Journal of Plant Protection and Pathology

Journal homepage: www.jppp.mans.edu.eg Available online at: www.jppp.journals.ekb.eg

Effect of Adding Sodium Nitrate without or with some Feed Additives in **Growing Rabbit Diets on:**

2. Nutrients Digestibility, some Caecum Fermentation and some Blood Constituents

Eman H. M. Maklad^{1*}; H. F. A. Motawe²; H. M. E. Ead³ and S. Elshafey²

Cross Mark

¹ Department of Animal Production, Faculty of Agriculture, Mansoura University, Egypt.

² Regional Center for Food and Feed, Agricultural Researcher Center, Ministry of Agricultural, Egypt.

³ Animal Production Research Institute, Dokki, Giza, Egypt.

ABSTRACT

Thirty, 14 weeks of age New Zealand White (NZW) rabbits with an average live body weight (LBW) of 2.0 Kg were divided into 10 similar groups (3 in each). The rabbits were housed in a separate cage (3 rabbits in each). Ten pelleted experimental diets were contained two levels of sodium nitrate (0 and 2%). The other four tested feed additives were sodium sulfate, clay, yeast and prebiotic. Diets refers to as R2, R3, R4 and R5 were without sodium nitrate, but with feed additives, sodium sulphate, clay, yeast and prebiotic, respectively. While, diets R6, R7, R8, R9 and R10 were with sodium nitrate and R6 without feed additives but R7, R8, R9 and R10 were with the same feed additives, sodium sulphate, clay, yeast and prebiotic, respectively. The DCP % was higher with feeding on R1, R2 and R7, TDN % was higher with feeding with R1, DCP intake g/d with R1, R5 and R7, TDN intake g/d with R1, DE Kcal/Kg was higher with feeding on R4 and R9, DE intake Kcal/d with R1 and R4 while DEI/DCPI was increased with feeding on R4, R6 and R9. The effect of the feed additives, also showed that the total VFA increased (p < 0.05) without feed additives or with added Na₂SO₄ or clay than added prebiotic. The highest values were observed with feeding on R1, R2 and R7. The highest values of NH3 concentrations were observed with feeding on R₃ and R₈ diets.Protein concentration was higher with feeding on R₄ or R₁₀ than the others. Urea - N concentration was the highest with feeding on R7, while the creatinine concentration was increased with feeding on R9 compared with the other diets. When using the feed additives e.g. probiotic without sodium nitrate (R4) or with sodium nitrate (R9) caused improving effect on the feeding values of tested diets. However, diets R1 and R6 without or with sodium nitrate respectively showed the best results in case of nutrient digestibility and feed values as well as caecum fermentation and some blood parameters.

Keywords: digestibility, rabbits, caecum fermentation.

INTRODUCTION

Tadele and Amha (2015) showed that the slow release of nitrogen from the biuret is better proportional to the energy in the diet of livestock consuming low-grade fodder, thus improving feed use and lowering the metabolic cost of eliminating excess N in urea - existing diet.

Nitrates taken up as of the soil via plant roots are usually integrated into plant tissues such as amino acids, proteins, and additional nitrogenous compounds. The principal site for exchanging nitrates into vegetable foodstuffs is the green leaf cultivation activity. Nitrates build up in the stem or stem of plants what time factors impede with natural plant developments.

Necessities for fermentable N for a hypothetically 100 % resourceful rumen fermentation (microbial intensification is most advantageous) is roughly 30 g N/kg organic material digested or 15 g N/kg dry material ingestion at 50 % digestibility. Commencing these calculations, it's come into view that nitrate could reinstate all the urea in a diet wherever animals are become accustomed to the nitrate lacking creating nitrite toxicity.

Nitrate itself is not predominantly poisonous to animals. Nitrates inspired by ruminants are on the whole condensed to NH₃ and then engrossed and excreted as urea in the urine or transformed by bacterial into bacteria protein. Nitrite, individual of the transitional products, is the foundation of "nitrate poisoning". A number of the nitrate is engrossed into the blood, wherever it modifies the red decorated hemoglobin to methemoglobin. Hemoglobin brings oxygen as of the lungs to additional tissues, other than methemoglobin cannot bear oxygen. Nitrate turn out to be toxic once methemoglobin creation is high adequate. That the oxygen transportation capacity of the blood is condensed to a serious level. If sufficient methemoglobin is formed, that animal resolve die. The toxic rank depends mutually upon how a large amount and how speedy nitrate was inspired. Eating small amounts of high nitrate feed increases the total amount of nitrate that can be consumed daily by livestock without adverse effects and helps livestock to adapt to high nitrate feed

There is research on anaerobic systems other than rumen indicating that the accumulation of nitrates is powerfully influenced through the population density of specialized microbes with the aim of reduce nitrates to nitrites and oxidize sulphide to sulphate as they increase nitrites to ammonia. Such a rumen reaction from animals on an elevated

⁽Rasby et al., 2014).

nitrate / protein diet might explain nitrate toxicity pattern in ruminants.

