating selected behavioural patterns can be concisely discussed in 

the following items. 

Sexual Behavior:  

          Effective male courtship behavior is essential for successful reproduction in 

most animals and the study of this behavior allows vital insight into the regulation of 

complex behaviors (for reviews see Greenspan, 1995; Villella and Hall, 2008). 

Although  the CA  influence  sexual  receptivity  in  Diptera  (Trabalon  and Campan,  

1984),  their  regulation  of  pheromone  production  had  only  been  implicated  

through  PII  treatment  of  male  C. capitata (Chang  et  al.,  1984). In a wild-type 

strain of D. melanogaster, PI reduced the primary sexual receptivity of virgin females, 

while PII did not affect this behaviour. Exposure to 70-140 μmol of ethoxyprecocene 

(synthetic PII analogue) significantly reduced the sexual receptivity (Ringo et al., 
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2005). A relation  between JH  and  sex  attractancy  has  been  evident  for  some  

time.  For example,  PII  was  reported  to  suppress  sex  attractancy  in  cockroaches 

(Bowers et al., 1976)  and in  diamondback  moth (Hsu and Chang, 1982). The sex 

attractancy of  virgin  male  C. capitata was reduced  by  topical  application of PII and 

this  effect  was  recovered  by  later  application  of a  JHA (Hsu and Chang, 1982). In 

C. capitata, also, anti-JH compounds, such as precocene, had been shown to interfere 

with JH production and subsequently affected the sex attractancy of males (Chang et 

al., 1994).  

          Effects of precocenes on copulation and mating had been studied in some 

insects. PII was topically applied to the last (5
th

) instar nymphs or injected into the 

newly emerged adults of gregarious phase of S. gregaria. The adult males had been 

delayed, since started sexual behavior and mating between 25-30 days instead of 15-20 

days of control congeners (Tawfik et al., 2014). Decreased JH in the apterous mutant 

of D. melanogaster (Ringo et al., 1991), or treatment of females with precocene led to 

reduction in the mating of females (Bilen et al., 2013). Argue et al. (2013) utilized 

methoprene and precocene to manipulate the JH levels in sexually immature males and 

females of D. melanogaster Treatment of females with precocene increased latency to 

copulation 5 and 8 days post-eclosion. In males, precocene decreased latency to 

copulation at the cusp of sexual maturity (3 days post-eclosion), yet the effect did not 

persist in older animals. In contrast, treatment of O. fasciatus adults with PII failed to 

affect the mating behavioral rhythms (Woodard and Rankin, 1980). Apart from 

precocenes, injection of Fluvastatin (anti-JH agent) into males of A. ipsilon caused a 

temporary inhibition of male responsiveness (Duportets et al., 1996). Injection of 

Fluvastatin into males of A. ipsilon, immediately after mating, disrupted the normal 

spermatophore transfer during the next mating of the injected males (Duportets et al., 

1998). 

Feeding behavior:  

          To our knowledge, information concerning the effects of anti-JH agents on 

feeding behaviour of insects is scarce in the available literature. JH deprivation (by 

allatectomy) of adult Culex mosquitoes,  shortly  after  emergence, was  reported  to  

block  the  initiation  of  biting behaviour, which was  restored  by the  re-implantation 

of  CA,  or  injection  of  exogenous JH.  Thus, biting initiation may be a target for 

inhibition by anti-JH agents (Meola and Petralia, 1980). In contrast, PII failed to affect 

the feeding behavioral rhythms of O. fasciatus adults (Woodard and Rankin, 1980). 

Agonistic behavior:  

         Insect agonistic behaviour is any behaviour related to fighting but the term has 

been expanded to include threats, kicking, biting, chasing, displays, retreats, placation, 

and conciliation (for detail, see Sirugue et al., 1992; Moore et al., 1997). Depending on 

the currently available literature, the role of JH in the agonistic behavior of the insect 

adults had been intensively studied but the roles of anti-JH compounds had been rarely 

examined. However, the role of JH has always been suggested in some insects, such as 

in the primitive social wasps (Roseler, 1991), bumblebees (Bloch et al., 2000) and the 

highly social honeybees (Huang and Robinson, 1992). JH titers in the guard honeybees 

were found higher than those in all other middle-aged bees, and guard individuals 

exhibited low JH thresholds for the expression of aggression behavior (Breed et al., 

1992; Huang et al.; 1994). Also, Pearce et al. (2001) reported that the JH titers were 

correlated with the aggressive behavior in different seasons. Chen et al. (2005a) 

studied the male conspecific agonistic behavior in the lobster cockroach Nauphoeta 

cinereais. Topical application of JH-III did not affect the determination of dominant 
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status. In contrast, a tendency for inhibition of a dominant status was induced by PII 

treatment. PII treatment, also, led to an acceleration of the onset of agonistic behavior.  

Flight activity and migratory behavior:  

           Caldwell and Rankin (1972) reported that JH significantly enhanced the 

proportion of O. fasciatus making long-duration tethered flights (are indicator of 

tendency to migrate) in a population. Later on, Rankin (1980) examined the effects of 

precocens on this aspect of behavior in O. fasciatus. Treatment of newly emerged 

adults with PI and PII resulted in an inhibition of long-term flight activity (presumed 

migratory) in both sexes. In the convergent lady beetle Hippodamia convergens, PII 

prohibited the flight activity for about 10 days but the application of the JHA 

methoprene onto precocene-treated beetles promoted the migratory behavior (Rankin 

and Rankin, 1980). In the bark beetle Dendroctonus rufipennis, precocene II delayed 

the flight muscle degeneration and subsequently promoted the flight activity (Sahota 

and Farris, 1980). Precocene treatment inhibited take-off behavior and suppressed the 

migratory flight behavior in the grasshopper E. integriceps (Polivanova and Triseleva, 

1985). Apart from precocenes, Coats et al. (1987) investigated the effects of a JH 

mimic, methoprene and the anti-JH agent FMev on the flight behavior of Western corn 

rootworm Diabrotica virgifera virgifera (Coleoptera). The flight activity of FMev-

treated mated, not virgin, females, first decreases and then increases, perhaps by 

producing intermediate JH levels. 

Aggregation behavior:  

          Depending on the current literature available to us, no research attention had 

been paid to examine the effects of anti-JH compounds on the aggregating behavior in 

insects. Whatever, aggregating behavior in the pine bark beetles Ips spp. depends on 

the aggregation pheromone. Biosynthesis of this pheromone is regulated by JH 

(Tillman et al., 2004). The experiments on desert locust S. gregaria showed that the 

aggregation pheromone was JH-dependent and individuals without CA (allatectomy) 

failed to perform their aggregating behavior (Ignell et al., 2001).  

Learning behaviour and memory:  

           Cycloheximide was originally isolated from the bacterium Streptomyces griseus 

(Siegel and Sisler, 1963; Baliga et al., 1969). In insects, the interference of 

cycloheximide with the hormonal regulation of developmental processes and 

metamorphosis was studied. For examples, Ferkovich et al. (1977) reported that 

cycloheximide inhibited JH-binding protein in the tissue culture of the Indian meal 

moth, Plodia interpunctella fat body. So, general esterases could degenerate JH 

causing a deficiency in its level. Injection of cycloheximide into adults of the 

American grasshopper, Schistocerca americana resulted in a significant reduction of 

the grasshopper learning capacity against electric shocks, indicating that avoidance 

learning was associated with a significant increase in the levels of RNA and protein 

synthesis (Punzo, 1980). After injection of cycloheximide into the head capsule of 

adults of the mealworm beetle, Tenebrio molitor larvae and the bess beetle Popilius 

disjunctus, the neural protein synthesis was inhibited leading to a significant 

deterioration of the normal negative phototactic response of these insects (Punzo and 

Jellies, 1980). When the praying mantis Stagmatoptera biocellata was trained to attack 

a mobile star, memory was disrupted by an injection of cycloheximide shortly after 

training, but after two hours it becomes irressponsive to this compound (Jaffe, 1980). 

Wittstock et al. (1993) reported that the inhibition of brain protein synthesis by 

cycloheximide did not affect formation of long-term memory in honeybees after 

olfactory conditioning.  
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8.2. Behavioral Patterns of Subsocial Iinsects: 

             Parental care of offspring is a subsocial behaviour in Arthropoda, including 

insects. Among insects, order Heteroptera has been the focus of numerous studies, 

because some of them show maternal care (Smith, 1997). Parental care provides an 

effective protection of the offspring against the predators, parasites and parasitoids 

(Tallamy, 2001; Hanelova, 2005). Application of 50 µg JH-III onto adult females of 

the ring-legged earwig Euborellia annulipes (Dermaptera) on the day of oviposition 

resulted in shortening of the maternal care duration, compared with that of PII-treated 

females (Rankin et al., 1997). Kight (1998) used PII to investigate the relationship of 

CA activity to subsocial behaviour in the burrower bug Sehirus cinctus (Heteroptera). 

