555

Journal of Engineering Sciences
Assiut University
Faculty of Engineering
Vol. 44
No. 5
September 2016
PP. 555 — 565

DEVELOPMENT OF DYNAMIC MODEL
FOR VIBRATION CONTROL OF FLEXIBLE BEAM

Mark Adel, Khalil Ibrahim, Abdel-Rassoul Gad, Abo El-Makarem Khalil
Department of Mechanical Eng., Faculty of Engineering, Assiut University, Assiut, Egypt
Received 30 May 2016; Accepted 29 June 2016

ABSTRACT

The present study aims at developing a new dynamic model for vibration control of a composite
carbon cantilever beam. The finite element method (FEM) is used to derive the introduced model.
Modal analysis is performed on the cantilever beam using ANSYS software package and results
were compared with similar published work using ABAQUS software package to validate the
results obtained from ANSYS. The theory behind the extraction of flexible beam model from the
finite element model is introduced. The eigenvalues and eigenvectors resulting from this analysis
are integrated into MATLAB, which is used to derive the state space model of the system. Through
MATLAB/ SIMULINK tools a PID controller was designed and controlled system performance
under different system inputs is studied to test the efficiency of the controller. The results show
similar responses and similar error percentage signals to various step input angles. In addition, the
system shows a good performance to sine wave input signal despite the presence of a minor lag.
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1. Introduction

Beam structures have wide applications in many engineering fields such as aeronautic and
astronautic engineering, mechanical engineering, and civil engineering. Vibration of beams
causes a loss of system stability and eventually leads to system failure. If the flexibility of the
structures is large, nonlinear vibrations with large amplitudes will continually occur for a
long time under the external forces, which will inevitably influence the structure normal
work and even result in the structural fatigue damage [1]. Therefore the idea of
suppressing/attenuating structural vibrations is of a great importance for enhancing safety
and improving system performance. So far, the problems of structural vibration have
attracted the attention of numerous researchers' attention. The proposed techniques to
minimize the structural vibrations, in general, consist of two main categories; passive control
systems and active control systems. Passive systems add damping to the structure or isolate it
from the source of environmental excitation, thus reduce its vibration. These systems have
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been widely used because of their simplicity, reliability and low cost, however, their control
capacity is limited. In the actively controlled system, control forces are generated using an
external energy source and applied to the structure through actuators according to a
prescribed control algorithm. Active systems have the advantage of strong control capacity
and can be designed to influence a number of vibration modes [2].

The main step towards a valid study on the effect of control system on flexible beam
response is to obtain the beam model; hence beam vibration analysis must be performed
first. Several studies have been carried out to investigate the vibrations of cantilever beam
under active control systems (e.g. Xu et al. [3], H. Nasser et al. [4] and Khot et al. [5]).

The objective of this work is to develop a new dynamic model for the vibration control
of a cantilever beam using the finite element analysis. Since real systems are usually quite
complicated when viewed in detail, an exact analysis of any system is quite complicated.
Thus, simplifying assumptions must be made to reduce the system to an idealized version
whose behavior approximates that of the real system. The process by which a physical
system is simplified to obtain a mathematically tractable situation is called modeling [6].
The resulting simplified version of the real system is called the model of the system.

In the current study the dynamic model of a composite carbon cantilever beam is
derived from the results of a 2-D modal analysis of the beam FEM model performed using
ANSYS software. The extraction of system model and the study of system response to PID
controller are carried out in a MATLAB based environment.

This paper is organized as follows. In section Il beam properties are presented. The finite
element analysis of the studied cantilever beam is discussed in section 111 while the extraction
of system model is described in section IV. In section V, design of the controller and
simulation of system response are presented, followed by results discussion in section V1.