Krasicka *et al.* (1999) demonstrated that microbial protein production in lambs feed meals holding low ranks of cellulose enlarged when sulfur level was increased from 0.2% to 0.8% in the dry matter of the diets. For that reason, complementary of organic or inorganic S complexes in diets holding high ranks of NPN is of grand magnitude in ruminant diet.

Ayyat *et al.* (2000) found that the supplementing with natural clay (bentonite) in rabbit diets contaminated with the pesticide decreased the mortality rate (3.3 % Vs. 16.7 %). Separately from the mycotoxin compulsory capacity, clay raw materials show additional activity which could completely affect animal wellbeing and productivity (Nadziakiewicza *et al.*, 2019).

Probiotics are nutritional supplements for live microbes that constructively affect the crowd by humanizing the balance of intestinal microflora (Girard *et al.*, 1993). A number of benefits have been reported to swallow probiotics. The use of prebiotics in association with useful probiotics may be a worthwhile approach, as the prebiotics preferentially stimulate some probiotic strains (Gibson *et al.*, 2004). Combination of probiotic and prebiotics of symbiotic also enhance probiotic effectiveness.

The current study was conducted to investigate the effect of feeding diets with or without sodium nitrate by adding sodium sulfate, clay, yeast and prebiotics on nutrients digestibility, caecum fermentation and some blood parameters of growing rabbits.

MATERIALS AND METHODS

The experimental field of this study was conducted at the Experimental Station of the Poultry Production Department, Faculty of Agriculture, Mansoura University. The chemical analysis for experimental diets, faces and blood constituent's measurements were running at the Laboratory of Regional Center for Food and Feed, Agriculture Research Center, Cairo, Egypt.

Experimental animals and management:

Thirty, 14 weeks of age New Zealand White (NZW) rabbits with an average live body weight (LBW) of 2.0 Kg were divided into 10 similar groups (3 in each). The rabbits were housed in a separate cage (3 rabbits in each). All groups had approximately equal means of live body weight. The dimensions of each cage were 50, 50, 45 cm for length, width and height, respectively. The cages were supplied by a feeder and a stainless steel nipple for drinking.

Feed additives:

The current research was conducted to assess the effect of inclusion the basal diet with / without sodium nitrate. The experimental basal diets were added with sodium sulphate, clay, yeast culture and prebiotic. Sodium sulphate was obtained from El-Gamhoria company "Mansoura chemical branch" at the Chest Hospital in Mansoura. The clay or "bentonite" was obtained from Sinai Manganese Company, Cairo Egypt. Bentonite contained the following oxides, SiO₂ 49-55 %; AL₂O₃ 20-24 %; Fe₂O₃ 2.6-6 %; CaO 0.2-6 %; Na₂O 1.1-24 %; Mg 0.5-2 % and K₂O 1.2-1.4 %. Yeast culture is "Progut – a new generation" yeast product. In trials, the application of progut in poultry feeds has led to improved vitality, feed utilization, better productivity and growth. The perfect (prebiotic) is a buffered blend of specific acids which were with fructo – oligosaccharide (FOS) to promote a healthy gut microflora, which 2 Kg were added to ton feed of the basal diet at feeding time.

Experimental diets and design:

The Experimental diets were formulated to provide adequate energy and protein for growing rabbits. Ten experimental diets were formulated to be more than 16 % protein according to the (NRC, 1977) recommendations. The constituents of the experimental basal diet were as shown in Table 1. All diets were in pelleted form.

Ten pelleted experimental diets were contained two levels of sodium nitrate (0 and 2%) (Rasby *et al.*, 2014). However, the four feed additives were sodium sulfate (0.2%), clay (2%), yeast (0.25 %) and prebiotic (0.2%).

Table 1. Ingredients of the ex	xperimental basal diets.
Feed ingredients	Basal diet
Alfalfa hay	32.00
Yellow corn	10.00
Barley	13.00
Wheat bran	20.00
Soybean meal	13.00
Mint	6.15
Aniseed	1.00
Molasses	2.00
Limestone	1.00
Dicalcium phosphate	1.00
Sodium chloride	0.40
Vit. Min. premix*	0.30
Coccdan	0.05
Methionine	0.10

* Each 2 Kg of premix contains: A: 10.000000 IU; D₃: 2000000 IU, E: 10000 mg; Zn: 3000 mg, Mn: 2000 mg; Fe: 4000 mg; Cu: 1000 mg; I: 100 mg; Se: 10 mg; Co: 10 mg; Na: 23000 mg; and Mg: 2000 mg; CaCo₃: added to 2.0 kg.