Egg-brooding females treated with PII (at least 70 μg) exhibited reliably depressed 

maternal defensive behaviour, but attraction to eggs was only depressed at higher 

dosages. This study provided the first clear evidence that insect parental behaviour can 

be modified by treatment with anti-JH agents. Tallamy et al. (2002) tested the 

hypothesis that high JH titers promote egg dumping behaviour, while low titers initiate 

maternal care in the lace bug Gargaphia solani (Hemiptera). PII changed the behaviour 

to egg guarders while egg guarders exposed to methoprene (JHA) became egg 

dumpers. These results suggest that hormones can trigger the expression of both egg 

dumping and egg guarding in G. solani. 

8.3. Behavioral Patterns of Social Insects: 

             Some studies suggested the involvement of JH in the aggressive behavior of 

social insects, such as in the primitive social wasp Polistes gallicus (Roseler 1991), 

buff-tailed bumblebee Bombus terrestris (Bloch et al. 2000), and the highly social 

insect A. mellifera (Hymenoptera)(Pearce et al. 2001). In contrast to the extensive 

study of precocene effects on different aspects in non-social insects, only very few 

studies examined its effect on social insects (Bloch et al., 2009; Amsalem and Hefetz, 

2010).  However, an interesting point in this context is to shed some light on anti-JH 

compounds in relation to some behavioral patterns in honeybees and social wasps. 

         According to Hartfelder (2000), JH does not function as a gonadotropin in 

honeybees, but rather regulates behavioral maturation and division of labor. In this 

honey bee, PII treatment caused atrophy of CA (JH-producing organs) in queen larvae 

(Goewie et al., 1978). In the bumblebee B. terrestris, the main effect of PI was found 

to reduce aggression in the most dominant workers and increase pheromone production 

in the least productive workers, while no specific changes were recorded for the other 

workers in the dominance hierarchy (Amsalem et al., 2014b). 

         As far as our literature survey could ascertain, no information was available for 

the effects of anti-JH compounds on the behaviour of social wasps other than the study 

of Oliveira et al. (2017). They found that the application of methoprene (JHA) caused 

workers of the common wasp Vespula vulgaris to acquire queen-like cuticular 

hydrocarbons, resulting in the excessive production of known queen pheromones as 

well as some compounds typically linked to worker fertility. In contrast, administration 

of PI had a tendency to exhibit the opposite effect.  

9. Role of Anti-JH Agents in the Regulation of Diapause: 

          It may be important to give some information about diapause in insects. The 

ability to pass through adverse periods in diapause helps insects to exploit seasonally 

changing resources, to diversify in tropical habitats, and allows them to colonize 

temperate and Polar Regions. Understanding of diapause as a process, rather than as a 

status, is now widely accepted by different researchers (Denlinger, 2000; Hodek, 2002; 

Kostal, 2006).  
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          From the physiological point of view, rapid life history evolution could proceed 

through changes in the hormonal machinery controlling life-history switches (Flatt and 

Heyland, 2011; Oostra et al., 2014). This is because of hormones coordinate cascades 

of downstream molecular and physiological changes (Zera, 2007). The diapause 

hormone (DH) is one of hormones regulating diapause in moths. Among members of 

the Helicoverpa/Heliothis complex (Lepidoptera) of agricultural insect pests, DH 

prompted the termination of pupal diapause. Zhang et al. (2011) developed a technique 

to convert the DH-agonist into a DH-antagonist that blocks the termination of 

diapause. Diapause induction in larvae of the parasitoid wasp Nasonia vitripennis 

(Hymenoptera) could not be brought about by topical application of precocene onto the 

maternal generation, or by treating eggs or larvae with this compound (De Loof et al., 

1979). The codling moth Cydia pomonella (Lepidoptera) exhibits a facultative 

diapause during the larval stage. Diapause-induced larvae pupated within 10 days of 

cocoon spinning when the state of induction was changed by injection with 100 µg of 

PII at the beginning of the last instar (Sieber and Benz, 1980).  
           In addition, precocene is apparently the only known chemical compound can 

break both prepupal diapause and pupal diapause in some insects. The pupal diapause 

in the bollworm Helicoverpa armigera (Lepidoptera) was terminated by PII and 20-

hydroxyecdysterone, but not by methoprene (JHA), cyclic adenosine monophosphate 

or 5-hydroxytryptamine (Wang and Gong, 2001). PII was, also, found to induce a 

precocious termination of diapause in the prepupal stage of two species of aphid 

parasitoids Aphidius mutricariae and Praon volucre (Hymenoptera) (Polgar et a1. 

1991). Apart from precocenes, diapause initiation in species which overwinter as 

adults, such as L. decemlineata, is strongly related to burrowing into the soil. In beetles 

preparing for diapause, JH-III levels should be low (De Kort, 1990). Thus, after the 

application of anti-JH agent H17 onto these individuals, declined JH-III level should 

have negligible additive effect on burrowing (Khan, 1988). On the contrary, increasing 

JH-III level, by application of a JHA, had strong effect on the same traits 

(Koopmanshap et al., 1989). Thereafter, Lehmann et al. (2015) reported that the 

application of H17 did not induce overwintering related burrowing. 
10. Histopathological Effects of Anti-JH Agents on Some Tissues and Organs: 

         In general, precocenes directly and indirectly influence on tissues, organs and 

organ systems in some insects, such as L. migratoria (Orthoptera), M. persicae 

(Homoptera), Trialeurodes vaporarium (Hemiptera) and A. mellifera 

(Hymenoptera)(Triseleva, 2003). In the present article, it is important to review the 

histopathological effects of precocenes and other anti-JH agents on flight muscles, 

digestive organs, endocrine organs and reproductive organs in some insects.  

Effects on Flight Muscles:  

           Parts of a flight steering muscle in locusts degenerated shortly after the adult 

emergence while the JH titer is low (Meuser and Pflüger, 1998). Experimentally 

elevated JH titers prevent muscle degeneration (Rose, 2004). In contrast, application of 

PII onto adult females of the spruce bark beetle Dendroctonus rufipennis (Coleoptera) 

caused a temporary inhibition of flight muscle degeneration (Sahota and Farris, 1980). 

Also, administration of anti-JH agents enhanced the development of flight muscles in 

the adultiform desert locust S. gregaria (Orthoptera) (Wang et al., 1993). On the other 

hand, effects of PI on flight muscles of the cricket V. ornatus (Orthoptera) were 

examined by Zhao and Zhu (2013). In their study, injection of PI did not influence the 

development of flight muscles of the short-winged males and long-winged males. 
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Effects on Digestive Organs:  

           After feeding of last instar larvae of Helicoverpa zea (Lepidoptera) on PII-

treated diet, goblet cells in midgut appeared smaller in diameter and had cavities that 

were elongated when compared to the goblet cells of larvae fed on normal diet (Binder 

and Bowers, 1994). Farazmand (2009) observed several abnormalities of epithelial 

cells in different regions of the alimentary canal of the beetle L. decemlineata after 

topical application of different doses of PI and PII onto larvae. In addition, 

abnormalities in cuticular structure of foregut and hindgut were observed after 

precocenes treatment. 

Effects on Endocrine Organs:  

          Unnithan et al. (1977) reported that treatment of O. fasciatus with precocene led 

to the degeneration of CA. Also precocene showed degenerative effects in CA of the 

locust L. migratoria nymphs (Schooneveld, 1979). In CA of the locust S. gregaria, 

Unnithan et al. (1980) observed segregation of various cytoplasmic organelles, 

vacuoles, residual bodies, pleomorphic mitochondria, irregularly Golgi apparatus, 

clumping of SER in the treated PII locusts. After exposure of the D. melanogaster 

(Diptera) adult females to PI and PII, CA volume did not increase in precocene-treated 

females even after 48 hr but increased between 0 and 24 hr after eclosion in control 

females. When adult females were removed from the precocene medium, CA volume 

increased within 48 hr to nearly those of control flies (Wilson et al., 1983). Topically 

applied PII onto the young-adults of face fly Musca autumnalis (Diptera) reduced the 

size of the CA (Burks et al., 1992). Santha and Nair (1991) recorded some changes in 

cerebral neurosecretory cells of S. mauritia (Lepidoptera) after treatment with PII. 

After administration of anti-JH agent, Jinlu to 0-72 hr of 4
th

 (penultimate) instar larvae 

of B. mori (Lepidoptera), Miao et al. (2001) observed some ultrastructural changes in 

CA and prothoracic glad in early 5
th

 (last) instar larvae. Effects of PII on the fine 

structure of CA in the adult females of locust A. aegyptium (Orthoptera) had been 

studied by Ergen (2001). He reported that initially CA did not show any atrophy or 

destruction but 10-20 days after PII treatment changes in nuclei, mitochondria, ER 

membranes and Golgi complex were produced showing latent effects. 

