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Abstract 

In this paper, the CuCr2O4 spinel catalyst was synthesized by the Pechini method, and its activity was evaluated in catalytic 

oxidation of CO. CuCr2O4 spinel catalyst was characterized by XRD, BET, H2-TPR, and SEM. This catalyst has a good ability 

in CO oxidation. The effects of three synthesis variables (EG/citrate, citrate/nitrate ratio, and calcination temperature) and 

reaction temperature as an operational variable on CO conversion were investigated. Based on the results, the optimum neural 

network architecture succeeded to predict CO conversion data with an acceptable level of accuracy. The model predicted that 

the relative importance of variables is as follows: calcination temperature > citrate/nitrate ratio > EG/citrate ratio. The optimum 

neural network architecture was used as a fitness function for the genetic algorithm to find the optimum catalyst. Under the 

optimum condition (EG/citrate: 3.24, citrate/nitrate ratio: 0.62 and calcination temperature: 620 °C), the predicted optimum 

value of CO conversion was found to be in a good agreement with the corresponding actual value. 
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1. Introduction 

Carbon monoxide is one of the main gaseous 

pollutants, which is generally released from the 

combustion of fossil fuel in diesel engines [1]. There 

are many methods for removal of CO including 

adsorption, thermal elimination, and catalytic 

oxidation. Catalytic oxidation of CO is proved to be 

one of the most efficient techniques to remove this 

pollutant [2, 3]. Present catalysts are supported noble 

metal catalysts based on platinum, palladium, and 

rhodium [4, 5]. High cost, low stability, and lack of 

noble metal limit their applications. Spinel-type oxides 

are interesting catalysts for CO oxidation. They have 

lower cost and higher thermal stability than supported 

noble catalysts [6, 7].  

Some types of catalysts in chemistry have a special 

structure. Spinel metal oxides are one of them which 

have attracted much attention for their remarkable 

catalytic properties, for example in catalytic 

combustion of volatile organic compounds. The 

compositions of spinel catalysts are interdependent 

and the total mole fraction is considered one. The 

composition and metal type used in spinel catalysts 

affect the structure and activity of the catalyst. On the 

other hand, the synthesis process of these catalysts is 

usually difficult. When using traditional methods, it is 

difficult to determine the combined influences of each 

component the composite on the activity of catalysts, 

particularly interaction them effect. Statistical 

strategies can provide facile and effective approaches 

to establish a quantitative relationship between 

dependent and independent variables [8]. 

There are some papers about the application of 

spinel-type oxides in CO oxidation. CuCr2O4, 

CuCo2O4, and CoCr2O4 spinels were found to be very 

active for CO and hydrocarbons oxidation, as well as 

for catalytic removal of NOx and diesel soot [9-15]. It 

has been proven that mixed oxides exhibit improved 

property rather than individual oxides, especially in 
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environmental catalysis. These metals are 

environmentally friendly [16-19]. Catalyst design is a 

complex process involving many steps and variables 

as well as complex interactions among these variables, 

which make the experimental studies quite expensive 

and time-consuming [20, 21]. With the advancements 

in the scope of information technology,  catalysts 

design by computer is very important [22, 23]. 

Compared to traditional approaches, catalyst design 

not only can come to better catalyst design by a few 

experiments within a short period, it eliminates the 

need for knowing catalytic mechanisms completely. 

Regarding artificial neural networks (ANNs) 

capabilities in terms of function approximation and 

genetic algorithm (GA) capabilities in terms of 

searching the complex spaces, combined ANN-GA 

approaches can be used to model and optimize catalyst 

activity [24]. Hou et al [21] developed an ANN (called 

BP network) to design a VSbWSn (P, K, Cr, 

Mo)/SIAL catalyst for propane ammoxidation. Huang 

et al. [24] used a back-propagation network along with 

the Levenberg–Marquardt training method to simulate 

the relations between components of the catalyst, C2 

selectivity, and methane conversion. In other work, 

they used a hybrid ANN-based GA to design a catalyst 

for the oxidative coupling of methane [25]. They 

succeeded to enhance methane conversion and C2 

hydrocarbons selectivity. They showed that the 

proposed catalyst design approach was highly efficient 

and universal. Valero et al. [22] combined neural 

networks and GA to optimize the discovery of new 

materials and process conditions in catalytic reactors 

at an industrial scale. Zonouz et al. [26] used neural 

networks and GA to optimize the toluene oxidation 

activities of sol-gel synthesized 

La1−xCexMn1−yCuyO3 perovskite-type catalysts. In 

other work, Soleimanzadeh et al. [27] employed two 

statistical methods including the response surface 

method (RSM) and artificial neural network, for 

modeling and optimization of selective catalytic 

reduction of NOx with NH3 (NH3-SCR) over 

V2O5/TiO2 nanocatalysts. In these two works, the 

authors successfully optimized the catalysts. 