The experimental diets were as follow:

R1 = the experimental basal diet (without NaNO₃ or feed additives)

 $R2 = R1 + 0 NaNO_3 + 0.2\% Na_2SO_4$

R3 = R1 + 0 NaNO₃+ 2% Clay

 $R4 = R1 + 0 NaNO_3 + 0.25\%$ Yeast

R5 = R1 + 0 NaNO₃+ 0.2 Prebiotic

 $R6 = R1 + 2\% NaNO_3$

R7 = R1 + 2% NaNO₃+ 0.2% Na₂SO₄

R8 = R1 + 2% NaNO₃+ 2% Clay

R9 = R1 + 2% NaNO₃ 0.25% Yeast

R10 = R1 + 2% NaNO₃+ 0.2 Prebiotic

Digestibility trials:

Rabbits were housed individually in metabolic cages. All rabbits were given their daily feed allowances at 10 am. Drinking water was available at all time. Quantitative collection of feces started 24 hrs. after feeding. The feces of each rabbit were collected every day in the morning. Feces through 1 mm screen, then complete drying was undertaken at 105 °C for 3 hrs. and weighted and stored in tight bottles for chemical analysis.

Chemical analysis and procedures:

Diets and feces were analyzed for dry matter (DM), crude protein (CP), crude fiber (CF), ether extract (EE), ash, fiber fractions (NDF, ADF ADL, hemi. and cell.) according to A.O.A.C. (1990) and conversion factors for TDN were using McDonald *et al.* (1973), while DE (kcal / kg DM) by : [DE (kcal/kg DM) = $(5.28 \times DCP) + (9.51 \times DEE) + (4.20 \times DCF) + (4.20 \times DNFE)$], (Schiemann *et al.*, 1972).

Non fiberous carbohydrates (NFC) % (DM basi) = OM% - (CP %+ NDF %+ EE %), (Calsamiglia*et al.*, 1995). **Parameters related to fermentation in the caecum:**

Caecum fluid samples were collected from tree rabbits chosen randomly from each experimental trials. The samples filtered through two layers of surgical gauze and were used for determining.

pH: The pH value was read immediately using battery operated pH meter.

 Table 2. Chemical composition of the experimental diets

Total VFA: After acidification of samples of caecum liquor, the total VFA were steam-distilled from a known volume of sample using the micro-kjeldahl apparatus. The concentration of VFA was calculated by the method of (Abou-Akkada and El-Shazly, 1964).

Ammonia – N: The caecum ammonia-N was determined according to the method of Conway and O'Malley (1942). Chemical composition of the experimental diets is presented in Table (2):

Items	R1	R2	R3	R4	R5	R6	R 7	R8	R9	R10
NaNO3			0.0					2%		
Addtives	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic
DM	88.9	89.86	89.85	90.00	90.06	90.53	91.10	89.11	91.12	91.06
				Compos	ition of DM%	:				
OM	90.10	89.01	88.11	88.80	90.06	88.10	84.79	88.56	88.99	87.88
CP	19.46	19.69	19.80	19.23	19.58	18.38	19.87	18.98	18.34	18.90
CF	12.77	18.42	15.10	15.93	18.38	16.11	16.78	18.02	17.01	18.05
EE	4.83	1.24	1.76	1.77	2.33	2.15	1.82	2.52	2.12	2.68
NFE	53.05	49.67	51.45	51.87	49.78	51.46	46.31	49.04	51.53	48.24
Ash	9.90	10.99	11.89	11.20	9.94	11.90	15.21	11.44	11.01	12.12
				Fiber	fractions %:					
NDF	28.41	32.74	29.43	31.36	30.60	31.95	29.74	30.96	31.63	30.89
ADF	17.60	20.15	18.58	19.12	18.91	19.22	18.09	19.21	20.03	19.27
Hemicellulose	10.81	12.59	10.85	12.23	11.69	12.73	11.65	11.75	10.60	11.62
ADL	4.84	5.46	5.34	5.19	5.19	5.45	7.49	5.85	5.71	5.71
Cellulose	12.77	14.69	13.23	13.93	13.72	13.77	10.60	13.37	14.32	13.56
NFC*	37.40	35.34	37.13	36.44	37.55	35.62	33.36	36.10	36.91	35.41
NFC/NDF	1.31	1.07	1.26	1.16	1.22	1.11	1.12	1.16	1.16	1.14

* Non fiberous carbohydrates% = OM% - (CP%+NDF%+EE%), (Calsamiglia et al., 1995).

