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ABSTRACT 

Many wireless channel behavior exhibits approximate sparse modeling in time domain, therefore 

compressive sensing (CS) approaches are applied for more accurate wireless channel estimation than 

traditional least squares approach. However, the CS approach is not applied for multicarrier data 

information recovery because the transmitted symbol can be sparse neither in time domain nor in 

frequency domain. In this paper, a new Sparse Frequency Division Multiplexing (SFDM) approach is 

suggested to generate sparse multicarrier mapping in frequency domain based on the huge combinatorial 

domain. The subcarriers will be mapped in sparse manner according to data stream for taking advantages 

of multicarrier modulation with lower number of subcarriers. The number of activated subcarriers is 

designed to achieve the same as Orthogonal Frequency–Division Multiplexing data rate under lower 

signal-to-noise ratio. The proposed approach exploits the double sparsity of data symbol in the frequency 

domain, and channel sparsity in the time domain. The same CS approach for both data recovery and 

adaptive channel estimation in a unified sparsely manner is used. The suggested framework can be used 

with any non-orthogonal waveform shaping and can work efficiently without any prior information about 

neither the channel sparsity order nor searching for the optimum pilot patterns.   

Keywords: Compressive sensing; sparse channel estimation; super-resolution; non-orthogonal 

waveforms; sparse frequency division multiplexing (SFDM); combinatorial sparsifying. 

1. Introduction 

Multicarrier (MC) communication gives a solution for sever inter-symbol interference (ISI) 

in high data rates by dividing the high data rate into smaller sub-streams with lower rates which 

can be loaded on independent sub-carrier. The OFDM system is a special form of MC that has 

orthogonal sub-carriers which has been applied in many wireless standards. The orthogonality 

condition allows spectrum overlapping without interference between subcarriers, hence, more 

efficient spectrum usage. Also, it has simple generation and recovery via simple and fast FFT 

operation. Moreover, it has simple channel equalization as simple one complex multiplication 
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per subcarrier in the frequency domain. On the other hand, the OFDM shortcomings are the 

high Peak-to-Average Power Ratio (PAPR), high Out-Off-Band (OOB) emission due to large 

side-lobes of rectangular window (large number of null guard subcarriers at spectrum edges, 

about 20 % of  the total allocated spectrum Bandwidth [1]) , cyclic prefix (CP) overhead that 

adds nearly 25 % of the symbol time, sensitivity to Doppler frequency shift, and Carrier 

Frequency Offset (CFO) [1-3]. Hence, the current direction is to get rid of the orthogonality 

limitations of the OFDM, and relay on a new non-orthogonal waveform design [4-8]. Good 

comparison among current competing multicarrier candidates is presented in [6]. It 

demonstrates the main rules that can be used for judging a communication technique.  

Moreover, as reported in [8], the employment of non-orthogonal pulses is optimum for 

minimizing ISI and ICI in double dispersive channels. However, sacrificing by the 

orthogonality results in better spectral usage at the cost of complex recovery. 

Filter Bank Multicarrier (FBMC) finds increasing interest. It allows successive symbol 

overlap through data staggering on alternate in-phase and quadrature sub-channels. It exploits 

the staggered structures to achieve flexibility on filter design while maintaining the spectral 

efficiency of the unity time-bandwidth product. The spectral efficiency is due to working 

without CP and using smooth pulse shape, but at the cost of increased complexity due to the 

replacement of IFFT/FFT in OFDM with the filter banks and more complex equalization [9].  

Our focus is to investigate that trend of incorporating non-orthogonal multicarrier schemes of 

arbitrary waveform other than rectangular waveform associated with OFDM system. 

Orthogonality loss through windowing or shortening symbol interval (observation time) 

gives rise to spectral leakage between subcarriers due to boundary discontinuity. 

Therefore, it reduces spectral resolution resulting from Fourier analysis [10]. In resolving 

the problem, recalling sparse super-resolution tool can resolve the spectral lines of 

windowed symbol where Fourier tool fails. Super-resolution spectral estimation is 

introduced in literature, [11], [12], and continually discussed in recent research through 

spectral compressive sensing (SCS), [13]. It exploits prior knowledge of sparsely structure 

embedded in the signal for achieving super-resolution spectral estimation.  