The aim of this work is modeling and optimization 

of preparation conditions of CuCr2O4 obtained by the 

Pechini method for catalytic oxidation of CO. Four 

factors, namely EG/citrate, citrate/nitrate ratio, and 

calcination temperature and reaction temperature were 

modeled simultaneously using an ANN. The obtained 

optimum structure of ANN was used as a fitness 

function for hybrid GA to find the optimum catalyst. 

2. Experimental Section 

2.1. Catalyst preparation 

Cu(NO3)2·3H2O, Cr(NO3)3.9H2O, Citric acid 

monohydrate, and Ethylene Glycol (EG) were 

purchased from Sigma-Aldrich company. Catalysts 

were prepared using the Pechini method. 

Stoichiometric amounts of Cu(NO3)2.3H2O and Cr 

(NO3)3.9H2O with a mole ratio of 1:2 were dissolved 

in a minimum amount of distilled water (50 ml of 

distilled water). Citric acid and ethylene glycol were 

used as the monomers for the formation of the 

polymeric matrix. Ethylene glycol and citric acid in 

the molar ratio of 4:1 were added to metal nitrates 

solution. Three major reactions: chelation, 

esterification, and polymerization successively 

occurred and black polymeric precursor was formed. 

The resulting mixture is heated to 80°C; was 

evaporated the water and forms a gel. Then the gel was 

burned at 200 °C and turned into a dark powder. The 

powder was calcined at 700 °C for 5 h [13]. 

 

2.2. Catalyst characterization 

Identification of crystalline phases carried out using 

X-ray diffraction (XRD) on a SIEMENS D500 diffract 

meter (Germany) and Cu Kα radiation (λ = 1.54 A). 

Diffract grams were recorded with a step of 0.25˚ per 

minute for 2θ between 10 and 90˚. The BET surface 

area was estimated by N2 adsorption-desorption 

porosimetry at 77 K using an Autosorb-1 

Quantachrome analyzer. Infrared (IR) spectra were 

recorded with a Bruker 27 FT-IR spectrometer using 

the Universal ATR Accessory in the range from 4000 

to 400 cm−1 with a 4 cm−1 resolution. The temperature-

programmed reduction (TPR) experiment was carried 

out in a Micrometritics Autochem 2900. The H2-TPR 

experiment was performed with a 5% H2/Ar gas flow 

at 20 standard cubic centimeters per minute (SCCM) 

and a linear heating rate of 10 ºC/min at 50-700 ºC. 

The morphology of the spinel catalyst was determined 

via scanning electron microscopy (SEM) by TESCAN 

(Czech Republic) instrument. 
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2.3. Catalytic activity 

The activities of catalyst in CO oxidation were 

tested in a conventional fixed bed reactor (l = 50 cm, 

i.d. = 1 cm) under atmospheric pressure and at 

different temperatures between 50-300 °C. An amount 

of 500 mg of catalyst was placed between two quartz 

wool plugs.  The total flow rate of feed was 200 

cm3min-1. Feed composed of 2% CO, 20% O2, and Ar. 

The feed and gas product analyzed using a Varian 

3400 equipped with a TCD detector and a molecular 

sieve 13X (Supelco) packed column. Before the data 

were obtained, reactions were maintained for some 

time at each temperature to ensure steady-state 

conditions. The conversion efficiency was calculated 

by equation 1. 

𝐶𝑂 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝐶𝑂𝑖𝑛 − 𝐶𝑂𝑜𝑢𝑡

𝐶𝑂𝑖𝑛
× 100 

(1) 

3. Computational Details 

3.1. Design of experiments 

      In this study, the effects of the EG/citrate, 

citrate/nitrate ratio, and calcination temperature on the 

conversion of CO (response) were studied. Central 

composite design (CCD) was employed to design the 

experiments. For each factor, 5 levels were defined. 