Blood samples:

Blood samples were taken at 14 weeks of age from 3 rabbits which were randomly selected from each treatment. 2mls of blood was collected without anticoagulant into sterile test tube for determination serum biochemical indices. The tube containing blood was placed in slanting position at room temperature for clotting. Blood samples were centrifuged at 3000 rpm for 10 minutes and thereafter stored at -20° Cto determine the concentration of serum constituents. Serum protein was measured according to (Doumas et al., 1981); albumin was measured by Hill and Well (1983); globulin, (calculated by difference between the total proteins and albumin concentration); Serum aspartate aminotransferase (AST) and alaninaminotransferase (ALT) were determined according to (Reitman and Frankel, 1957); urea-N, (Freidman et al., 1980), while glucose determination in whole blood by Gluco-tek (Skyler et al., 1981). Alkaline phosphates (ALP), Schumann et al. (2011). Creatinine, (Fabiny and Ertinshausen, 1971). Glutamyl transferase (GGT), Li, et al. (2011) and malondialdehyde (MDA), Zeb and Ullah, (2016).

Statistical analysis:

Data were statistically analyzed by SAS (2000), while the differences among means were tested using Duncan's Multiple Range Test (Duncan, 1955).

RESULTS AND DISCUSSION

The constituents of the experimental basal diet are shown in Table (1). The determined values of the chemical composition (% DM) are presented in Table (2). The diets from R_1 to R_5 were without NaNO₃ and without any additives to (R_1), but R_2 , R_3 , R_4 , R_5 were given Na₂SO₄, clay, yeast and prebiotic, respectively. The diets from R_6 up to R_{10} were fed with NaNO₃ and R_6 was without any supplements, but from R_7 to R_{10} diets were fed with the same supplements like diets from R_2 to R_5 .

Hillyer *et al.* (1997) showed that the rabbits diet is pelleted, it is made up of various ingredients specially formulated to provide the nutrients required by rabbits. The typical ingredients of basal diets include alfalfa hay, grain and grain by-products, protein supplements, vitamins and minerals. Table (2) shows the determined analysis of the experimental diets. The results ranged for: CP (18.34 to 19.87%), CF (12.77 to 18.42%), EE (1.24 to 4.83%), NFE (46.31 to 53.05%), NDF (28.41 to 32.74%), ADF (17.60 to 20.03%), hemicellulose (10.60 to 12.73%), cellulose (10.60 to 14.69%) and NFC/NDF ratio (1.07 to 1.31). These chemical nutrient were suitable for formulation of growing rabbit's diets as recommended by Gidenne, (1992) and De Blas *et al.*, (1995).

Tables (3 and 4) showed the dry matter intake, nutrient digestibility, digested nutrients and feeding values of the experimental diets. The effect of feeding tested diets without or with added NaNO₃ showed that, the DMI (g/h/d), nutrient digestibility (%) of OM, CP, hemicellulose and cellulose were higher (p < 0.05) when feeding on diet without NaNO₃ than with it, while the digestibility of CF and NFE were higher (p<0.05) with feeding with NaNO₃. The effect of feed additives showed that the DMI g/d was higher (p < 0.05) with added clay than the others and the lower (p < 0.05) value was recorded with Na₂SO₄. The digestibility of DM, OM and CP were higher (p < 0.05) when feeding diet without feed additives or with added Na₂SO₄ but without significant effect with added yeast on DM and OM digestibility. The digestibility of EE was higher with feeding (p < 0.05) on diet without additives or with add prebiotic than the other additives as shown in Table (3).

The interaction among feeding the experimental diets without or with NaNO₃ and without or with feed additives showed that there were no significant effects on nutrients digestibility, digested nutrients and feeding values as shown in Table (4).

Table 3. Effect of feeding experimental diets without or with NaNO₃ and without or with feed additives on nutrient digestibility and feeding values