Effects on Reproductive Organs:  

            In holometabolous insects, precocene application resulted in various 

abnormalities in ovaries of the lepidopteran Spodoptera mauritia (Mathai et al., 1989) 

and the terminal oocyte development was prohibited in the dipterous flies, Phormia 

regina (Yin et al., 1989) and Drosophila melanogaster (Wilson et al., 1983). Deb and 

Chakravorty (1982) applied PII, either independently or subsequent to hydroprene 

(JHA) onto 0-day old last-instar larvae and 0-day and 3-day old pupae of the rice moth 

Corcyra cephalonica. Based on the histomorphology, they recorded considerable 

abnormalities of female reproductive organs and the most sensitive organs were the 

ovaries, accessory glands and bursa copulatrix. Exposure of 5
th

 instar nymphs, of 

different ages, and newly emerged brachypterous females of N. lugens (Hemiptera) to 

different doses of PII inhibited the ovarian growth and severe histopathological 

alterations were observed in the ovariole and oocytes of insects treated with high doses 

(Pradeep and Nair, 2000a).  Depending on a study of Kumar and Khan (2004), the 

flesh fly Sarcophaga ruficornis appeared susceptible to precocene since the ovaries of 

precocene-treated flies failed to normally develop but exhibited some morphological 

abnormalities, like degeneration of follicles and unusual fusion of two ovaries. Also, 

the growth of follicles was reduced. Ahmed et al. (2005) carried out a 

histopathological study on 5
th

 instar female nymphs of grasshopper E. plorans 

(Orthoptera) after topical treatment with two doses of PI and PII. At the 10
th

 day post-
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treatment, several symptoms of deteriorated ovries had been observed, such as 

degenerated germarium, oogonia and follicular cells.  

11. Antifeedant Effects of Anti-JH Agents on Insects: 

             As previously discussed in the section of 'Categorization of anti-JH 

compounds', many green plants contain one or more of allelochemicals which are 

deterrent to some insects. Also, precocenes are ageratochromenes and originally plant-

derived products. After few years of discovery of precocenes, researchers synthesized 

PI and PII and prepared some analogues which have been collectively called 

'precocenoids'. These compounds either inhibit JH biosynthesis or inhibit the enzyme 

action (Bowers et al., 1976; Azambuja et al., 1982; Staal, 1986; Singh and Bhathal, 

1994; Minakuchi and Riddiford, 2006; Banerjee et al., 2008; Hiramatsu et al., 2013). 

Although a great research attention has been paid to assess the antifeedant potencies of 

botanicals and JH mimics against insects, the current literature contains few studies 

examining the antifeedant activity of anti-JH compounds. Early, Slama (1978) 

suggested that the inducing action of precocene on insect sterility and/or precocious 

metamorphosis might be through their antifeedant effects. However, we concisely 

review the available studies in this section.  

           With regard to Coleoptera, PII exhibited stronger antifeedant effect than PI on 

the beetle T. confusum (larvae and adults), the weevil S. granarius (adults) and the 

Khapra beetle Trogoderma granarium (larvae), while precocene derivatives, especially 

iodolactones, were the strongest antifeedants against the beetle L. decemlineata (adults 

and larvae) (Szczepanik et al., 2005). 

         Within Hemiptera/Homoptera, PII showed a strong antifeedant effect on 4
th

 

instar nymphs of the R. prolixus, while other synthetic precocene analogs exhibited no 

drastic inhibition of feeding. The antifeedant effect of PII on R. prolixus may be due to 

a direct cytotoxic action on the gut tissues which contain activating monooxygenases 

(Azambuja et al., 1982). Pradeep and Nair (2000b) recorded an inducing long-term 

irreversible antifeedant effect of PII on the brachypterous females of N. lugens. As the 

rate of honey dew excretion is positively correlated with the intake of plant sap, PII 

prohibited the treated insects to intake of plant sap. According to a study of Szczepanik 

et al. (2005), a dose of 50 mg l
-1

 PII led to lack of appetite of D. koenigii nymphs. 

Moreover, the nymphs did not feed at higher doses of PII. PII showed stronger 

antifeedant effect than PI against M. persicae (Banerjee et al., 2008). 

Among Isoptera, Adfa et al. (2010, 2011) synthesized some derivatives of Scopoletin 

(7-hydroxy-6-methoxycoumarin) which structurally similar to precocenes and found 

Scopoletin as a strong antifeedant against C. formosanus. Precocenes and synthetic 

chromene derivatives were able to exhibit antifeedant activities against C. formosanus. 

PII was found stronger antifeedant than PI and other synthetic chromene derivatives 

(Hiramatsu et al., 2013).  

         In respect of Orthoptera, females of the crickets Acheta domesticus and 

Nemobius fasciatus were treated with PI or PII beginning 12 hr after adult emergence. 

Evidence for decreased feeding of precocene-treated females was observed in both 

species (Bradley and Haynes, 1991). 

        In connection with Hymenoptera, worker larvae of A. mellifera, of different ages, 

were removed from the colonies, reared on royal jelly-yeast extract, and after 24 h they 

were topically treated with different doses of PII. Based on the obtained results, it 

could be interpreted that precocene acted as an antifeedant at lower doses (Rembold et 

al., 1979). Different single doses of PII were topically applied either on 4
th

 or 5
th

 instar 

larvae of A. mellifera. An antifeedant effect was indicated by lower weight gain and 
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was only found with doses of 30 myg precocene or more (Czoppelt and Rembold, 

1985).  

12. Regulatory Roles of Anti-JH Agents in Metabolism and Enzymatic Activities: 

            Depending on the available literature, precocenes and other anti-JH agents were 

reported to affect the main metabolites and enzymatic activities in the whole body or 

certain organs of various insects, as reviewd herein.  

12.1. Disturbed Main Metabolites: 

Proteins:  

           Among Orthoptera, adults of the migratory locust L. migratoria were treated 

with PII and the vitellogenin synthesis was prevented, as well as the production of 

other proteins was inhibited in both sexes (Gellissen and Wyatt, 1981). As recorded by 

Lange et al. (1983), PII-treated Locusta males showed a reduced haemolymph protein 

and in the fat body and accessory reproductive gland. Under crowded conditions, 600 

µg PII was topically applied onto the adult females of L. migratoria. The fat body of 

PII-treated females did not synthesise the vitellogenin, owing to the impairement of JH 

biosynthesis in CA which is necessary of vitellogenin synthesis in fat body (Weers et 

al., 1994; Wyatt, 1988). Cycloheximide almost completely inhibited the protein 

synthesis in 4
th

 and 5
th

 instar nymphs of L. migratoria (Phillips and Loughton, 1979).  

Within Diptera, exposure of adult females of D. melanogaster to PI and PII resulted in 

a significant decrease of the whole body protein content (Wilson et al., 1983). At 48 

hours post-treatment of the newly-emerged females of M. domestica with high doses of 

PII (above 100 μg/fly), titers of vitellogenin in hemolymph and total protein in ovaries 

were obviously declined (Li et al, 1993). Also, precocene treatment was found to 

inhibit the protein synthesis in fat body of banana fruit fly Zaprionus paravittiger (Rup 

and Bangla, 1995; Amiri et al., 2010). In Hemiptera, treatment of the newly emerged 

adult females of O. fasciatus with PII prevented the appearance of the female-specific 

polypeptide bands but induced the accumulation of other proteins in the haemolymph 

(Martínez and Garcerá, 1987). After treatment of E. integriceps nymphs with PI, 

haemolymph protein level in adult females was lower than the control adults, at first 

day after treatment. With passage of time, haemolymph protein concentrations 

remained constant and decreased near oviposition (Amiri et al., 2010). Among 

Lepidoptera, treatment of 3
rd

 and 4
th

 instar larvae of S. litura with precocenes (isolated 

from A. conyzoides and A. vulgaris) resulted in a significant reduction of total head 

protein content, after 24, 48 and 72 hrs of both topical application and injection 

(Renuga and Sahayaraj, 2009). Cycloheximide inhibited the protein synthesis 

necessary for both the development of EH sensitivity and the appearance of proteins 

EGPs in M. sexta (Morton and Truman, 2008). In respect of Coleoptera, injection of 

2.5 μg/insect of cycloheximide into the newly emerged adult females of the beetle T. 

molitor significantly affected both the level of fat body proteins and the incorporation 

of tritiated leucine into proteins (Soltani-Mazouni and Soltani, 1995). 