These values were designated by the codes –1.6, –1, 0, 

+1, and +1.6 and are given in table 1. The ranges of 

the independent variables were determined by 

considering the literature. A total of 20 experiments 

were designed using CCD. The designed experiment 

included six replicates at the central point, six ones at 

axial points, and eight ones at factorial points.  

 
Table 1 

The levels of the independent variables in actual and coded value 

parameter 
Level 

-1.681 -1 0 1 1.681 

EG / Citric acid 2 2.8 4 5.2 6 

Citric acid / total 

nitrate 
0.2 0.32 0.50 0.68 0.8 

Calcination 

Temperature (°C) 
600 640 700 760 800 

 

3.2. Artificial neural network 

      Artificial neural networks are used in a broad 

range of applications such as the prediction of 

thermodynamic properties. ANNs usually consist of 

an input layer, an output layer, and one or more hidden 

layers [28]. The number of neurons in the input and 

output layer depends on the respective number of 

dependent and independent parameters [29]. 

Dependent and independent parameters are considered 

as input and output parameters, respectively. The 

output of each neuron is calculated by equation 2 [30]. 

y𝑗
ℎ = 𝑔 (∑ 𝑤𝑖𝑗

ℎ

𝑛

𝑖

𝑦𝑖
ℎ + 𝑏𝑗

ℎ) 
(2) 

Where 𝑦𝑗
ℎthe output of the jth neuron is, 𝑤𝑖𝑗

ℎ  is 

weight connecting ith neuron (from the previous layer) 

to jth neuron in the current layer, 𝑦𝑖
ℎ is the output of 

the ith neuron, 𝑏𝑗
ℎ is a bias of jth neuron and g is a 

transformation function. The transformation functions 

are usually hyperbolic tangent sigmoid (tansig) and 

linear (purelin) which are defined in equations 3 and 

4, respectively [31]: 

𝑦𝑗 =
1

1 + 𝑒−𝑆𝑗
  

(3) 

𝑦𝑗 = 𝑆𝑗  (4) 

One of the reasons for using these transformation 

functions is the ease of evaluating the derivatives for 

minimization of the error function. The experimental 

data were divided into three sets including training, 

validation, and testing data sets. The training data set 

was used to optimize the weights and biases of the 

network to minimize the error between experimental 

and predicted data while testing the data set was used 

to examine the ability of the network to predict the data 

that not used in the training process. The difference 

between experimental and testing data can show the 

ability and accuracy of the trained neural network. 

The selection of a training algorithm is a critical 

step in neural network modeling [31]. Several training 

algorithms exist for optimization of weights and biases 

such as back propagation, gauss-newton, and gradient 

descent, but the back-propagation method usually has 

better results in the prediction of material properties. 

The number of neurons in the hidden layer has a 

significant role in the prediction ability of the network 

[30]. If an ANN has too few neurons, it may not have 

enough degrees of freedom to precisely approximate 

the desired function. If an ANN has too many neurons, 

it will learn the exemplars perfectly, but its additional 

degrees of freedom may cause it to show implausible 

behavior for untrained inputs; it then presents the poor 

ability of generalization. Since no information about 

the optimal number of neurons has been reported for 

the calculation of saturated properties, trial and error 
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is the best way to determination the optimal number of 

neurons. 

To examine the efficiency and accuracy of the 

proposed ANN model for the prediction of saturated 

properties of refrigerants, some statistical parameters 

including root mean square error (RMSE) and 

correlation coefficient (R2) was utilized which 

represented in equations 5 and 6 [31]. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐴𝑖

𝑒𝑥𝑝
− 𝐴𝑖

𝑐𝑎𝑙)
2

𝑁

𝑖=1

  

(5) 

𝑅2 =
∑ (𝐴𝑖

𝑒𝑥𝑝
− 𝐴̅)

2𝑁
𝑖=1 − ∑ (𝐴𝑖

𝑒𝑥𝑝
− 𝐴𝑖

𝑐𝑎𝑙)
2𝑁

𝑖=1

∑ (𝐴𝑖
𝑒𝑥𝑝

− 𝐴̅)
2𝑁

𝑖=1

 
(6) 

Where 
exp

iA  is the ith experimental value, 
cal

iA is 

the ith predicted value with ANN model, A  is the 

average value of experimental data and N is the 

number of experimental data points. In terms 

of RMSE, the lower the better. R2 explains to what 

extent the variance of one variable explains the 

variance of the second variable. So, if the R2 of a 

model is 0.50, then approximately half of the observed 

variation can be explained by the model's inputs. 