Itoma	Na	NaNO ₃				Additives			_
Items	0 %	0.2 %	± SEM	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	± SEM
DM intake (g/h/d)	144.88 ^a	143.52 ^b	-	144.92 ^b	143.69 ^c	145.29 ^a	143.56 ^d	143.56 ^d	-
			Nutrie	ent digestibili	ty (%):				
DM	70.29	69.67	0.345	71.32 ^a	71.18 ^a	68.71 ^{bc}	70.19 ^{ab}	68.50 ^c	0.545
OM	72.28 ^a	71.15 ^b	0.319	73.03 ^a	72.36 ^a	70.68 ^b	72.02 ^{ab}	70.48 ^b	0.504
СР	79.30 ^a	77.99 ^b	0.282	80.24 ^a	79.79 ^a	77.55 ^b	78.12 ^b	77.52 ^b	0.446
CF	38.08 ^b	40.43 ^a	0.682	35.02°	44.31 ^a	34.45°	40.80 ^b	41.71 ^{ab}	1.079
EE	70.79	75.84	1.708	83.28 ^a	69.28 ^b	64.64 ^b	69.26 ^b	80.11 ^a	2.701
NFE	80.82	79.87	0.395	80.74 ^{ab}	80.49 ^{ab}	80.98^{a}	80.66 ^{ab}	78.84 ^b	0.625
NDF	42.11	40.49	1.586	44.75	42.44	38.35	43.68	37.27	2.508
ADF	33.95	31.55	2.416	37.05	33.17	28.92	35.16	29.45	3.821
Hemicellulose	60.27 ^a	51.24 ^b	1.828	60.14	57.08	54.19	57.34	50.01	2.89
Cellulose	37.48 ^a	33.10 ^b	0.745	34.87 ^b	32.43 ^b	35.17 ^b	40.05 ^a	33.93 ^b	1.178
NFC*	93.25 ^b	95.18 ^a	0.552	94.22	95.27	94.05	93.37	94.16	0.873
		Dige	sted nutrient	s and feeding	value as DM	(%):			
DCP	15.50 ^a	14.80 ^b	0.074	15.35 ^b	15.78 ^a	15.03 ^{ab}	14.68 ^c	14.92 ^c	0.117
DCF	6.28 ^b	6.93 ^a	0.114	5.11 ^d	7.81 ^a	5.76 ^c	6.72 ^b	7.60 ^a	0.181
DEE	4.11 ^a	3.86 ^b	0.08	6.73 ^a	2.46 ^d	3.20 ^c	3.01°	4.52 ^b	0.126
DNFE	41.35 ^a	39.39 ^b	0.193	42.19 ^a	38.62 ^c	40.71 ^b	41.70 ^a	38.64 ^c	0.305
TDN	67.24 ^a	64.98 ^b	0.281	69.37 ^a	64.68 ^c	64.70 ^c	66.11 ^b	65.68 ^{bc}	0.444
DCPI (g/h/d)	22.46 ^a	21.24 ^b	0.106	22.25 ^{ab}	22.68 ^a	21.84 ^{bc}	21.08 ^d	21.42 ^{cd}	0.167
TDNI (g/h/d)	97.43 ^a	93.26 ^b	0.402	100.57 ^a	92.94 ^b	94.01 ^b	94.92 ^b	94.30 ^b	0.635
DE (Kcal/Kg)	2121.39 ^a	2060.10 ^b	10.247	2131.41 ^a	2056.82 ^b	2061.58 ^b	2139.84 ^a	2064.06 ^b	16.202
DEI (Kcal/h/d)	307.34 ^a	295.69 ^b	1.466	308.88 ^a	295.60 ^b	299.53 ^b	307.22 ^a	296.35 ^b	2.318
DEI/DCPI	13.69 ^b	13.95 ^a	0.078	13.92 ^b	13.04 ^c	13.72 ^b	14.59 ^a	13.84 ^b	0.124
a h a Moong within	the come row	with different	aunorcorint	ano signifio	ntly differen	f(D > 0.05)			

SEM = standard error of means. * DE (kcal/kgDM) = $(5.28 \times DCP) + (9.51 \times DEE) + (4.20 \times DCF) + (4.20 \times DNFE)$, (Schiemann *et al.* (1972).

Table 4. The interaction between feeding experimental diets without or with NaNO₃ and without or with feed additives on nutrient digestibility and feeding values

Items	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	
NaNO ₃			0.0					0.2			± SEM
Additives	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	
DM intake (g/h/d)	146.23	144.67	144.69	144.44	144.35	143.6	142.7	145.89	142.67	142.76	
				Nutrient	digestibility	r (%):					
DM	72.56	70.82	68.29	70.93	68.85	70.09	71.54	69.13	69.457	68.15	0.771
OM	73.98	72.21	70.20	73.42	71.61	72.09	72.52	71.16	70.613	69.35	0.712
CP	82.18	79.97	76.33	79.03	79.01	78.29	79.63	78.77	77.213	76.02	0.631
CF	31.89	46.23	25.98	40.77	45.53	38.15	42.38	42.92	40.83	37.89	1.525
EE	89.54	57.17	54.61	73.36	79.29	77.01	81.39	74.68	65.16	80.93	3.82
NFE	80.36	80.02	82.61	82.21	78.87	81.11	80.95	79.35	79.11	78.82	0.884
NDF	40.80	44.13	38.36	47.25	39.99	48.69	40.75	38.35	40.11	34.56	3.548
ADF	45.26	34.83	27.34	34.23	28.11	28.84	31.49	30.51	36.09	30.79	5.403
Hemicellulose	58.27	59.01	57.23	67.62	59.20	62.01	55.14	51.16	47.053	40.81	4.087
Cellulose	35.02	41.01	33.89	40.87	36.59	34.71	23.85	36.44	39.227	31.26	1.665
NFC*	92.91	94.42	92.89	92.96	93.05	95.53	96.12	95.197	93.783	95.26	1.235
			Digested	nutrients a	nd feeding v	alue as Dl	M (%):				
DCP	15.99	15.74	15.117	15.2	15.467	14.707	15.82	14.95	14.16	14.37	0.165
DCF	4.07	8.51	3.92	6.49	8.37	6.14	7.11	7.60	6.95	6.84	0.255
DEE	9.72	1.59	2.16	2.916	4.16	3.73	3.34	4.24	3.11	4.88	0.179
DNFE	42.63	39.74	42.51	42.64	39.26	41.74	37.49	38.91	40.76	38.03	0.431
TDN	72.42	65.59	63.70	67.25	67.25	66.33	63.76	65.70	64.97	64.11	0.628
DCPI (g/h/d)	23.39	22.78	21.87	21.96	22.33	21.12	22.58	21.81	20.20	20.51	0.236
TDNI (g/h/d)	105.89	94.89	92.17	97.14	97.08	95.24	90.99	95.85	92.69	91.53	0.898
DE (Kcal/Kg)	2138.40	2125.04	2050.36	2171.66	2121.46	2124.41	1988.6	2072.8	2108.02	2006.65	22.913
DEI (Kcal/h/d)	312.70	307.43	296.66	313.69	306.23	305.06	283.78	302.39	300.75	286.48	3.278
DEI/DCPI	13.37	13.50	13.57	14.29	13.72	14.47	12.57	13.87	14.89	13.96	0.175