The original CS theory allows sparse signal recovery from under-sampled measurements 

under sparsity and bases incoherence constraints to enable signal compression while it is 

being acquired [14]. Moreover, it provides super-resolution ability of decomposing the signal 

into its sparsest components from proper over-complete dictionary. In this paper, the super-

resolution ability of sparsity based CS approaches will be exploited in resolving non-

orthogonal MC modulation. CS approaches cannot be applied directly on the conventional 

MC modulated signals for data recovery because that signal doesn’t satisfy sparsity 

constraint. Therefore, special sparsity mapping will be suggested for this purpose.  

Exploiting enhanced recovery precision of sparsity approximation algorithm even under 

lower SNRs and reducing frequency spacing is the main motivation for the proposed sparsity 

mapping. Therefore, the achieved superior Bit-Error-Rate (BER) performance stems as a 

natural consequence of replacing conventional signal processing algorithms (such as filter 

bank and Fourier analysis) with the recently arising sparsity-based signal processing.   

In this paper, sparsifying coding based on combination manner is suggested. Loading 

small number of subcarriers from the available subcarriers provides the frequency domain 

sparsity. By double sparsity of data (in the frequency domain) and channel (in the time 

domain), it is easy to incorporate the same hardware for both data recovery and channel 



539 

Usama S. Mohamed
 
et al., Joint compressive sensing framework for sparse data/channel ………… 

estimation with two different dictionaries. Then, the advantages of the proposed sparsifying 

mapping can be summarized as follows: (1) Unifying data/ channel estimation in 

compressive sensing framework, (2) Exploiting super-resolution ability of CS-based 

approaches in resolving non-orthogonal MC systems, (3) Avoiding the problem of searching 

for optimum pilot pattern allocation, (4) unlike CoSaMP [25], the proposed system don’t 

have the prior knowledge constraint of channel sparsity order (number of dominant paths of 

the channel) which is not available practically, and (5) Spectral efficiency resulting from 

minimizing training symbol rate and lower side lobes power concerned to non-orthogonal 

waveform. The rest of the paper is organized as follows. Section 2 overviews the application 

of CS on estimating channel sparsity. The followed sparse approximation tool is presented in 

Section 3. The proposed scheme along its complexity is introduced in Section 4 including 

combinatorial mapping, data/channel dictionaries and adaptive equalization. Then, the 

simulation results are introduced in Section 5. Finally, Section 6 concludes the paper.  

2. Compressive sensing sparse channel estimation  

Recently, CS approaches have given more attention in the field of system identification 

such as wireless channel estimation. Basically, many practical wireless channel behaviors 

can be modeled by impulse response having few and distributed (sparse) number of taps. 

This behavior becomes clearer in large BW signal, longer symbol interval and large 

number of antennas. Under channel sparsity, the application of recently proposed CS 

approaches introduces much better accurate channel estimation with aid of much less 

training pilots than traditional LS technique [16 - 24]. In [17], Matching Pursuit (MP) 

algorithm was applied in channel estimation of UWB system. Also, the work in [15] 

presents symbol detection along with channel estimation in UWB. While the nature of 

Ultra Wide Band (UWB) communications allows for double sparsity in time domain for 

both transmitted data information pulses besides channel impulse response [15], 

multicarrier (MC) systems cannot exhibit data sparsity neither in time domain nor in 

frequency domain. The proposed approach in [18] deals with the CS based channel 

estimation of multicarrier case in general. It compares the performance of three CS 

algorithms: Basis Pursuit (PB), Orthogonal Matching Pursuit (OMP) and Compressive 

Sampling Matching pursuit (CoSaMP). It is concerned in achieving spectral saving 

through reducing number of pilot symbols. Operation at OFDM with reduced speed of the 

analog-to-digital converter (ADC) on channel estimation part is introduced in [20].  