The relative importance of the input variables on 

the output can be evaluated using neural network 

weights according to equation 7. 

𝐼𝑗 =
∑ (𝑤𝑠𝑗𝑢𝑗𝑘 ∑ 𝑤𝑖𝑗

𝑚
𝑖⁄ )𝑛

𝑗

∑ ∑ (𝑤𝑖𝑗𝑢𝑗𝑘 ∑ 𝑤𝑖𝑗
𝑚
𝑖⁄ )𝑛

𝑗
𝑚
𝑖

 
(7) 

where Ij is the effect of jth input factor, wij is the 

weight that links the ith input to the jth neuron of the 

hidden layer, ujk is the weight which attaches jth 

neuron of hidden layer to kth output neuron, m is the 

number of input neurons (number of variables), n is 

the number of hidden layer neurons, and k is the 

number of outputs of the network which equals to 1 in 

the present work. 
 

3.3. Genetic algorithm 

In the proposed method, after developing the ANN 

model, a genetic algorithm (GA) was used to optimize 

input variables, to achieve maximum CO conversion. 

Each chromosome in the GA included three genes 

indicating three variables, namely Co mole fraction, 

the ratio of citric acid to total nitrate, and calcination 

temperature. All optimization calculations were done 

using MATLAB TM genetic algorithm function in the 

command line. The selected parameters for the GA 

function are shown in Table 2. Figure 1 presents the 

methodology used in this paper at a glance. 
 

Table 2 

Selected parameters for genetic algorithm function 

Value or type Property 
Value or 

type 
Property 

Constraint 

dependent 

Mutation 

function 

Double 

vector 

Population 

type 

Stochastic 
uniform 

Selection 
function 

0.8 
Crossover 
fraction 

Scattered 
Crossover 

function 
Rank 

Fitness 

scaling 
 

 
Fig. 1. Flow chart of optimization approach in this work 

4. Results & Discussion 

4.1. Characterizations 

Figure 2 shows the XRD patterns of the CuCr2O4 

spinel catalyst. A comparison of the XRD pattern with 

the standard card of CuCr2O4 (JCPDS 35-1321) 

confirmed the formation of spinel structure. No 

additional peaks were corresponding to the secondary 

phase or initial materials in the catalyst XRD pattern, 

which show metals are completely dissolved in the 

spinel structure. Figure 3 shows the XRD patterns for 

some of synthesized catalysts. As it clear in Figure 3, 

all of catalysts were synthesized in spinel structure. 
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Fig. 2. XRD pattern of CuCr2O4 spinel 
 

 

 

Fig. 3. XRD pattern of CuCr2O4 spinel: A) EG/CA=4, CA/TA=0.4, 

Tc=700 °C, B) EG/CA=2, CA/TA=0.4, Tc=600 °C, C) EG/CA=4, 
CA/TA=0.2, Tc=700 °C, D) EG/CA=4, CA/TA=0.8, Tc=700 °C 

 

The infrared spectra in the range 400–3600 cm-1 of 

the synthesized spinel are presented in Figure 4. It can 

be seen that few organic groups are present in the 

synthesized spinel catalyst. The band at 3440 cm-1 is 

assigned to O-H stretching vibration [32]. The band 

around 1560 cm-1 is assigned to C=O stretching in 

carboxyl or amide groups. These bonds can also be 

related to the adsorption of carbon dioxide on the 

surface of samples [33].  

The spinel-type oxide was shown two bands in the 

700–400 cm−1 region, that it is the stretching vibration 

of the metal-oxygen bond. [34]. The band around 500 

cm−1 is assigned to the vibration of Cu in the 

tetrahedral environment of the oxygen atom (Cu–O) 

and the band above 600cm−1 corresponds to the 

vibration of Cr in the octahedral (Oh) site of spinel. 

The appearance of these bands confirmed the 

formation of spinel structures. The bands around 615, 

611, and 621 cm−1 correspond to bending modes of 

vibration of Cr–O in the Oh sites of spinel.  