SEM = standard error of means

The DMI g/d was higher with feeding on R_1 and R_8 than feeding on the other diets, but the DM digestibility was higher with feeding on R_1 and R_7 than the others. The OM digestibility was increased with feeding on R_1 and R_4 , CP with feeding on R_1 , R_2 and R_7 , CF with feeding on R_2 , R_5 , R_8 and

 R_9 , EE with feeding on R_1 , R_7 and R_{10} , NFC with feeding on R_3 and R_4 , NDF with feeding on R_4 and R_6 , ADF with R_1 and R_9 , hemicellulose with R_4 , cellulose with R_2 , R_4 , and R_9 and NFC with R_7 , R_8 and R_{10} . The DCP % was higher with feeding on R_1 , R_2 and R_7 , DCF with R_2 , R_5 and R_8 , DEE with R_1 ,

DNFE with R_1 , R_3 , R_4 , R_6 and R_9 , TDN % was higher with feeding with R_1 , DCPI g/d with R_1 , R_5 and R_7 , TDNI g/d with R_1 , DE Kcal/Kg was higher with feeding on R_4 and R_9 , DEI Kcal/d with R_1 and R_4 , DEI/DCPI increased with feeding on R_4 , R_6 and R_9 .

Dietary fiber level affects the digestibility of the other nutrients in the diet and can also influence growth rate of rabbits (Gidenne and Garcia, 2006). So, the feeding on R_1 was lower in CF contents (12.77 %) than the other experimental diets and the NFC/NDF ratio was higher than the others. This may explain that feeding on R_1 caused higher DMI as well as higher digestibility of DM, OM, CP, EE, ADF, DCP and feeding values in terms of DEE, DNFE, TDN, TDNI and DEI than feeding on the other diets. The protein digestion of animal was lower with low NFC:NDF diet (Ead *et al.* 2011).

On the other hand, the requirements for fermentable N for microbial growth is optional at 30 g N/Kg organic matter digested or 15 g N/Kg DMI at 50 % digestibility (Booth and McDonald, 1982). From the presented results, it could be cleared that feeding on R_9 was the highest DEI/DCPI (14.89 Kcal/g DCPI) along with feeding on R_6 (14.47 Kcal/g DCPI) or with feeding on R_4 (14.29 Kcal/g DCPI) compared with the other diets. Feeding on R_9 increased the digestibility of CF, ADF, cellulose, DNFE and TDNI, when feeding on R_6 increased the digestibility of NFE, NDF, cellulose, DNFE, DE and DEI.

Tables (5 and 6) show the effect of feeding the experimental diets without or with $NaNO_3$ and without or with feed additives on caecum fermentation in terms of pH value, volatile fatty acids (VFA) (ml. eq. /100 ml) and NH₃ concentration (mg/100ml).

There were no significant effects with feeding diets without or with NaNO₃ and without or with feed additives on the pH values as shown in Table (5). The interaction among the experimental diets as shown in table (6). The pH values tend to be higher with feeding on R_1 , R_3 , R_4 and R_9 (7.64, 7.64, 7.48 and 7.33, respectively) than the other experimental diets. The pH or the concentration of the fermentation end products were not significantly affected by the feeding program. The caecal metabolism of nutrients is similar in rabbits to that can

be shown in other herbivores, but the short chain fatty acids (SCFA) pattern exhibits some differences in rabbits, namely a predominance of acetate, followed by butyrate and then by propionate (Gidenne *et al.*, 2007).