Carbohydrates:  

            In general, the total carbohydrate content, or some of the carbohydrate 

components, in different insect species had been affected by precocenes. For examples, 

exposure of the newly emerged females of the vinegar fly D. melanogaster to PI or PII 

promoted an increase of carbohydrates (Wilson et al., 1983). Garcia et al. (1988) 

showed that PII treatment led to a declination of glycogen level in the stable fly S. 

calcitrans. Application of PII onto in the banana fruitfly Z. paravittiger was found to 

decrease the contents of glycogen and trehalose in fat body (Rup and Bangla, 1995).  
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Lipids:  

          PII treatment was found to block the accumulation of fatty acids in body of the 

pea aphid Acyrthosiphon pisum (Chen et al., 2005b). However, it is still unclear 

whether these effects of precocene are direct, or indirect as consequence of the 

decreased in JH titers (Amsalem et al., 2014b). The eclosion hormone triggers ecdysis 

behavior at the end of each moult in M. sexta. The stimulation of the steroidogenesis in 

insects was found to be rapidly inhibited by cycloheximide (Keightley et al., 1990).  

12.2. Influenced Respiratory Metabolism: 

          Depending on the currently available literature, very few studies examined the 

effects of precocenes on the respiratory metabolism in insects. PII affected the 

respiratory metabolism in fat body as well as flight and coxal muscles of the adult 

females of the desert locust S. gregaria (Salem et al., 1982b). Precocene treatment was 

found to increase the oxygen consumption rate in the ovaries of the large milkweed 

bug O. fasciatus that in turn remain inactivated (Garcera et al., 1989). Garcera et al. 

(1991) investigated the effects of PII on the metabolic rate in 5
th

 instar nymphs and 

adult males of the German cockroach B. germanica, the soldier bug Spilostethus 

pandurus and the large milkweed bug O. fasciatus. PII decreased the oxygen 

consumption rate in nymphs and adults B. germanica and S. pandurus 5
th

 instar, 

whereas O. fasciatus oxygen consumption rate was not affected. In addition, Hebbalkar 

and Sharma (1991) studied the effect of P II on the oxygen consumption of red cotton 

bug Dysdercus koenigii. 

12.3. Disturbed Enzymatic Activities: 

          The available literature contains scarce studies examining the effects of 

precocenes on enzymatic activities in insects. Depending on Khafagi and Hegazi 

(2001, 2004), both PI and PII caused a stronger encapsulation reaction in larvae of S. 

littoralis being parasitized by the endoparasitoid Microplitis rufiventris. These 

precocenes, also, enhanced the melanization of capsules, suggesting a possible 

interaction with phenoloxidase, a key enzyme in the synthesis of melanin. Treatment of 

the last instar larvae of cabbage looper Trichplusia ni with FMev, as well as L-643 

(compactin analogue), 049-01K01 and DPH (3,3-dichloro-2-propenyl hexanoate) 

resulted in a reduction of JH esterase activity (Sparks et al., 1987). 

13. Effects of Anti-JH Compounds on Chemoreceptors and Pheromone 

Production: 

13.1. Influenced Chemoreceptors: 

           The chemo-communication and sensory mechanisms have been gained 

increasing attention of those researchers interested in the feeding behaviour and host-

plant selection of the herbivorous insects. Many IGRs affect the development of 

chemoreceptor organs causing chemical communication disorders in relation to insects' 

sexual behavior and migratory activities (Dorn, 1982; Polivanova, 1982). Studies on 

the effects of precocenes on sensory systems have been performed mainly on the 

hemimetabola insects (with incomplete metamorphosis). In addition, these anti-JH 

compounds can impair the ability of host-plant searching by larvae of the 

holometabolous insects (Farazmand and Chaika, 2011). 

           In respect of the hemimetabolous insects, serious disturbances in the structure of 

sensory organs have been observed after feeding on plants containg precocenes or after 

treatment with these anti-JH compounds. For examples, effects of precocenes on the 

chemoreceptor organs have been studied in O. fasciatus (Dorn, 1982) and E. 

integriceps (Hemiptera)(Polivanova, 1982; Polivanova and Triseleva, 1992).  Also, 

precocene treatment of T. vaporariorum (Homoptera) led to some disruptions in the 
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shape of sensilla (Polivanova, 1991). Precocene treatment of M. persicae (Homoptera) 

led to deformity of antenna and reduction of the number of sensilla (Polivanova, 1997).  

          With regard to holometabolous insects, the available literature contains little 

information about the effect of precocenes on the development of sensory organs in. In 

a study on the chemoreceptor apparatus of A. podana (Lepidoptera), Triseleva (2007) 

treated the eggs with PII and observed changes in the basiconic sensilla on the 

maxillary palp and galea (mouth parts) and on the size of basiconic sensilla on the 2
nd

 

and 3
rd

 antennal segments. Farazmand and Chaika (2011) studied the effects of PI and 

PII on the chemoreceptors on antennae and mouthparts in the 2
nd

 instar larvae of L. 

decemlineata (Coleoptera). Precocene application caused changes in the form, number 

of sensilla, as well as in the cuticular structure of the antennae and maxilla- labial 

complex, after the first molt.  Also, reduction of both receptor cells and their dendrites 

were observed. 

13.2. Disrupted Pheromone Production: 

           Hartman and Suda (1973) proposed that the pheromone production is not 

controlled by JH in the lobster cockroach Nauphoeta cinerea and in other cockroach 

species where the adult male releases a volatile pheromone to attract the female for 

mating. On the contrary, pheromone production in various insects was reported to 

depend on the presence of CA (or JH), such as the gregarious adult males of S. 

gregaria (Amerasinghe, 1978). Topical treatment of the bark beetle Ips paraconfusus 

(Coleoptera)(Kiehlmann et al. 1982) and B. germanica (Dictyoptera)(Schal et al., 

1990) with PII resulted in the inhibition of pheromone production. Precocene appears 

to influence pheromone production indirectly by inhibiting JH production, since its 

effect can be rescued by treatment with Hydroprene (JHA)(Schal  et  al.,  1990a, 

1991).  Depending on the results obtained by Tawfik et al. (2014), PII plays a role in 

the regulation of pheromone production in S. gregaria. 

14. Miscellaneous of the Anti-JH Compounds' Effects on Insects: 

Effects of Anti-JH Compounds on Insect Haemogram and Immune Responses:  

           Hegazi et al. (2000) investigated the influence of PII on the hemocyte 

population of S. littoralis larvae (Lepidoptera) parasitized by the solitary 

endoparasitoid Microplitis rufiventris (Hymenoptera) and recorded significant decrease 

in total hemocyte counts (THCs) as well as changes in differential hemocyte counts 

(DHCs) in S. littoralis larvae by the action of PII. Khafagi and Hegazi (2001) found 

that both PI and PII cause a stronger encapsulation reaction in larvae of S. littoralis to 

the solitary braconid parasitoid wasp Microplitis rufiventris. Melanization was larger in 

either PI- or PII-treated hosts just before the emergence of successful parasitoid larvae. 

On the basis of considerable increase in encapsulation responses of precocene-treated 

S. littoralis larvae to M. rufiventris, it was suggested that the cellular defense reaction 

may be under inhibitory hormonal action. 

Effects of Anti-JH Compounds on Host-Parasitoid Interactions:  

           In the insect host-parasitoid interactions, the released cells from the parasite egg 

at hatch into the host's haemolymph are called 'teratocyte' (Vinson, 1970). These cells 

play important roles in these interactions. Early, Joiner et al. (1973) reported the JH 

activity against the teratocytes of the braconid parasitic wasp Chelonus nigriceps. 

Sixteen years later, Zhang (1989) emphasized the effects of these cells on the 

hormone-regulating system. Then, teratocytes were suggested to release JH from 

Chelonus species (Grossniklaus-Biirgin and Lanzrein, 1990). In a study of Hegazi and 

Khafagi (1998), different developmental ages of teratocytes of the solitary endoparasite 

braconid wasp Microplitis rufiventris were topically treated with a dose (70µg/5µl) of 

PII via larvae of its host S. littoralis. A dramatic reduction was recorded in both 
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teratocyte number and size. They concluded that Pll-treatment might has an effect on 

the absorptive function of the teratocytes. 

Effects Anti-JH Compounds on the Fat Body:  

            Precocene treatment was found to cause hypertrophy of the fat body of female 

Oxya japonica (Orthoptera) (Lee and Tan, 1981).  

Inhibition of Cantharidin Biosynthesis:  

           In blister beetles (Meloidae: Coleoptera) are characterized by producing toxic, 

vesicant, and purported aphrodisiac product known as cantharidin (Ghoneim, 2014). 

The anti-JH compound FMev was found to exhibit an inhibitory effect on the 

cantharidin biosynthesis. It is specifically attributable to the fluorine substituent and 

not simply to large doses of a substance acting as the metabolic substrate (Carrel et al., 

1986). 

15. Action Mechanisms of Anti-JH Agents: 

           In the current article, we classified several anti-JH compounds in the section 

'categorization of anti-JH agents'. The mechanisms of these anti-JH compounds are yet 

to be debatable issues among the interested researchers because little is known about 

either the target sites or the exact modes of the action.  At an earlier time, Staal et al. 