Sparsity-based solutions can be classified into two main groups, namely, convex 

optimization and greedy algorithms [25]. Because the performance of the greedy methods is 

more influenced by coherence of the used measurement matrix, there is a problem of 

optimum pilot allocation [26]. Many studies are presented for minimizing mutual coherence 

of the measurement matrix and searching for optimum pilot pattern [25-32], which can be 

avoided in the suggested framework in this paper. While traditional OFDM channel 

estimation depends on the interpolation of equally spaced pilot subcarriers, equally spaced 

pattern may not be the optimum pattern in respect to CS approaches. The problem of 

optimum pilot pattern allocation takes a lot of study. The optimal pilot pattern was found to 

be the randomly generated pattern. But, due to difficulty of random patterns support, there 

are many algorithms for searching for the optimum deterministic patterns [27, 28, 31-33].  

 

 



540 

JES, Assiut University, Faculty of Engineering, Vol. 44, No. 5, September 2016, pp. 537 – 554 

3. Sparse iterative covariance-based estimation (SPICE) 

SPICE is a robust high resolution sparse estimator. It is our choice to be applied on the 

problem of sparse data/channel estimation. It provides sparse parameter estimation for the 

following traditional linear model: 

Where,         is observation vector,                  
      is the regression 

matrix (measurement dictionary),        denotes the unknown sparse parameter vector 

with the number of measurements    can be less than number of regression vectors,  , and 

  is unknown additive noise. It is required to choose such dictionary (domain) that allowing 

estimation of the sparse representation   for the observation signal  . The prior-knowledge of 

sparsity presented in the parameter vector can be exploited in the solution of the following 

constrained LS problem where the sparsity condition is included through the   - norm.[34]  

Where ‖  ‖  stands for   - norm, and   is certain threshold specified by the user. That 

can be interrupted as a weighted, hyperparameter-free square-root LASSO.[40]   

Where        (√
‖  ‖

 

 
         √

‖  ‖
 

 
  ). The main advantages of SPICE can be 

summarized as follows; 1) it doesn’t need the knowledge of sparsity order (number of 

significant elements or number of channel taps w.r.t channel model), 2) it operates in 

iterative manner with global convergence (convexity), 3) it is adapted for complex-valued 

data and parameters as simply as real-value, 4) and it is more accurate than its competitive 

algorithm BP [38]. Hence, it can be deduced that SPICE can be more accurate than any 

variants of MP algorithm which were widely used in previous CS-based channel 

estimation algorithms. Iterations loops are performed between covariance matrix 

computation and power estimate update with constant weights. Complete derivation, 

explanation, and suggested fast implementations of SPICE can be found in [34-40]. 

Moreover, its MATLAB implementation is published on the author’s page [39, 40].         

4. The Proposed unified sparse data/channel estimation framework 

It is a new MC scheme operating entirely in CS domain through sparsely mapping subcarriers 

for allowing the sparse CS approaches to be applied on sparse subcarriers data recovery in the 

frequency domain as well as sparse channel estimation in the time domain. Figure 1 shows the 

block diagram of the proposed “Unified sparse data/channel estimation framework”. In the 

following Subsections, the proposed framework will be explained in details. 

4.1. Combinatorial sparse frequency division multiplexing (SFDM) 

MC is robust against ISI but at the cost of its extremely higher PAPR. Sparsity based 

super-resolution approaches cannot be exploited directly for data recovery in Multicarrier 

modulation neither in the time domain nor in the frequency domain. Intermediate case 

between the two types is suggested by reusing the available large number of subcarriers in 
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such different manner that can result in better sparse frequency representation while 

regarding the achieved bit rate of traditional MC systems. By loading only    active 

subcarriers taken out from     available subcarriers    <    . The information doesn’t 

reside in active or passive subcarriers, but it can be recovered from the subcarriers 

distribution between passive and active or their combination.  Figure 2 illustrates the 

difference between normal denes (top) against the suggested sparse (bottom) multi-carrier. 

 
       

 

 

 

 

 

 

 
 

 
 

 

 

 

 

Fig. 1. Block diagram of the proposed “Unified sparse data/channel estimation framework” 

 

 

 

 

 

 

 
 

 
 

 

 

 

Fig. 2. Denes against sparse MC modulation 
 

It is known that the combination is a way of selecting (activating)    subcarriers out of 

a collection    (total available subcarriers in the frequency band) while the order of 

selection is not important. The number of possible combinations can be given as follows: 

Where   stands for the factorial.  