The presented data showed that the total VFA increased (p < 0.05) with diet without NaNO₃ (2.85 ml. eq/100ml) than when feeding with NaNO₃ (2.49 ml. eq/100ml) as show in Table (5). The effect of the feed additives, also showed that the total VFA increased (p < 0.05) without feed additives or with added Na₂SO₄ or clay (2.85, 2.98 and 2.63 ml. eq/100ml, respectively) than added prebiotic (2.37 ml. eq/100ml), but there was no significant difference between feeding without feed additives or with added yeast or between added clay or yeast to the feeds. There was no significant difference among the experimental diets in the total VFA concentrations in the caecum as shown in table (6). The highest values were observed with feeding on R₁ (3.3 ml. eq/100ml), R₂ (3.07 ml. eq/100ml) and R₇(2.90 ml. eq/100ml).

The concentration of the total VFA observed ranged from 4.3 to 8.2 mmol/100ml (Garcia *et al.*, 2002). There were no changes in the caecal VFA production in finished rabbits (Garcia *et al.*, 1995).

As shown in Table (5), there was no significant difference between the feeding diet without NaNO3 (25.6 mg/100 ml) or with NaNO₃ (24.97 mg/100ml) on NH3 concentration. The feed additives showed that NH₃ concentration increased (p < 0.05) with added clay (32.53 mg/100ml) than feeding without additives or added Na₂SO₄ or yeast or prebiotic (23.10, 25.57, 23.19 and 22.03 mg/100ml respectively). The interaction among the experimental diets on the NH₃ concentrations in the caecum, showed that there was no significant effect have been recorded. The highest values were observed with feeding on R3 and R8 diets (32.20 and 32.85 mg/100ml respectively) than the feeding on the other experimental diets. Ammonia is the main end product of N catabolism as well as the main nitrogenous source for the microbial population in the caecum (Carabano et al., 1988). Ammonia is used by bacteria, in combination with carbon chain produced from carbohydrate fermentation, to synthesize new amino acids for bacteria growth (Van Soest, 1994).

	Table 5. Effect of feeding e	xperimental diets wit	hout or with NaNO:	and without or wit	th feed additives on caecum	parameters.
--	------------------------------	-----------------------	--------------------	--------------------	-----------------------------	-------------

Térrer	Nal	NaNO3		Additives								
nems	0 %	0.2 %	± SEIVI	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	± SEIVI			
pН	7.45	7.29	0.056	7.48	7.22	7.47	7.41	7.29	0.088			
VFA	2.85 ^a	2.49 ^b	0.08	2.85 ^{ab}	2.98 ^a	2.63 ^{abc}	2.50^{bc}	2.37°	0.126			
NH3	25.60	24.97	0.789	23.10 ^b	25.57 ^b	32.53 ^a	23.19 ^b	22.03 ^b	1.248			
1 1/	.a. a	141 116	e	4 1 101	(1 1°66 ((D	0.05) (153.6	4 1 1	0				

a, b, c : Means within the same raw with different superscripts are significantly different (P < 0.05). SEM = standard error of means.

Table 6. The interaction between feeding experimental diets without or with NaNO₃ and without or with feed additives on caecum parameters.

Items	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	
NaNO ₃			0.0					0.2			± SEM
Additives	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	
pН	7.64	7.18	7.64	7.48	7.29	7.31	7.25	7.29	7.33	7.29	0.125
VFA	3.30	3.07	2.70	2.60	2.57	2.40	2.90	2.57	2.40	2.17	0.178
NH3	21.70	25.95	32.20	23.89	24.27	24.50	25.20	32.85	22.49	19.79	1.765

SEM = standard error of means.

Tables (7 and 8) show the data of the interactions of the effect of feeding the experimental diets on blood parameters. As showed in Table (7), there were increased (p< 0.05) in glucose, globulin and urea - N concentrations with feeding with NaNO₃, while the effect of the feed additives showed that the feeding without additives or with added yeast increased the

globulin concentration (p < 0.05) compared with added Na₂SO₄, clay and prebiotic to the diets. The interaction among the experimental diets on the serum blood parameters are shown in Table (8). There was no significant effect on the blood constituents as the effect of the experimental feeding diets. The glucose concentration was higher (130 mg/100ml)

with feeding on R_9 than other diets. Protein concentration was higher with feeding R_4 or R_{10} (6.73 and 7.00 g/100ml, respectively) than the others. Urea - N concentration was the highest with feeding on R_7 (60.83 mg/100ml), while the creatinine concentration was increased (2.60 mg/100ml) with feeding on R_9 than the other diets. The AST was increased with feeding on R_1 , R_7 and R_9 (53.0, 57.67 and 63 U/L, respectively) than feeding on the other experimental diets, while the ALT increased with feeding on R_6 , R_8 , R_9 and R_{10} (36.0, 35.67, 37.33 and 35.67 U/L, respectively) than the other diets. The lowest value for ALT concentration was observed with feeding on R_7 (23.67 U/L). The AST/ALT ratio was higher (2.43) with feeding on R_7 , but the other diets were between 1.14 - 1.74.