(1981) presumed some mechanisms of anti-JH agents, such as: inhibition of the early 

steps in JH biosynthesis (e.g. FMev) or the final steps in JH biosynthetic (e.g. 

piperonyl butoxide). Competition of anti-JH agents with the endogenous JH for 

peripheral JH receptor (e.g. EMD). However, the action mechanisms of different anti-

JH agents need to be discussed in some detail.  

15.1. Mode(s) of Action of Precocenes: 

          The depression of JH level below that normally found in immature stages of 

insects may be due to the selective destruction of CA which are the target organ for 

precocenes (Leighton et al., 1981). To understand the CA destruction, precocenes are 

presumed to undergo biotransformation into a highly reactive 3,4-epoxide intermediate 

through the action of monooxygenases within the CA. The reactive epoxide either 

undergoes hydration to from precocene 3,4-dihydrodiol or alkylation to form alkylates 

leading to damage of the CA in vivo (Pratt et al., 1980; (Hamnett and Pratt, 1983; 

Camps et al., 1985; Brooks and McCaffery, 1990; Kumar and Khan, 2004). Other 

authors (Haunerland and Bowers, 1985; Sohn et al., 1991; Chen et al., 2005a) 

speculated that the reactive epoxide intermediate can easily react with the surrounding 

nucleophils (eg, proteins), causing the observed parenchymal cell death in CA.   

         Moreover, it is still unclear whether the effects of precocenes are restricted to 

CA (Haunerland and Bowers, 1985; Garcera et al., 1991; Burks et al., 1992) or are 

more general due to their toxicity (Ergen, 2001), or  indirect as consequence of the 

declination in JH titers (Amsalem et al., 2014b) since many studies suggested multiple 

targets for the effect of precocenes in insects, such as increased oxygen consumption 

rate by the ovaries (Garcera et al., 1989), hypertrophy of the fat body (Lee and Tan, 

1981); decreasing glycogen and protein contents in the fat body (Amiri et al., 2010); 

and blocking the accumulation of fatty acids in the aphid A. pisum (Chen et al., 2005b).  

         In respect of precocenoids (synthetic analogues of precocenes), it has not been 

possible to rationalise the activity or inactivity of them, or to explain the considerable 

specificity of insect species toward these analogues (Pratt et al., 1980) because they 

may act as stimulators or inhibitors of JH degradation or act in an antagonistic manner 

at the target tissue level, i.e., JH receptor levels (Tunaz and Uygun, 2004; Minakuchi 

and Riddiford, 2006). 
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15.2. Mode(s) of Action oOf Imidazoles: 

          The mode of anti-JH action of imidazoles may be different from that of 

precocenes. As for example, there are some differences among the imidazole 

compound KK-22 and precocenes, since KK-22 induced the precocious 

metamorphosis without lethal activity or larval growth inhibition, but precocenes were 

reported to show lethal activity and strong inhibition of larval growth (Kuwano et al., 

1983). Nevertheless, the anti-JH action of KK-22 can be rescued by simultaneous 

application of methoprene (JHA)(Asano et al., 1984 a, b). Another imidazole 

compound KK-42 was reported to affect both JH and ecdysone because titers of these 

hormones declined in B. mori after treatment with this compound (Kuwano et al., 

1988; Akai and Rembold, 1989; Wu et al., 1991). This was explained by the inhibitory 

effect of KK-42 on the cytochrome P-450-dependent monooxygenases that are 

involved in the final steps of biosynthesis of both hormones (Feyereisen et al., 1981; 

Kappler et al., 1988; Unnithan et al., 1995). Depending on the results of Miao et al. 

(2001) on B. mori, treatment with the imidazole, Jinlu, led to the inhibition of the CA 

secretion and initiated the activity of prothoracic gland, leading to precocious 

metamorphosis (change tetramolters to trimolters in silkworms). Kaneko et al. (2011) 

studied the mode of action of the KF-13S (a compound derived from ETB) and 

concluded that it prevented the transcription of many JH biosynthetic enzymes, so that 

the JH biosynthesis is suppressed.  

15.3. Mode(s) of Action of Fluoromevalonate: 

          FMev is a potent and selective anti-JH compound for several lepidopterous 

species (Edwards et al., 1983). Although its precise mode of action in insects is 

unknown, FMev presumably functions as an inhibitor of the early steps in JH 

biosynthetic pathway, disrupting the metabolism of mevalonate and/or 

homomevalonate (Quistad et al., 1981; Baker et al., 1986). In other words, it inhibits 

one or more steps in JH biosynthesis after the HMG-CoA reductase involvement, 

presumably on mevalonate kinase and/or pyrophosphomevalonate decarboxylase 

(Monger et al., 1982). Some authors (Kramer and Staal, 1981; Farag and Varjas, 1983) 

interpreted the precocious pupation, a characteristic response to FMev treatment, by 

reduced JH titre due to the specific inhibitory action of this compound on JH 

biosynthesis. For some detail, Granger et al. (1995) reported that a JH-related product 

is biosynthesized in vitro by the CA of M. sexta and of at least two other Lepidoptera. 

Its structure appears to be ester-linked JH III acid. Some of the product is stored in the 

CA, and its synthesis/release is partially inhibited by FMev.  

15.4. Modes of Action of Benzoate and Methy Dodecanoate Compounds: 

          ETB exhibits a dual anti-JH/JH activity and its mode of action is not fully 

understood until now. For some detail, there are some reasons now to suggest that ETB 

may exhibit a complex antagonistic activity; as exhibiting inherent JH activity, because 

it may exert a negative feedback response on titre of the endogenous JH and/or 

compete for the inter- and intracellular JH receptors. Also, its inhibitory effects on the 

early steps in JH biosynthesis were strongly argued (Staal et al., 1981). More than 

three decades later, Kaneko et al. (2011) reevaluated the mode of action of ETB, since 

it causes a decrease in JH biosynthesis in vitro, as indicated by loss of [
14

C]labeled JH 

production by excised CA glands. With regard to the modes of action of ETB-related 

compounds, KF-13S, as an example, caused reversible inhibition of JH biosynthesis in 

vivo after topical treatment of the B. mori 3
rd

 larval instar. Transcript levels of several 

early JH biosynthetic enzymes declined after the KF-13S treatment. Thus, ETB-related 

compounds do not work as enzyme inhibitors but as transcriptional regulators of JH 



Physiological activities of anti-JH agents against insects 

 

89 

biosynthetic enzymes. In this respect, their overt effect may be seen as being similar to 

that of allatostatins (Kaneko et al., 2011). 

         The direct action of EMD on JH receptors has been suggested depending on both 

in vitro and in vivo studies (Kramer and Staal, 1981). In contrast to ETB, EMD does 

not exhibit an inhibitory effect on the whole sequence of JH biosynthesis or 

considerably affect the whole body JH titre. Therefore, it may compete for JH 

receptors with a deficient JH activity (Staal et al., 1981; Menn, 1985). Based on the 

currently available literature, there is no further information on the mode of EMD 

action. Thus, the exact mode of action of EMD is still obscure until now. 

15.5. Modes of Action of Bisthiolcarbamate and Benzodioxoles: 

          It is not clear yet whether bisthiolcarbamate exerts its action via JH biosynthesis 

inhibition or JH-agonist feedback inhibition via the insect brain (Kramer et al., 1983). 

Some authors (Jurd et al., 1979; Van Mellaert et al., 1982, 1983) postulated that 

benzyl-1,3-benzodioxoles,  such  as  J2710  and J2922  which  showed  strong anti-JH  

effects  in  their  Galleria  assay,  either compete  for  or  inactivate  JH receptors or 

prevent binding of JH to the receptor sites.  Readio et al. (1987) detected no evidence 

for such effects when the newly emerged adults of C. pipiens were injected with six 

benzyl-1,3-benzodioxole derivatives. Thus, receptor activity in C. pipiens was 

apparently unaffected by the tested compounds in their study.  

15.6. Mode of Action of FGL-Amide Allatostatins: 

        Allatostatins (ASTs) constitute a class of regulatory neuropeptide hormones in 

insects and some invertebrate phyla (Hult et al., 2008). The FGL-amide ASTs 

represent a family of insect neuropeptides (see section 'Categorization of the anti-JH 

compounds' in the present article). Although the discovery of the first AST almost 

forty years ago, the exact mode(s) of action is still unknown or remains poorly 

understood (Weaver and Audsley, 2009; Stay and Tobe, 2007; Chowański et al., 

2016). However, the AST compound H17, as well as Ketomethylene, methyleneamino 

and Dippu-AST (pseudopeptide analogues of ASTs) had been reported as potent 

inhibitors of JH biosynthesis in some insects (Nachman et al., 1999; Garside et al., 

2000; Bendena and Tobe, 2012; Wu et al., 2017). According to the current literature, 

Nouzova et al. (2015) carried out a study aiming to understand the mode of AST 

compounds in Aedes aegypti. They investigated the A. aegypti allatostatin-C on JH III 

synthesis by CA and concluded that inhibition of JH III synthesis might be due to the 

disruption of citrate mitochondrial carrier (that transports citrate from the mitochondria 

to the cytosol) and subsequently blocking the production of cytoplasmic acetyl-CoA 

that sustains JH III synthesis in the mosquito CA. 