2. Composite carbon cantilever beam

For the present analysis, a composite carbon cantilever beam is studied as shown in Fig.
1. The beam dimensions are similar to those used by H. Nasser et al. [4].
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Fig. 1. Composite carbon beam geometry

Table 1.
Mechanical properties of composite carbon cantilever beam
Young's Modulus of Composite Carbon E =41.5GPa
Poisson's Ration of Composite Carbon v =0.042
Density of Composite Carbon p = 1480 kg / m?
Area Moment of Inertia 1=1.83x 107" m*




557
Mark Adel, et al., Development of dynamic model for vibration control of flexible beam

3. Finite element analysis
3.1. Software validation

First, a validation of the software result was performed through a static analysis of the
beam when subjected to tip load of 10 N and comparing the maximum deflection with that
of the mathematical value. The result is shown in Fig. 2. From the above figure, the
maximum deflection (at tip) is 0.4356 m as per the mathematical value.

P 10 % 0.4633

3E] 3+ (415+ 109)(1.83 10~ 1)
L—ﬁ-

Fig. 2. Static analysis of beam when subjected to tip loading of 10N
3.2. FE Analysis of beam

Free vibration modal analysis is performed on the beam in which BEAM3 element is used
for the analysis. The Block Lanczos method is used to find the eigenvalues and the eigenvectors
normalized with respect to the beam mass. Eigenvectors corresponding to the Y-component
degrees of freedom are used in the vibration analysis. The beam was divided 10 elements and
10 modes were extracted. The shapes of the first 3 modes are shown in Fig. 3.

= 0.4356m
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First Mode Second Mode

Third Mode

Fig. 3. Modal analysis of composite carbon beam

The results of the first 3 modes extracted from ANSYS were compared with the first 3
modes extracted from ABAQUS by H. Nasser et al. [4] as shown in Table 2.

Table 2.
Modal analysis results obtained from ANSY'S

Mode No. | Natural frequencies (Hz) - ANSYS | Natural frequencies (Hz) - ABAQUS
1 5.1688 5.1715
2 32.3923 32.486
3 90.721 91.399

Now the analysis is performed on aluminum beam and the result compared with
composite carbon beam as shown in Fig. 4.
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Fig. 4. Modal analysis showing first mode of composite carbon and aluminum beams

The above results could be summarised in Table 3.

Table 3.
Modal analysis performed on composite carbon and aluminum cantilever beams
Young's . . . First Mode . .
Material Modulus POFZZS{?(;] S Densrl%(kg / Frequency Tip ?ﬁ::ﬁ;; tion
(GPa) (Hz)
Composite
Carbon 415 0.042 1490 5.168 6.6908
Aluminum 70 0.35 2800 4.897 4.883

It is clear from Table 3 that composite carbon shows a higher natural frequency and a
higher tip deflection compared with the aluminum beam, which indicates a higher flexibility.

4. Beam model

4.1. State space model

The construction of mathematical model analytically for complicated real life dynamic
structures is very difficult and time consuming. This itself may become constraint in
implementing active vibration control strategies for real life application. Therefore in
present study extraction of the mathematical model of a dynamic system from the results
of modal analysis of its finite model done in ANSYS is illustrated.

C —>X
41
2
m —— > F
ﬁ/\_
k

Fig. 5. Mass Spring Damper System

4.1.1. Modal analysis
The equations of motion of a multi degree of freedom system under external forces (an
example is shown in Fig. 5) are given by:

[m]X + [c]x + [k]x = F. Q)

Since [m], [c] and [K] are non-diagonal matrices, the above expression leads to n
coupled second order differential equations. To uncouple these equations, first the
eigenvalue problem is solved for equation (1) and the eigenvectors are obtained as Xq), X2,
... X@m- The modal matrix for the system is defined as:

%] = Xy %@ - - - Xl 2

For a multi degree of freedom system with the assumption of proportional damping, the
solution of equation 6 can be expressed as a linear combination of the normal modes as:
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X(t) = DxalXp 1), ©)

where X,(t) is known as the displacement in principal coordinates. If the normal modes
are normalized with respect to mass, the equations of motion in the principal coordinates
can be written in the form of:

Xpi + 2&iwixpi + wiPXpi(t) = Fri(t), (4)
wherei=1,2,...,nand
Fo(t) = [Xa]" F(1). )

Fo(t) is the vector of forces in principal co-ordinates. Thus, a set of n uncoupled
differential equations of the second order is obtained from the set of n coupled differential
equations of the second order. These n uncoupled differential equations of the second order
are converted into the state space form as 2n differential equations of the first order. A
general algorithm for analyzing a vibrating structure using ANSYS and MATLAB [8] is
summarized in the following section.