That recalls combinatorial number system which can provide rapid unique 

representation for each possible combination arranged in lexicographic order [44-46]. 

  (
   

  
)   

    

                 
 

          

     (4) 



542 

JES, Assiut University, Faculty of Engineering, Vol. 44, No. 5, September 2016, pp. 537 – 554 

Combinations are assumed to be ordered in a predefined (or assumed) order that can be 

computed easily, where the mapping process from the order index to the combination 

pattern and its reverse belong to combinatorial number algorithms.  

For each resultant combination there is M possible modulation state (M= 2 for BPSK & 

M=4 for QPSK) for each subcarrier. Then the overall possible combinations of    

subcarriers out of     is equal        *(   
  
). The equivalent decoded bits can be computed 

by taking      of the possible combinations as follows: 

Each data block consisting of “ ” bits can be seen as the combination address (position index) 

for a certain combination. In the transmitter side, sparsity mapping is a process of picking the 

combination corresponding to the given combination index. The reverse process (sparsity de-

mapping) is performed in the receiver side. For example, assume the system with 64 subcarriers, 

      (let 4 as guard subcarriers at edges), and the active (selected) subcarriers    is changed 

from 1 to 20. Then, the coded bits against    will be changed as shown in Fig. 3.  
 

 

 

 

 

 

 
 

 

Fig. 3. combination coded bits against active subcarriers 

From Figure 3, it is clear that the bit rate of the  64-subcarrier of the OFDM system 

(IEEE, 802.11, QPSK modulated, ½ channel coding: 48 active data subcarriers + 4 active 

pilots  + 12 Null), can be achieved using only 8 active, sparsly scattered with QPSK 

modulated subcarriers from the available 64 frequency bins instead of activating 52 

subcarriers simultaneously. The main drawback of this approach is that an error of any 

subcarriers will cause an error in all symbol block. But, the robust sparse recovery 

technique guarantees acceptable recovery levels.  

4.2. Symbol generation and waveform shaping (transmitter system) 

 In the proposed system, instead of transmitting the data using all subcarriers, the data 

are transmitted using sparse number of subcarriers.  As shown in Fig. 1, the input data 

stream of length “d” bits will be converted into parallel form and mapped into coded 

combination corresponds to that bit pattern. The resultant sparse coding (  ) will be 

considered as sparse frequency representation of multicarrier system. The IFFT of (  ), 
will result in the equivalent time domain symbol. To that point the time domain signal 

represents sparse orthogonal modulated subcarriers. By applying arbitrary waveform 
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)}                      (5) 
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shaping ( ) such as Hamming, Hanning, Kaiser, Gaussian or any other known windows 

[9], the symbol becomes non-orthogonal modulated subcarriers.  

Without loss of generality, the exponentially damped waveform shaping [47] (shown in 

Fig. 4) will be considered. The motivation of using the Exponentially damped (ED) 

window is that; (1) the damping window has highly attenuated end, hence, the symbol is 

terminated with lower energy with respect to its start, (2) Any partially overlap (at 

maximum, about 25 % of symbol interval, corresponding to maximum channel spread) 

between consecutive symbols, will be considered an acceptable interference, and (3) the 

feature of the exponentially damped window allows transmission of consecutive symbols 

without Guard Interval (GI) or cyclic prefix (CP). Figure 5 shows the comparison between 

the ISI in case of original OFDM without CP, and the ISI in the damped case without GI. 

From this figure, it can be shown that using damped window has lower ISI without using 

GI compared to the conventional OFDM without using CP. 

 

 

 

 

 
 

 

Fig. 4. exponentially damping waveform 

 

 

 

 

 

 

 

 

Fig. 5. ISI effect in both un-damped OFDM and damped case 

4.3. Channel measurement matrix 

The received signal is the sum of all multipath copies (scaled and delayed) of the 

transmitted signal       .  In training based channel estimation, the transmitted training 

symbol                 is known in the receiver. The received symbol      is resulting from 

convolving                  with the unknown sparse channel impulse response ( ). 