 

 

Fig. 4. FT-IR profile of CuCr2O4 spinel 
 

The reduced ability of the spinel catalyst was 

investigated by the H2-TPR experiment. H2-TPR curve 

of the spinel sample is shown in Figure 5. The first 

reduction peak centered around 160 °C which could be 

attributed to the reduction of small and highly 

dispersed CuO particles and a second peak at 245 °C 

originated from the reduction of surface CrO3 particles 

[35, 36]. Indeed, it is often reported in the literature 

that a fraction of the exposed Cr3+ ion in chromium 

oxide becomes readily oxidized to Cr6+ along the 

calcination step in the ambient atmosphere [37]. 

Above 400 °C, there is a main reduction consumption 

which is attributed to the reduction of bulk Cu2+ ions 

of CuCr2O4 to CuCrO2, and the mixed oxide toward 

Cu0 and Cr2O3 [35, 38]. 

 

 

Fig. 5. H2-TPR profile of CuCr2O4 spinel 

 

The specific surface area of catalyst analyzed by the 

BET method and the surface area of CuCr2O4 is 12.2 

m2/g. Synthesis conditions can affect the specific 

surface area [39]. The specific surface area does not 

significantly affect the catalytic activity of the spinel 

catalyst for oxidation. Morphology of spinel catalyst 

was studied by SEM. The result from SEM (Figure 6) 

shows that the morphology of catalyst is irregularly 

shaped grains. As can be seen, the particle size 
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distribution is almost the same and its size is smaller 

than 100 nanometers. 

 

 

 

Fig. 6. SEM image of CuCr2O4 spinel 

 

4.2. Catalytic activity 

The temperature chart for CO conversions over the 

CuCr2O4 spinel is shown in Figure 7. CO conversion 

increases with temperature. CuCr2O4 spinel catalyst 

showed high activity in the range of 50–200 ºC. 90% 

CO conversion is achieved only at 170 °C. 

 

 

Fig. 7. The temperature profile of CO conversion over CuCr2O4 

spinel 

 

5. ANN modeling & validation  

5.1. Topology Selection 

The first step in the course of neural network 

modeling is to develop a database to train the network. 

Required database for training the neural network was 

obtained from experimental design at different 

temperatures. For modeling purposes, average CO 

conversion over repeated central points was used. A 

set of 90 experimental data points was used to develop 

the neural network model. Table 3 provides a 

summary of the matrix of experiments with the 

experimental results for CO conversion. 

The next step is to declare input variables. 

Corresponding input variables to CO conversion 

estimation included the ratio of citric acid to total 

nitrate, the ratio of ethylene glycol to citric acid and 

calcination temperature, representing catalyst 

preparation parameters, and the reaction temperature, 

as an operational variable. Then, one should proceed 

to determine optimum topology. 

The collected dataset was divided into three 

subsets, namely training, validation, and testing 

subsets, to not only find the optimum topology of the 

ANN model but have it evaluated in terms of 

correlative capability. The network randomly divides 

70% of the data as training data, assigning 15% to the 

validation category and the remaining 15% to the test 

category. Figure 8 demonstrates the values of RMSE 

versus different numbers of neurons in hidden layers, 

for the training and testing data sets. The right side of 

Figure 8 magnifies the points around the optimal point. 

RSME in train, validation and test sets should be as 

close together as possible. Figure 8 shows that these 

values are well close together. As the figure shows, the 

network with 7 neurons in its hidden layer exhibited 

the least error, thus the best topology is the network 

with 7 neurons in hidden layer. 

 

5.2. Model validation 

After using the training data to model the catalyst 

performance, the k-Fold cross-validation method was 

employed for the generalization test of the achieved 

model. This method was implemented as follows: 15% 

of whole data was considered as test data. Data were 

divided into 10 sectors, and for each sector, 14 data 

were randomly selected as test data. Figure 9 shows 

RMSE values for training and testing for various 

categories together with their average. A low 

difference was observed in RMSE values, which 

confirmed a good generalization of the network. The 

proposed neural network model has 4 input layers, 7 

hidden layers and one output layer is shown in Figure 

10. 
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Table 3 

CCD experiment matrix, experimental and ANN predicted values 

No. Variable 
NO conversion 

50 °C 75 °C 100 °C 125 °C 150 °C 175 °C 

 E
G

/C
A

 

C
A

/T
N

 

T
 C

al (°C
) 

E
x
p

. 

P
red

. 

E
x
p

. 

P
red

. 