15.7. Anti-JH Compounds with Unknown Modes of Action in Insects: 

          Cycloheximide is a potent inhibitor of protein biosynthesis in eukaryotic 

organisms. It is also the DNA damaging agent (for some detail, see section of 

'Categorization of the anti-JH compounds' in the present article). As far as our 

literature survey could ascertain, no information was available on the mode of action 

cycloheximide in insects as JH-agonist or anti-JH agent. On the other hand, its mode of 

action was widely examined in organisms other than insects. Early, Baliga et al. (1969) 

used a cell-free system prepared from rat liver for investigating the sites of 

cycloheximide action on protein synthesis. The cycloheximide action on polysome 

aggregation differs from its effect on peptide chain elongation. In studies on the 

‘programmed cell death’, cycloheximide has been widely employed. The anti-apoptotic 

mechanism of cycloheximide action was studied by Mattson and Furukawa (1997). 

Some years later, Vajrala et al. (2014) conducted a trial to understand the mode of 

action of cycloheximide on the inhibition of bacteria-specific protein synthesis in the 
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bacterium Nitrosopumilus maritimus. In conclusion, the exact mode of action of 

Cycloheximide, as anti-JH compound against insects, is not known until now.  

            Compactin is one of many fungal metabolites that possess interesting biological 

activities including anti-JH effects (Hiruma et al., 1983). Extracts of the fungus 

Penicillium brevicompactum, which displayed anti-JH effects on the locust L. 

migratoria, were sub-fractionated and characterized to yield the novel sesquiterpene-

like structure Brevioxime (Castillo et al., 1998). This compound caused a dose-

dependent inhibition of JH biosynthesis in cultured CA, which could not be restored by 

the addition of farnesol, farnesoic acid, or mevanolactone. While these results suggest 

that brevioxime inhibits the final steps of JH biosynthesis, the exact mode of action of 

this compound remains unknown (Cusson et al., 2013). Mevinolin (known, also, as 

Lovastatin) was reported to inhibit the JH biosynthesis in insect CA in vitro 

(Feyereisen and Farnsworth, 1987). Arborine is originally a quinazolone alkaloid 

product of plants (Sreejith et al., 2012).  It was found to inhibit the JH biosynthesis in 

vitro of CA. The oxathiole is a powerful inhibitor for JH biosynthesis having 

approximately the same potency of precocenes or better (Brooks et al., 1984 b). No 

information on the modes of action of these compounds is available in the current 

literature. Also, the modes of action of other compounds having anti-JH activities 

against insects are still unknown up to the present moment, such as Fluvastatin, 

Quinolones and fluoroquinolones, Pyridone, Allyl alcohols, furanyl ethers and 

Pitavastatin.  

16. Fate and Metabolism of Precocenes: 

          As previously discussed (see the section of 'Action mechanisms of anti-JH 

agents'), precocenes are probably biotransformed into a highly reactive 3,4-epoxide 

intermediate through the action of monooxygenases in the CA of insects. The 

eucaryotic metabolism of PI, by the insect and animal enzyme systems, involves 

oxidation to an unstable compound 3,4-epoxy-7-methoxy-2,2-dimethyl-chromene 

which produces the corresponding trans-5 and cis-6-diols (Halpin et al., 1982, 1984; 

Jennings and Ottridge, 1984). Considering the metabolism of PII in  several  insect 

species,  Ohta  et  al. (1977) reported that its metabolism showed that the 6,7-

dimethoxy-2,2-dimethylchromene-3,4-diol (PII  diol)  was  the  major  organosoluble  

metabolite while the  6,7-dimethoxy-2,2-dimethylchroman-3-ol (PII 3-oi) was a  minor  

metabolite.   

        Some researchers (Bergot et al., 1980; Haunerland and Bowers, 1985) 

investigated the pharmacokinetics of PII in a sensitive insect (O. fasciatus) and an 

insensitive insect (the corn earworm Helicoverpa zea). PII was segregated by the fat 

body in O. fasciatus and slowly metabolized, but rapidly metabolized and sequestered 

in H. zea. The in vitro studies, using inhibitors for cytochrome P-450 and for cyt P-

450-NADPH-reductase, confirmed the expected detoxification of precocene by a 

mixed-function oxidase via 3,4-epoxide. 

         Apart from insects, precocene metabolism had been studied in rats and parallel 

views have been described between the bioactivation of precocenes by rats and the 

production of carcinogenic bay region diol epoxides from polycyclic aromatic 

hydrocarbons in mammals (Hsia et al., 1981; Halpin et al., 1982). Also, the precocene 

metabolism in microorganisms, such as various species of Streptomyces and 

Aspergillus, was reported by some authors (Sariaslani et al., 1987; Boyd et al., 1996). 

In these microorganisms, PII is transformed to three major metabolites (cis- and (+) 

trans-PII-3,4-dihydrodiols and (+)-3-chromenol).  
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17. Potential Use of Anti-JH Agents for Pest Control: 

             Screening new targets involved in JH-biosynthesis within the CA in insects has 

been a subject of study in recent decades (Bede et al., 2001). In this regard, researches 

in some parts of the world have already made discovery of anti-JH compounds which 

inhibit JH-biosynthesis of insect pests (Bowers, 1985; Kuwann et al., 1985; Barton et 

al., 1989). This discovery heralded a new era in the JH research since these compounds 

are used to evaluate the role of JH in various JH-regulated physiological processes 

(Singh and Kumar (2011).  

           From a practica1 point of view, precocenes have been found to be toxic to the 

liver and kidneys of vertebrates (Staal, 1986; Okunade, 2002). This is an important 

limiting factor for the human health in the field application of precocenes as large-scale 

insecticidal agents (Massuod et al., 2014). Moreover, the PII-resistant insect species 

metabolise it via the epoxy-precocene. This finding could be a severe limitation for the 

practical application of precocene analogues as effective insecticides (Chenevert et al., 

1980). In addition, precocenes had limited utility, showing anti-JH activity in only a 

few insect species, representatives of the orders Hemiptera and Orthoptera (Menn, 

1985). On the contrary, Dietz et al. (1979) reported that the lack of malformations in 

honey bees treated with PII low doses indicated no detrimental effect on the honey bee 

larvae of at least 4½-day old. While high doses of precocene quickly killed most 3½-

day old larvae. Therefore, the use of low doses of such compound can be applied as a 

control agent in insect populations. 

         Although several precocene derivatives have already been synthesized to 

optimize allatocidal activity of the natural precocenes (Brooks et al., 1979; Camps et 

al., 1980), the chemical potential of this area has not yet been fully explored. Only with 

extending our knowledge of the metabolic mechanisms of precocenes and their 

analogues to a wide array of insects and by obtaining adequate data on the structure-

activity relationships for selectivity, we will find out derivatives or analogues having 

significant impacts for controlling the major agricultural pests (Cusson et al., 2013). 

          In respect of FMev, it should be emphasized that its biological activity is not 

sufficiently high even on the lepidopterous pests, in spite of the report of Benz and Ren 

(1986) that FMev might be a useful tool for "chemical allatectomy" in Lepidoptera. 

The limited effectiveness of FMev precludes its use as a commercial anti-JH 

compound. However, it provides encouragement for further search for synthetic active 

analogues inhibiting JH biosynthesis as new selective insect control agents (Quistad et 

al., 1981; Cusson et al., 2013).  

        With regard to ETB, its dual anti-JH/JH activity was reported and the exact mode 

of action is uncertain hitherto. These obstacles have precluded its development as an 

effective insecticidal agent. However, recent work on its mode of action and on the 

development of novel derivatives has created a renewed interest in ETB and related 

compounds (Cusson et al., 2013). 

    Although anti-JH compounds are selectively toxic to CA and as such interfering 

with the biosynthesis and release of JH leading to disturbance of different 

physiological processes in insects, majority of the research works on these compounds 

have been conducted in laboratory and no compounds have been used under field 

conditions. Also, very few developed compounds have been shown to be sufficiently 

active for the practical purposes in pest management programs as yet (Asano et al., 

1984; Quistad et al., 1985; Yaguchi et al., 2009). Nevertheless, those compounds 

interacting with JH, stimulate or inhibit the JH-biosynthesis, or interfere with its 

catabolism, can be utilized as new effective insecticides (Nandi and Chakravarty, 

2011).  