Where,                         
  represents   taps channel impulse response 

and e is the additive noise error. Eq. (6) can be reformed in matrix form [24, 25, 29] by 

                                           
   (6) 

                    



544 

JES, Assiut University, Faculty of Engineering, Vol. 44, No. 5, September 2016, pp. 537 – 554 

forming convolutional Toeplitz matrix from                , where they incorporate CP.  Due 

to using the smoothly ended (damped) non-orthogonal waveforms and assume that the 

maximum channel spread is no longer than 25% of symbol length, ISI between consecutive 

symbols can be neglected. Therefore, the convolution matrix can be written as follows: 

             

(
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4.4. Data measurement matrix (    

The data measurement matrix is windowed Fourier bases (equally spaced) subcarriers 

in the allocated bandwidth (BW). Let, the total numbers of possible subcarriers    equals 

the number of columns of the measurement matrix     
       , and       

   

represents the equalized symbol which approximates the transmitted symbol        . Let  

     
   is the required sparsely coded subcarriers vector. i.e., 
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Where   the Fourier matrix with each column represents subcarrier and    is the used 

waveform. Note that (ʘ) represents a simple element-by-element multiplication. It is the 

role of the super-resolution sparse approach to estimate the sparse channel    from Eq. 6, 

and the sparsely coded data    from Eq. 7. 

4.5. Adaptive equalization 

As in training based channel estimation scheme, the training symbols are time multiplexed 

periodically with data symbols by certain rate to allow following channel variation at receiver 

side. By incorporating adaptive equalization, the rate of training symbol transmission overhead 

can be reduced, hence increasing data rate.  As soon as the sparse coded symbol ( ̂ ) being 

recovered from     by the aid of data dictionary,  it can be reused for playing the role of 

training symbol,  by taking IFFT transform and waveform shaping for reproducing the time 
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symbol as generated in transmitter side, hence, reconstructing training matrix from it. By that, 

the needed rate of training symbols can be reduced, because each recovered symbol will be 

exploited as training symbol for next symbol equalization. Original agreed training symbol can 

be requested by receiver in case of remarking increased error rate at receiver side.  The steps of 

the proposed approach can be shown in the following algorithm: 

4.6. The Computational complexity of the proposed approach  

In the proposed approach, the transmitter complexity is similar to the OFDM system; 

however, the receiving operation is more complex.  The receiver computational complexity 

is related to the applied CS algorithm. In this paper, the SPICE is used for sparsity 

approximation; hence, it imposes its complexity on the proposed scheme.   

The SPICE complexity is of the order O(N2) per iteration which  is corresponding to 

the DFT complexity. The number of iterations is adjusted according to the SNR of the 

received signal. More efficient implementation of the SPICE based on the Gohberg-

Semencul (G-S) factorization is presented in [36] for array processing which may be 

exploited in multi-input-multi-output (MIMO) extension.  

 Although sparsity approximation algorithms (such as SPICE and OMP) are more 

complex than FFT complexity employed in the OFDM transmission/recovery, it is not fair 

to be compared with the OFDM system for the following reasons:- 

1) Fourier analysis is not succeeded under non-orthogonal schemes. 

2) Fourier analysis does not utilize the benefits resulting from the signal embedded sparsity.  

3) Sparsity approximation algorithms can provide better BER performance along with 

the proposed sparsity mapping (it will be described later).   

4) Also, under the hardware realization, the proposed scheme doesn’t require 

independent implementation for channel estimation and data recovery modules as a 

direct consequence of double sparsity employment. The same hardware module can 

be utilized for both data detection /channel estimation. 

5) Proposed CS-based scheme doesn’t employ any channel coding and decoding 

overhead/complexity (such as convolutional coding or LDPC coding) without 

performance degradation. Moreover, it achieves better performance than the coded-

OFDM system under lower SNRs.  

Hence, the fair comparison may be performed with the non-orthogonal MC 

schemes such as the FBMC system.  