E
x
p

. 

P
red

. 

E
x
p

. 

P
red

. 

E
x
p

. 

P
red

. 

E
x
p

. 

P
red

. 

1 2 0.50 700 4.3 0 10.9 9.4 29.0 31.7 56.3 58.4 76.7 77.8 88.8 86.9 

2 2.8 0.68 640 9.9 2.0 17.0 15.7 41.6 39.2 70.2 65.2 89.0 83.2 97.4 92.2 

3 4 0.20 700 4.6 5.4 10.9 12.5 26.6 27.6 48.0 51.0 69.1 73.1 87.2 86.3 

4 4 0.50 700 6.9 6.8 12.7 16.2 34.3 35.1 62.9 61.1 83.8 82.8 93.1 94.6 

5 2.8 0.68 760 7.2 4.1 14.6 15.5 38.9 36.9 66.9 63.1 87.3 82.7 94.0 92.7 

6 5.2 0.68 640 3.2 2.7 11.4 12.7 32.5 32.4 58.0 57.4 78.5 76.9 89.9 87.7 

7 4 0.50 700 8.3 6.8 13.8 16.2 33.6 35.1 63.1 61.1 82.9 82.8 93.5 94.6 

8 6 0.50 700 0 0 9.3 6.4 23.7 22.0 45.1 46.1 62.3 68.8 84.2 82.8 

9 4 0.50 700 7.8 6.8 14.1 16.2 34.8 35.1 63.7 61.1 82.0 82.8 93.7 94.6 

10 4 0.50 700 9.2 6.8 13.7 16.2 35.8 35.1 62.1 61.1 83.5 82.8 94.5 94.6 

11 4 0.80 700 3.7 2.6 10.7 14.4 31.2 36.0 58.5 61.7 78.4 80.4 88.2 90.3 

12 4 0.50 600 7.6 7.6 15.4 18.4 38.8 39.1 65.4 65.1 86.9 85.3 94.7 95.9 

13 4 0.50 700 9.0 6.8 13.9 16.2 35.1 35.2 61.8 61.1 83.1 82.8 93.8 94.6 

14 4 0.50 800 0 2.4 8.4 10.2 26.5 27.3 51.1 52.4 70.8 75.5 85.0 88.4 

15 5.2 0.32 760 0 3.3 8.9 9.4 25.8 23.3 49.6 46.4 67.7 69.9 87.4 83.7 

16 2.8 0.32 640 8.9 6.6 16.6 17.0 39.5 37.0 67.6 63.1 87.6 83.1 96.7 92.1 

17 4 0.50 700 8.5 6.8 15.3 16.2 34.0 35.1 60.5 61.1 83.6 82.8 93.5 94.6 

18 5.2 0.32 640 4.3 5.2 10.6 12.6 29.3 28.8 54.5 53.4 76.6 76.1 89.6 88.7 

19 5.2 0.68 760 2.0 0 10.3 8.4 28.9 26.2 55.3 51.3 74.6 73.2 87.9 85.9 

20 2.8 0.32 760 5.1 7.1 12.5 15.8 35.1 33.5 61.5 58.5 80.7 79.6 91.2 90.2 

       

 

Fig. 8. RMSE versus the number of neurons in the hidden layer for 

various data sets 

 

 

Fig. 9. RMSE values for each selected fold in 10 fold cross-

validation method for optimal networks 

 

Fig. 10. Schematic of optimum neural network topology  

     

Figure 11 shows the predicted CO conversion 

results versus experimental data for all datasets. With 

the perfect fit indicated by the solid line, results in 

Figure 11 show the good correlative capability of the 

artificial neural network model. In this prediction, the 

root means the square error is 2.29, 3.20, and 3.78 for 

the training, validation, and test data respectively. 

Besides, the correlation coefficient (R2) is 0.9948, 

0.9920, and 0.9868 for the training, validation, and test 

data, respectively. The error distribution for CO 

conversion is shown in Figure 12. The maximum error 

for CO Conversion is 7.94. It is possible to understand 
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from Figure 12 that about 87% of all data has errors 

between -4 and 4, which proves the modeling and 

prediction ability of gained ANN model. 