Karem Ghoneim and Reda F. Bakr
 
 

 

 

92 

          However, when these compounds are poorly applicable control agents, they are 

at least used as an effective tool in devising ‘fourth generation insecticides’ (Staal, 

1986; Moya et al., 1997; Szczcpanik et al., 2005). Very recently, Lee et al. (2018) 

reported that anti-JH compounds may be effective for controlling the target pests 

during their larval stages which have high level of endogenous JH titer. 

          On the other hand, the situation of anti-JH compounds in sericulture is not as in 

the field of pest control. In the light of many reported results, the anti-JH compounds 

are a promising candidate in the research field of sericulture (Liu et al., 1987; Yoshida 

et al., 1989; Miao et al., 1996; Tsubouchi et al., 1997). Up to now, imidazoles and 

some of other anti-JH compounds have been used in the practical production of natural 

silk at commercial scale (Miao et al., 2001; Niu et al., 2013). However, this interesting 

aspect will be discussed in the following section.   

18. Role of Anti-JHs in Sericulture and Silk Research Fields: 

            Silk is normally produced from cocoons of the mulberry silkworm (= Chinese 

silkworm) Bombyx mori (Lepidoptera: Bombycidae) in Asia and Europe, though other 

species may be used in different parts of the world, such as Eri silkworm Philosamia 

ricini, Ailanthus silkworm moth Samia cynthia, Japanese oak silkworm Antheraea 

yamamai, giant silkworm moth Eriogyna pyretorum, tussor silkworm Antheraea 

paphia, muga silk worm Antheraea assamensis (Lepidoptera: Saturniidae) and African 

wild silkworm Anaphe infracta (Lepidoptera: Eupterotidae). However, the 

domesticated B. mori is the intensively studied silkworm and the most widely used in 

sericulture. For history of silk culture, see reviews of Vainker (2004) and Capinera 

(2008).  

         The cultivation of silkworms to produce silk, at the commercially large scale, can 

be called 'Sericulture', i.e., the production of raw silk, or silk farming. It  is  an  agro-

based industry  that  involves  cultivation  of  food  plants  for silkworms,  reeling  and  

spinning  of cocoons  for  production  of  valuable yarn,  added  benefits such  as  

processing  and  weaving. Sericulture is one of the oldest industries in India and Asia. 

It has become an important cottage industry in different countries of the world. For its 

economic importance, these studies are collectively known as "Sericology". It was 

reported that the major silk producing countries in the world are: China, India, 

Uzbekistan, Brazil, Japan, Republic of Korea, Thailand, Vietnam, DPR Korea, Iran, 

etc. Few other countries are also engaged in the production of cocoons and raw silk in 

negligible quantities; Kenya, Botswana, Nigeria, Zambia, Zimbabwe, Bangladesh, 

Colombia, Egypt, Japan, Nepal, Bulgaria, Turkey, Uganda, Malaysia, Romania, 

Bolivia, etc. For silk industry in the world, see Giridhar et al. (2010); Amppiah et al. 

(2014); Jalba (2016); Pallabi and Sharma (2017). 

18.1. Hormone Analogues in The Silk Research Fields: 

           Organochloride insecticides, like Hexachlorocyclohexane, were reported to 

cause a decrease in fibroin content, pupal weight and fecundity as well as deterioration 

in quality and quantity of silk thread in B. mori (for detail see Bhagyalakshmi et al., 

1995; Li et al., 2010).  

           In the silk research field, many investigators used juvenoids (JH-analogues, 

JHAs) in order to enlarge the silk yield. JHAs enhance the silk production when 

applied with the appropriate dose but not high doses. In India, many workers used 

some JHAs in the sericulture aiming to improve the silk yield (Trivedy et al., 1993, 

1997; Nair et al., 2000; Nagendraradhya and Jagadeesh Kumar, 2013). Also, 

ecdysteroids are known to influence the silk producing potential of B. mori (Srivastava 

and Upadhyay, 2013a, b). In contrast, some authors (Gu et al., 1995; Mitsuoka et al., 

2001) reported that the application of either JHAs (like methoprene) or 20-
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hydroxyecdysone can change trimolter (three molts to produce four larval instars) to 

tetramolter (normal four molts to produce five larval instars) B. mori or induce extra 

larval ecdysis of the 4
th

 (last) larval instar. Because of these problematic findings, 

many researchers are paying attention toward compounds other than juvenoids and 

ecdysteroids, such as anti-JH compounds.    

18.2. Anti-JH Compounds and Their Potential as Candidate for Sericulture: 

          For improving characters of the natural silk, as well as shortening of the larval 

duration, many research institutions have usually focused on the precocious 

metamorphosis (skipping off the 5
th

 larval instar) in silkworms, i.e., induction of 

trimolters (three moltings) instead of tetramolters (normal four moltings) in the larval 

stage. In this context, anti-JH compounds are considered more useful to control the 

moultinism in silkworm because the action of precocious metamorphosis, induced by 

anti-JH compounds, can be expected to produce advanced or novel silk materials.  

         As previously reviewed in section 'categorization of anti-JH agents', several 

compounds classified in different categories had been reported to exhibit anti-JH 

activities against various insect species. As far as our literature survey could ascertain, 

no information was available on the activity of any group of anti-JH compounds to 

induce the trimolter silkworms but only two groups, imidazoles and benzoates (ETB 

and its analogues), were widely used for this purpose in sericulture.  

         Many imidazoles and their analogues had been studied in the recent 30 years for 

inducing trimolter silkworms (for review see Wu et al. (2013). For some detail, many 

imidazole derivatives, such as KK-22, KK-42, KK-110, have been proved to be 

promising compounds in sericulture, from the standpoint of producing fine cocoon 

filament in B. mori (Akai et al., 1986), increasing efficiency of egg production 

(Kawaguchi et al., 1993) and breaking of diapause in pharate first instar larvae of the 

wild silk moth Antheraea yammami (Suzuki et al., 1989). However, some reported 

research works about the effectiveness of these compounds as trimolter inducers in 

silkworms, can be reviewed herein.  

         Imidazoles inhibit ecdysone synthesis in the prothoracic gland (PG) of B. mori, 

since inhibitory action of KK-42 (1-benzle-5 [(E)]2, 6, dimethyl-1, 7 heptadienyl] 

imidazole) on ecdysteroid level had been recorded (Akai and Rembold, 1989). In B. 

mori, KK-42 treatment led to the declination of both ecdysone and JH titres and 

subsequently to the induction of precocious metamorphosis (Kuwano et al., 1988). 

With regard to the improvement of silk, treatment of B. mori larvae with 0.5 μg/μl of 

KK-42 induced trimolters with better physical characteristics of the raw silk. The dry 

and wet strengths and knot strength were high in silk filament of treated cocoons than 

control congeners. Also, silk fabrics were soft (Kanda et al., 1985; Akai et al., 1986). 

Topical application of another imidazole compound, KK-22 (1-citronellyl -5-phenyl 

imidazole), onto 0 hr-old 3
rd

 and 4
th

 instar larvae of B. mori successfully induced 100% 

precocious pupation without lethal effect (Kuwano et al., 1984). The anti-JH activity of 

this compound vanished when methoprene (a JH analogue) was applied immediately 

after KK-22 treatment (Asano et al., 1986). In addition, the synthesized imidazole KK-

110 (1-neopentyl 5-imidazole) had been found to be highly effective for producing 

precocious pupation in B. mori (Kuwano et al., 1990). When penultimate (4
th

) instar 

larvae of B. mori were topically applied with the imidazole compound KS-175 [1-(4-

Phenoxyphenoxypropyl) imidazoles], they did not molt for more than 20 days. When 

the treated 4
th

 larvae were fed on an artificial diet supplemented with 20-

hydroxyecdysone, they molted to the ultimate (5
th

) instar. Therefore, KS-175 

irreversibly impaired the ecdysone biosynthesis in the PG (Shiotsukia et al., 1999). 
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        Other imidazoles, such as SM-1, Jinlu, SSP-11, SDIII, Lin II, Kang-20, YA20, had 

also been synthesized. After administration of some of these compounds, via food, to 

3
rd

 or 4
th

 instar larvae of B. mori, they effectively induced precocious metamorphosis 

with the production of superfine cocoon (Shen et al., 1990; Tan et al., 1992; Miao et 

al., 1996). Precocious trimolter B. mori was induced by the dietary administration of 

the imidazole compound SSP-11 (E-4-chloro-a, a, a-trifluoro-N-[(C1H-imidazole-1- 

yl)-2-propryethy-lidene]-O-toluidine) in the early 3
rd

 or 4
th

 larval instar of B. mori 

(Kiuchi et al., 1986). Feeding of the 4
th

 instar larvae of B. mori on a diet treated with 

the anti-JH compound Kang-20, during the first 48 hr, a tetramolter strain was 

efficiently induced into trimolters (Lin et al., 1991). In the 2
nd

 ～4
th

 larval instars of B. 

mori, the anti-JH compound YA20 could induce 100% trimolter in anytime of the 24 hr 

ago for 48 hrs (Zhuang et al., 1992). SD-III was reported to exert strong anti-JH 

activity and anti-ecdysteroid activity on B. mori. After body surface spraying with 300 

ppm SD-III, trimolter silkworms (95%) were induced (Tan et al., 1992). The 

imidazoles compound SM1 had been reported to induce the tetramolter silkworms into 

trimolters (Lu and Li, 1987). 