4.1.2. General theory of model extraction

The state-space model of the system may be constructed by using eigenvalues and
eigenvectors normalized with respect to mass. The state space representation model is
described by the following equation [10]:

X =Ax+Bu (6)
y=Cx +Du @)

where, x is column vector representing the state of the system, y is output matrix, u is
input matrix, A is system matrix, B is input matrix, C is output matrix and D is direct
transmission matrix. The matrices A, B, C and D of equations (6) and (7) for a system with
n modes can be written as follow [9]:

0 1
[_wlz =28 wq

B

—Wn _anwn

, (8)

S |

B= , (9)

where Fy = [Fp1 Fpo . . . Fpu] " is the force vector in principal co-ordinates. Value of C
depends upon the output of interest. Since the values of displacement of the nodes are
desired, C is given by
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Xp11 0 Xpi2 O
0 0 0 0

C= ,
Xp21 0 Xxpoo 0 ...

(10)

where Xq11, Xn12, - . . are the elements of x,, the modal matrix normalized with respect to
mass. D is the direct transmission matrix. Here,

D = [0]. (11)

In this way the system matrices A,B,C and D may be written by inspection once the
eigenvalues and eigenvectors are known. By importing eigenvalues and eigenvectors in
MATLAB, matrices A, B, C and D can be constructed.

4.1.3. Model extraction

The results obtained from ANSYS can be used in MATLAB to obtain a suitable model of
the flexible beam for application of a control method. An approach to this is by extracting
eigenvalues and eigenvectors obtained from modal analysis in MATLAB to be used for
deriving a state space model of the system [5]. The results of the FEM analysis are written to
a file with the extension .eig, which is read in MATLAB. As per the below figure, the main
interest will be node 2 at the tip (see below Fig. 6) where the maximum deflection occurs.

1 2 4 5 & 7 8 5 10 11 2

Fig. 6. Nodes of the cantilever beam (11 nodes)

The eigenvalues and eigenvectors of the mentioned system are extracted in MATLAB
using the code "ext56uy.m". The eigenvegtorois found to be as follows:

32.393
90.721
177.9
294.53
441.22
619.03
829.29
1072.2
| 1332.8
Frequency response for the full model for all 10 modes is plotted in Fig. 7.

The state space representation model is described by equations (6) and (7) where the state
space matrices A, B, C and D are derived for the full model and are expressed as follows:

5. Control simulation
5.1. Controller design

Simulation of the virtual prototype has been accomplished by combining
MATLAB/Simulink to ANSYS software package. The resulted outputs of the virtual
prototype are then feedback to the controller in MATLAB/Simulink for calculation of the
next command signal. The physical system is shown in Fig. 8 while the schematic diagram
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3601

in Fig. 9 illustrates the inputs and outputs variables for the virtual prototype. The DC motor
is modeled by the following transfer function:

P(s) =

6(s) _
V(s) ~ (Js+b)(Ls+R)+K> %

K rad/sec
[ ]