 

 

Fig. 11. Comparison between ANN predicted and experimental 

data 

 

Fig. 12. Error histogram for predicted data with 10 bins 

5.3. Effects of catalyst design variables 

Input parameters analysis was performed to 

determine the relative importance of CO conversion 

design parameters. The ANN model analysis was 

undertaken by equation 7. Figure 13 shows the 

significance of each parameter relative to others. The 

results of the analysis show the relative importance of 

parameters in the conversion of CO. Nevertheless, 

besides of synthesis parameters, calcination 

temperature and the ratio of ethylene glycol to citric 

acid were found to pose the highest and lowest effects 

onto the output parameter, respectively. 

To study the effect of composition and preparation 

conditions on the performance of catalysts, CO 

conversion was plotted versus each preparation 

parameter while other parameters were kept constant. 

Figure 14a shows the variations in CO conversion 

versus the citrate/nitrate ratio. This figure indicates the 

catalyst exhibits high activity when EG/citric acid 

approaches 3.2.  Figure 14b shows the variations in 

CO conversion versus citric acid to total nitrate. Figure 

shows, when the citric acid to total nitrate ratio 

approached 0.6, Catalytic activity increases. 

Regarding Figure 14c, the highest conversion was 

observed at 600 to 650 °C. At lower calcination 

temperatures, increased specific surface area caused 

improvements in spinel performance. 

 

 

Fig. 13. Relative significance of input variable on CO conversion 

 

Fig. 14. CO conversion versus catalyst design parameters. In each 

plot, other variables were fixed at the central point of experimental 
design, (●) experimental, (-) predicted 

5.4. Optimization of catalyst design variables 

The optimal condition for CuCr2O4 was predicted 

by the genetic algorithm. Table 4 indicates the values 

of different variables in the optimal catalyst. Testing 

the optimized catalyst shows the experimental results 

were reasonably close to the predicted values, further 

confirming the adequacy of the ANN model. Figure 15 

shows a comparison between corresponding 

experimental data and predicted results to the optimum 

catalyst.  
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Table 4 

Condition for optimal catalyst predicted by the GA method 

parameter  value 

Catalyst design parameter 

EG/CA 3.24 

CA/TN 0.62 

Tcal (°C) 620 

CO conversion (%) 
Predicted 93.8 

Experimental 92.9 

 

 

Fig. 15. The temperature profile of CO conversion for optimal 

catalyst, (●) experimental, (-) predicted 

6. Catalyst stability 

The stability of CuCr2O4 catalysts was investigated 

at 150 °C for 20 h. According to Figure 16, Changes 

in conversion percentage versus time are not seen. The 

catalyst showed strong stability in CO oxidation. After 

20 h, CO conversions was 82%. The reusability of 

catalyst was investigated for 5 times. In each 

experiment, the catalyst was used at 150 °C for 2 h and 

then cooled for 22 h. This experiment repeated 5 times 

and the results were shown in Figure 17. The catalyst 

activity was not changed in this series of experiments. 

 

 

Fig. 16. Stability of CuCr2O4 catalysts at 150 °C 

 

Fig. 17. Reusability of CuCr2O4 catalysts at 150 °C 

7. Conclusions 

In this study, an effort was made to model and 

optimize the catalytic of CuCr2O4 spinel catalyst in 

catalytic oxidation of CO using a hybrid ANN-GA 

approach. Spinel catalysts were prepared by the 

Pechini method. Selected main factors were EG/citric 

acid, the ratio of citric acid to total nitrate, calcination 

temperature (°C), and reaction temperature. A feed-

forward back propagation neural network was used to 

model the relationship between catalytic activity and 

selected catalyst’s design parameters. A good 

agreement was found between the experimental data 

and modeling results. The correlation coefficient (R2) 

was 0.9948, 0.9920, and 0.9868 for the training, 

validation, and test data. The sensitivity analysis 

results indicated the calcination temperature as the 

most significant parameter contributing to the catalyst 

activity. GA was applied to optimize the catalyst 

synthesis parameters. Catalyst optimization has 

increased the CO conversion from 82% in base 

catalyst to 93% in optimum catalysts. A verification 

experiment was also performed under the predicted 

optimum conditions (EG/citric acid: 3.24, citric 

acid/total nitrate: 0.62 and calcination temperature: 

620 °C), and the experimental data (92.9%) was in 

agreement with the predicted value (93.8%), that 

indicating the suitability of the model employed and 

the success of GA in the optimization of synthesis 

parameters of CuCr2O4 for catalytic oxidation of CO. 
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