In general, the optimum CS algorithm, the computational complexity, the recovery 

success rate, the required number of iterations and the operating SNR is considered an 

open problem for further research in achieving the optimum sparsity approximation 

performance [41- 43]. 
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5. Simulation results 

This section demonstrates the previously supposed advantages of the proposed scheme. 

First, the data/channel recovery using the proposed framework will be shown for non-

orthogonal waveform. Then, sparsity adaptation versus channel coding strategy will be 

confirmed. The next point is the problem of pilot pattern coherence and how to avoid its 

effects. The effect of sparsely coding on symbol energy and PAPR will be shown based on 

rectangular window used for normal OFDM. At the end, spectrum efficiency will be 

compared to conventional OFDM. 

5.1. Channel estimation  

The data symbols will be formed in EDS (Exponentially damped Sinusoidal) model in 

transmitter side at single damping factor (set to 0.035) with sparsely coded subcarriers. The 

modulation type is QPSK for active subcarri537537ers (              under 

SNR=20 dB. As shown in Fig. 6a, it presents the received and equalized symbols due to 

the supposed and estimated channels in Fig. 6b.  

Analysis of the channel estimation error is out of scope of the proposed scheme because 

it is not limited to certain sparsity approximation algorithm. It shares the same recovery 

precision of the already applied algorithm under random selected pilot’s patterns. The 

novelty of the proposed originates from allowing the reuse of the same sparsity 

approximation algorithm in estimating the channel sparsity to reapply the data recovery 

after the sparsity mapping.    

 

 

 

Pseudo Code for the Proposed Algorithm  

1. Apply SPICE 

Estimating channel   
   

 from received symbol      
   

 for symbol “i” with aid of 

            . 

2. Channel Equalization 

Getting equalized symbol    
     

 from     
     

  depending on   
   

. 

3. Apply SPICE 

Estimating sparsely coded data   
     

 from    
     

 with the aid of   . 

4. Bit Stream Recovery 

De-mapping   
     

 to produce original bit stream. 

5. Adaptive Cannel Estimation 

   
     

            
     

  

//reconsider sparse coded subcarriers   
     

 as the recent pilot symbol pattern. 

 Reconstructing        
     

 from   
     

, by taking IFFT & waveform shaping 

       
     

                   
     

 

//Reconstruct transmitted training signal        
     

 from the assumed pilot symbol   
     

 

6. Reconstructing new               from                
     

   

7. Increment i  

8. Return to step 1 
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(b) 

Fig. 6. (a) Received and equalized symbols, (b) original and estimated channel impulse response 

5.2. Sparsity adaptation versus channel coding  

The purpose of adding channel coding redundancy is to correct possible errors resulting at 

low SNR levels. Increasing coding redundancy increases signal immunity at cost of reduced 

data bits. With respect to our proposed SFDM and based on the observation that under given 

SNR, the probability of correct sparse data recovery varies depending on sparsity level 

(S=      . By decreasing “S”, signal sparsity order was enhanced; hence better recovery 

under lower SNR levels. New data protection strategy can be defined as varying the sparsity 

level instead of traditional channel coding based on redundancy insertion. (Note that 

increasing S beyond certain level is not allowed because it destroys sparsity constraint and 

degrades the overall performance).  The following table provides analogy between channel 

coding rate of conventional OFDM system and the sparsity level adaptation suggested in our 

sparse multicarrier modulation (SFDM) system. Figure 7, represents acceptable data 

recovery under sparsity adaptation (    16 – 3) for various SNRs (from 20 – 0 dB).  

It is worth mentioning that the simulations (in Fig. 7) was performed on ED window 

which exhibits severe attenuation and therefore, lower energy per symbol w.r.t other 

waveforms such as the Hanning waveform. So, the expected recovery performance for 

other waveforms is better under the same SNRs.   