           As a trimolter inducer, the imidazole derivative Jinlu had received a great 

rsearch attention in the context of sericulture during the last two decades.  Treatment of 

B. mori with Jinlu resulted in improved silk filament size, reliability, neatness and 

cleanness defect of trimolter cocoons (Lu and Xiao, 1997). In addition, Jinlu could 

induce the tetramolters into trimolters in the Chinese tasar moth Antheraea pernyi 

treated in early period of 3
rd

 instar (Qin et al., 1999), as observed also in the Japanese 

oak silkworm Antheraea yamamai (Jian et al., 1999). In a study of Miao et al. (2001), 

the conversion ratio of tetramolters into trimolters was 100% after treatment of the 4
th

 

(penultimate) instar larvae of B. mori with Jinlu while treatment of 5
th

 (last) instar 

larvae led to lengthening of the instar by one day. Recently, Niu et al. (2013) 

conducted an investigation using two races of B. mori to assess the activity of Jinlu on 

the improvement of silk quality in the inducted trimolters. These investigators obtained 

fine filament silk with high quality in the early period of 3
rd

 instar, which was superior 

to that of tetramolters, and the super fine filament silk can be produced in the 4
th

 instar 

induced by this compound.  

          As reported by Miyajima et al. (2001), the imidazole compound, triflumizole 

(E)-4-chloro-alpha,alpha,alpha-trifluoro-N-[1(1H-imidazole-1yl)-2-propoxyethylidene] 

-o-toluidine, induced the trimolter B. mori. After treatment of the 3
rd

 instar, percentage 

of trimolter was higher than that induced after treatment of the 4
th

 instar. Cocoon form 

of trimolters became rounder than that of the untreated tetramolters. Alson cocoon 

filament size of the trimolters, induced by the 3
rd

 instar treatment, was larger than of 

the untreated tetramolters. 

          In respect of ETB and its related compounds, ETB analogue ethyl 4-[4-methyl-

2-(6-methyl-3-pyridyloxy)pentyloxy]benzoate induced precocious metamorphosis after 

topical application onto 1-day old 3
rd

 instar larvae of B. mori (Fujita et al., 2005). 

Fujita et al. (2007) synthesized two ETB analogues which induced precocious 

metamorphosis in larvae of B. mori. KF compounds are structurally derived from ETB. 

Furuta et al. (2007) reported that KF-13S strongly induced precocious metamorphosis 

in B. mori. KF-13 and heptyl analogues induced precocious metamorphosis in B. mori 

at low doses (Fujita et al., 2008).  

        It is important to highlight some points in sericulture. The trimolter cocoons, 

produced by anti-JH agent-treated caterpillars, have greater tensile strength, stiffness, 

compressive resilience, and crystallinity of the treated silk than those of the untreated 

caterpillars (Yoshida et al., 1989). In other words, the cocoon of induced trimolter 
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silkworms has better physical properties, including cocoon weight, filament size and 

strength than the normal tetramolters (Tsubouchi et al., 1997). Moreover, Niu et al. 

(2013) reported that the trimolter silk fiber has special economic value and bright 

prospect in terms of developing the distinctive silk textile of high quality. It appears 

that better rearing of B. mori larvae on imidazoles or ETB-treated mulberry leaves is 

possible due to the following reasons: (a) larval duration is shortened by 4-5 days, thus 

saving labour and leaves. (b) Skipping off the 5
th

 larval instar decreases the diseases 

incidence, resulting in good pupation rate. (c) Moths of trimolters are more active than 

those of tetramolters resulting in decreasing % of unfertilized eggs (Liu et al., 1987; 

Yoshida et al., 1989; Miao et al., 1996; Tsubouchi et al., 1997; Niu et al., 2013). In the 

light of the previously reviewed results, anti-JH compounds are promising candidate in 

the field of sericulture.  

19. Summary Points:  

- After discovery and isolated PI and PII from the genus Ageratum, (A. houstonianum, 

A. vulgaris and A. conyzoides) and Chrysanthemum coronarium of the plant family 

Asteraceae, the ageratochromenes with anti-JH property had been isolated from some 

plants of other families, such as Rutaceae, Lamiaceae, Hydrophyllaceae, Lamiaceae, 

Burseraceae, Malvaceae as well as extracts from the fungus Penicillium 

brevicompactum. 

- Many anti-JH compounds can be categorized in various groups, such as precocenes, 

imidazoles, fluoromevalonates, benzoate and methy dodecenoate compounds, 

FGLamide allatostatins, benzodioxoles, bisthiolcarbamates, anti-JH compounds from 

microorganisms, as well as other compounds, such as Piperonyl butoxide, Pyridone, 

Quinolones, Lovastatin, Arborine, Allyl alcohols and Pitavastatin.  

- Various anti-JH compounds had been assessed against several insects of different 

orders to evaluate their disruptive effects on survival, growth, development, 

metamorphosis and morphogenesis. Some of these compounds had been reported to 

exhibit dual effect (anti-JH activity and JH-like activity). Also, adult performance and 

reproductive biology of different insects had been disturbed by several anti-JH 

compounds.  

- Anti-JH agents exhibit roles in the insect polyphenism, such as the wing dimorphism 

in aphids and planthoppers, phase transition in locusts, caste polyphenism in ants, bees 

and termites.  

- Anti-JH compounds have some roles in behavioral patterns of insects: non-social 

insects (sexual behavior, feeding behavior, agonistic behavior, aggregation behavior, 

flight activity, migratory behavior, learning behaviour and memory), subsocial insects 

and social insects (honey bees and social wasps).  

- Different anti-JH agents had been reported to interfere with the regulation of insect 

diapause  

- Some anti-JH agents showed various histopathological and ultrastructural effects on 

flight muscles, digestive organs, endocrine organs and reproductive organs in different 

insects.  

- Some anti-JH agents possess antifeedant properties against various insects belonging 

to different orders, such as Coleoptera, Hemiptera/Homoptera, Isoptera, Orthoptera and 

Hymenoptera. 

- Anti-JH agents have regulatory roles in the general body metabolism (proteins, 

carbohydrates and lipida), respiratory metabolism and enzymatic activities in insects  

- Some anti-JH compounds influenced the chemoreceptor organs in mouth parts and 

antennae as well as they disrupted the pheromone production in insects. 
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- The mechanisms of anti-JH compounds are yet to be debatable issue among a number 

of researchers allover the world because little is known about either the target site(s) or 

the modes of their action. Some suggestions were discussed. 

- Fate and metabolism of anti-JH compounds, not only in the insect body but also in 

mammals, had been reviewed.  

- In addition, effects of different anti-JH compounds had been studied on the insect 

haemogram, immune responses, host-parasite interaction, fat body structure and 

function, as well as the cantharidin biosynthesis.  

- From the practical point of view, very few developed anti-JH compounds have been 

shown to be sufficiently active for the pest management programs as yet although low 

doses of precocenes are relatively safe for beneficial insects. 

- Some anti-JH compounds, imidazoles in particular, are very important agents for the 

sericulture and silk research fields. Many imidazoles and their analogues had been 

studied in the recent 30 years for inducing trimolter silkworms (skipping off of the 5
th

 

larval instar) with improved silk quality and characters. 

Conclusions: 

          As shown the present review, many anti-JH compounds of different categories 

have been reported to effectively disrupt several physiological processes in insects, 

such as growth, development, metamorphosis, morphogenesis, reproduction, 

polymorphism, behavioural patterns, chemoreception, diapause, metabolism, 

enzymatic activities, pheromone production, etc. Therefore, anti-JH agents are 

potential insect growth regulators as well as an effective tool to study various JH-

regulated physiological processes in insects. Although anti-JH compounds are 

selectively toxic to CA and as such interfering with the synthesis and release of JH 

leading to disturbance of various physiological processes in insect pests, majority of 

the research works on these compounds have been achieved in the laboratory and no 

compounds have been used under the field conditions. Unfortunately, very few 

developed compounds have been shown to be sufficiently active for the practical 

purposes in pest management programs as yet. However, precocenes and their 

synthetic analogues are useful compounds as an effective tool in devising 'fourth 

generation insecticides'. Compounds with anti-JH activity are considered as new 

representatives of IGRs lacking some disadvantages of juvenoid-type chemicals. 

However, these compounds need to be assessed against different insect pests under 

field conditions in future. On the other hand, some of the anti-JH analogues have been 

successfully used in the practical production of improved natural silk in the world. 
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