The parameters in equation (12) are summarized in Table 4.
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Fig. 7. Frequency response of full model
Table 4.
Parameters of DC Motor
Parameter Description Value Unit
J Moment of inertia of the motor 0.01 Kg/m?
b Motor viscous friction constant 0.1 N.m.s
K Electromotive force constant 36.5x 1073 V/rad/sec
Motor torque constant 36.5x 1073 N.m/Amp
R Electric resistance 2.96 Ohm
L Electric inductance 2,51 H
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The required end position angle was found to be approximately 20° as deduced from the
tip deflection by FE analysis of the beam. For the current study PID controller is designed
using the Simulink Design Optimization (SDO) tool in MATLAB as shown in Fig. 10. This
tool will be used to automatically tune controller parameters to meet time-domain
requirements. The optimization of any design parameter is carried out by expressing it as a
Simulink signal and connecting this signal to the Signal Constraint block provided by SDO.
The Signal Constraint block can constrain the signal by either graphically shaping the desired
response or specifying a reference signal trajectory as shown in Fig. 8, then, it adjusts the
values of chosen model parameters to satisfy the constraints. The signal constraint block GUI
is updated during optimization so that the optimization progress can be displayed [7].
Optimization iterations are performed on varying ranges of K, K Kgand N (filter
coefficient) parameters. The system response to step input based on optimized parameters is
simulated assuming negligible natural damping.

Input DC Flexible Output
Controller —> —>
Motor Beam

Sensor

Fig. 8. Block diagram of physical system
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angle
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0.025152+0.28085+0.2572 ¥ = CxtDu

Step PID Controller 5T Motor Flexible Besm Scopet

Clocx To Worspace1

»
»
To Workspace?

Fig. 9. Simulation block diagram of vibration control system

s /\ /Jpper signal Constraint

ower Signal Constraint

Fig. 10. System :d'eéjign optimization
6. Results and discussion
To test the capability of the developed control model, a step input is applied to the beam. From
the signal constraint optimization, the PID controller parameters were found to be as follows:

K, = 3000, K; = 10000, K4 =50 and N = 3044.
The system response to a step input of 20° is simulated and plotted in Fig. 11.
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Fig. 11. System response of controlled model to a step input of 200

The variations of the system response and error percentage signals with time are plotted
in Figs. 12, 13, 14 and 15 for step inputs of 20°, 15°, 10° and 5° respectively.

= T T T T T T T T T o
= L = 15k
E
sl £ 1o
g st
T L L L L L r L L L a L L L L L r L L L
o 3 4 L3 £ l=) 1z " = 1= o o z 4 13 £ l=) iz il i3 1= o
tme Eec) tne Eec)
jl=x] 150
Y
.
- g b 0
= =
g E =
o at ]
ot
=0 L L L L L L L L .50 L L L L L L L L
a I 4 - & o 1z W & ik o a z 4 B & 1@ 1z i’ 18 15 o
tme Eec) tne Eec)

Fig, 12. Variations of the controllad system response and
error signal 2 step mput of 200

Fig. 13, Variztions of the controllad system response and
error signal 2 step mput of 130
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Fig. 15, Variztions of the controlled system response and
error signal 2 step mput of So

In order to validate the efficiency of the introduced controller, a different input for example a
sine wave pattern with amplitude of 20° (desired reference) and a frequency of 1 rad / sec. The
response is simulated and plotted in MATLAB command window as shown in Fig. 16 (target
input is shown by a blue continuous curve while the actual output is shown by a red dotted line).
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Fig. 16. System response to a sine wave input B"F(éefhplitude 20° and a frequency of 1 rad / sec

7. Discussion

Several comments are deduced from the obtained results: the extraction of the full model of
the studied system from the finite element model proves to be an effective approach when used to
implement the control system model. Optimization tool is shown to be efficient when studying
system performance minimizing the time taken in trial and error selection of parameters. With the
variation of desired step angle between 20° 15° 10° and 5°, the system in all four cases shows
very similar response with the system initially showing an overshoot of about 15% then it
stabilizes and the error percentage reaches zero at around 6 seconds which proves the efficiency
of the controller. The system performance under sine wave input is another validation of the
controller efficiency despite the minor phase lag between the desired input and the actual output.

8. Conclusion

Finite element analysis using ANSY'S software is shown to be a reliable and effective method when
modeling such dynamic structures. While the current PID control method is quite reliable, an improved
controller to achieve better system performance inspires future work by using intelligent control system.
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