In [42], exact recovery performance of the sparsity approximation algorithms is sensitive 

to the signal sparsity order. It is observed in Fig. 7, where the accepted sparsity recovery of 

high/low sparsity order(S) is achieved along with corresponding high/low SNRs. As shown 

in Fig.7.d, it has only acceptable recovery when      active subcarriers from       

total subcarriers under extremely low SNR 0 dB. The increased noise power appears in 
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increasing the estimated power (noise floor) at inactive (passive) subcarriers. The correct 

active subcarriers still have the largest power levels and can be easily distinguished from the 

passive subcarriers. The choice of the loaded sparsity level (S=     ) corresponding to 

operating SNR is very important for achieving accepted recovery level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 7. Sparsity adaptation strategy according to operating SNR 
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Table 1. 
Sparsity adaptation versus channel coding 

M
o

d
u

la
ti

o
n
 

IEEE 802.11a [48] 

(48 active data subcarriers + 4 active pilots  + 

12 Null) 

Proposed SFDM 

(Sparse Frequency Division Multiplexing) 

Coding rate 

(R) 

Coded bits per 

subcarrier 

Data bits 

per OFDM 

symbol 

Sparsity level 

S=      

(where 

                       
                      

Data bits per 

SFDM symbol 

(eq. 3) 

B
P

S
K

 1/2 1 24 5/60 27 

3/4 1 36 8/60 39 

without 

channel coding 
1 48 11/60 49 

Q
P

S
K

 1/2 2 48 8/60 47 

3/4 2 72 15/60 75 

without 

channel coding 
2 96 20/60 91 

As shown in Fig. 8, for SNR greater than 3 dB, the proposed SFDM drastically reduces 

the Bit-Error-Rate (BER) compared to the conventional OFDM. In this figure, the coding 

rate is adjusted to ½ for conventional OFDM and the sparsity level, while in the proposed 

SFDM the coding rate is adjusted to 8/60.  

 

  

 

 

 

 

 

 

Fig. 8. BER comparison versus SNR 

One observation can be emphasized from Fig.7 and 8, that each sparsity level has 

corresponding SNR for accepted recovery success rate. Sudden BER reduction w.r.t the 

proposed SFDM scheme occurs at SNR corresponding to the signal sparsity order. 

Justification of sudden BER reduction at extremely lower SNR, than required SNR for 

conventional coded OFDM, is stemming from the inspired robust performance of the 

sparsity approximation algorithms. 

5.3. Avoiding searching for optimum pilot pattern 

Sparse subcarriers can be considered as randomly generated according to the sparsely coded 

information bits which usually exhibits random style.  Due to the double role played by the 

transmitted symbol, (first as data symbol, second as random pilot symbol after data recovery for 

updating channel state information), it has equivalently high pilot symbol rate with random pilot 

pattern. That randomness is the preferred pilot pattern with respect to the CS based estimators. 



550 

JES, Assiut University, Faculty of Engineering, Vol. 44, No. 5, September 2016, pp. 537 – 554 

 For the worst conditions of the pilot pattern consisting of high coherence (that degrades 

sparsity approximation performance)  components (such as consecutive subcarriers), the 

symbol can be dropped from updating channel estimation stage only, while the data can be 

recovered as shown in Fig. 9. This figure proves the case of acceptable recovery even 

for consecutive subcarriers.  

5.4. Reducing Symbol Energy and PAPR upper bound 

Due to the summation of large number of subcarriers in MC modulation, there is large 

probability for summing in such moment constructively giving rise to too large peeks w.r.t its 

average [49]. In that section, the effect of sparsely mapped subcarriers on both energy and 

PAPR will be demonstrated under the same waveform shape. To make fair comparison, normal 

OFDM signal is compared against SFDM under the same rectangular window as shown in Fig. 

10a. Sparsely coding subcarriers (with active 8 subcarriers) lead to the predicted reduced 

symbol energy of about 0.25; while normal OFDM (densely modulated subcarriers) produces 

symbol energy of about 1.625. Energy reduction per the same transmitted bit rate represents a 

critical point for mobile battery based systems. Improved energy efficiency stems from the fact 

that the proposed SFDM activates lower number of sinusoidal subcarriers in symbol creation 

and the information was conveyed through pattern distribution of the subcarriers between 

active/passive states. On the other hand, without applying any PAPR reduction technique, 

Fig.10b, demonstrates the reduced PAPR for sparsely coding subcarriers. 

 

 

 

 
 

 

Fig. 9. Acceptable data recovery even for consecutive subcarriers 

6. Conclusion  

In this paper, a combinatorial multicarrier sparsifying (mapping) formulation in 

frequency domain was presented. Activating smaller number of subcarriers from the whole 

available (according to combinatorial mapping) gives rise to frequency domain sparsity. 

The double sparsity of the formulated sparse data model in frequency domain besides the 

already known channel sparsity in time domain, give us the chance for applying the same 

sparsity based super-resolution algorithm for jointly recovering data and channel under any 

non-orthogonal waveform shape. The sparsely subcarrier mapping seems as random 

subcarriers pattern that was exploited for adaptive equalization with minimum pilot 

symbols and without need for knowing neither channel sparsity order nor optimum pilot 

pattern search. It is worth mentioning that the proposed SFDM takes advantages of 

multicarrier system with reduced number of subcarriers. Spectral efficiency comes from 

the supported non-orthogonal smooth waveform and reduced GI, along with minimizing 

pilot symbol rate. Moreover, reducing number of active subcarrier has attractive 

consequences on PAPR reduction and energy saving per symbol. Based on the observation 

that, sparser signal can be recovered even under lower SNR ratios, Sparsity adaptation was 

introduced as alternative strategy instead of redundancy based channel coding. 
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Corresponding immunity can be provided through increasing sparsity (by decreasing 

number of active subcarriers). Finally, the proposed scheme can be adapted to append the 

modulation group candidates in serving 5G mobile communications. 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 
 

(b) 

Fig. 10. (a) sparsely coded OFDM symbol against normal OFDM symbol, (b) Effect of sparsely 

mapping on PAPR  
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لقياس واسترجاع سمات القناة اللاسلكية و المعلومات طريقة  موحدة   

 لنظام التعديل للحوامل الغير متعامد معتمدة علي الاحساس المختصر

 الملخص العربي

 حمشيبا في اٌضمه ٌهزا فإن طشق الاحغاط   (sparseيخخز عٍىن اٌمىىاث اٌلاعٍىيت عٍىن مخىاثش ) 

( يمىه حطبيمها ٌمياط أوثش دلت ٌغماث اٌمىاة اٌلاعٍىيت مه اٌطشق compressive sensing)اٌمخخصش 

ٌم يطبك لاعخشجاع اٌمعٍىماث في حاٌت اٌخعذيً اٌمخعذد اٌمخخصش اٌخمٍيذيت. و باٌشغم مه رٌه فإن الاحغاط 

اٌحىامً لأوه لا يمىه أن يىىن مخىاثش لا في اٌضمه و لا في اٌخشدد. في هزا اٌبحث وغخعشض طشيمت جذيذة 

ٌمياط و اٌمخخصش ٌىٌيذ حعذيً مخعذد اٌحىامً بطشيمت مخىاثشة ٌخمىىه مه حطبيك اٌطشق اٌحذيثت ٌلإحغاط 

اعخشجاع ولا مه عماث اٌمىت و اٌمعٍىماث اٌمشعٍت عٍيها معا بىفظ اٌطشيمت. طشيمت اٌخىٌيذ حعخمذ عٍي 

لً مه اٌعذد اٌىٍي ٌٍحىامً و اٌمجاي اٌضخم ٌٍخىافمياث بيه اٌحىامً بحيث يخم اسعاي عذد حىامً وشطت أ

هزة اٌطشيمت حمىىىا  حىوه اٌمعٍىمت مىجىدة في حىصيع اٌحىامً اٌىشطت معا و ٌيظ في وً حامً عٍي حذي. 

مه اعخشجاع ولا مه اٌمىاة و اٌمعٍىماث بىجاح و وغب خطاء ألً ححج ظشوف ضىضاء أعىاء مه اٌطبيعي 

مخعامذة بذون معٍىماث مغبمت و لا معشفت دسجت اٌخىاثش  وما حعخبش طشيمت عامت لاعخشجاع اٌحىامً اٌغيش

 ٌٍمىاة و لا حخي اٌبحث عه أفضً حشحيب ٌٍحىامً اٌمخصصت ٌٍخذسيب.