(Poortmans and Dellalieux, 2000), reported that there were no significant effect changes when measuring urinary creatinine, albumin and urea in dosage range of 1.28 - 2.8 g protein/Kg body weight.

Most causes of liver cell injury are associated with greater increase in ALT than AST, however AST to ALT ratio of 2:1 or greater is suggestive of alcoholic liver disease (Moussavian *et al.*, 1985). When the AST is higher than ALT, a muscle source of these enzymes should be considered.

The present results are in agreement with (Igwebuik *et al.*, 2008) except for urea - N concentration which was higher with feeding on R_3 , R_6 , R_7 , R_8 , R_9 and R_{10} (52.30, 51.97, 60.83, 46.5, 47.30 and 54.37 mg/100ml, respectively) than the normal range (41 - 42 mg/100ml) in rabbits (12 weeks old).

Glucose is crucial for maintenance and productive function in animals (Reynolds, 2005). In growing animal's glucose requirements will be determined by growth rate which is set by ME intake (Maklad, H. M. Eman *et al*, 2011) Glucose is utilized by animal cells produce energy (Richards *et al.*, 1995). Glucose concentration was significant and positively correlated with total protein and albumin, but negatively correlated to urea. During periods of energy restrictions, the short fall in energy may be met by the catabolism of body protein. Thus more protein was metabolized to meet the energy requirements and this elevated the urea and creatinine concentration (Greenwood *et al.*, 2002).

The ALP concentration was ranged from 69.33 to 112.0 U/L as shown in Table (19). Tork *et al.*, (2011), found that the ALP concentration was from (51.4 - 80.64 U/100ml) in their study on growing rabbits. Serum ALP levels may increase in congestive heart failure as a result of injury to the liver (Harper *et al.*, 1977).

Table 7. Effect of feeding experimental diets without or with NaNO₃ and without or with feed additives on some blood parameters of experimental rations.

Itoms	Na	NO ₃	- + SEM -		· CEM				
Items	0 %	0.2 %	- ± SEM	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	±SEM
Glucose (mg/100ml)	104 ^b	120 ^a	5.678	107	107	111	121	114	8.978
Total protein (g / 100ml)	5.46	6.24	0.301	6.15	5.37	5.87	6.17	5.70	0.476
Albumin (g/100ml)	4.05	4.18	0.137	4.13	4.07	3.98	4.12	4.28	0.217
Globulin (g/100ml)	1.41 ^b	2.06 ^a	0.219	2.02 a	1.30 ^b	1.89 ^b	2.05 a	1.42 ^b	0.346
Urea-N (mg / 100ml)	43.41 ^b	52.19 ^a	2.386	47.8	48.88	49.4	45.87	47.05	3.773
Creatinine (mg / 100ml)	0.68	1.113	0.243	0.67	0.72	0.667	1.7	0.73	0.384
AST(U/l)	43.4	52.13	4.92	47.83	46	45.67	54.83	44.5	7.78
ALT(U/l)	30.2	33.67	2.635	33.17	26.83	33	33.83	32.83	4.166
ALP (U / 100ml)	85.07	86.47	8.305	86.83	75.67	102.17	79.67	84.5	13.131
GGT (U/l)	10.13	11	2.032	12.67	10.83	8	12.5	8.83	3.213
MDA (U/l)	14.48 ^b	21.31ª	0.998	15.39 ^{bc}	19.62 ^{ab}	18.73 ^{abc}	21.24 ^a	14.51 ^c	1.578
1 15 141 4	1/1 11/00			(1 1100	(() () ()	CTD /		6	

a, b, c: Means within the same raw with different superscripts are significantly different (P < 0.05). SEM = standard error of means.

Table 8. The interaction among feeding experimental diets without or with NaNO₃ and without or with feed additives on some blood parameters of experimental rations.

Items	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	· CEM
NaNO ₃			0.0					0.2			± SEIVI
Additives	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	Non	Na ₂ SO ₄	Clay	Yeast	Prebiotic	
Glucose (mg/100ml)	106	97	97	112	108	109	116	125	130	121	12.697
Total protein (g / 100ml)	6.03	4.37	5.77	6.73	4.40	6.27	6.37	5.97	5.60	7.00	0.674
Albumin (g/100ml)	4.03	3.83	3.77	4.50	4.13	4.23	4.30	4.20	3.73	4.43	0.307
Globulin (g/100ml)	2.00	0.54	2.00	2.23	0.27	2.04	2.07	1.77	1.87	2.57	0.490
Urea-N (mg / 100ml)	43.63	36.93	52.30	44.43	39.73	51.97	60.83	46.5	47.30	54.37	5.336
Creatinine (mg / 100ml)	0.67	0.60	0.63	0.80	0.70	0.67	0.83	0.70	2.60	0.77	0.544
AST(U/l)	53.00	34.33	38.67	46.67	44.33	42.67	57.67	52.67	63.00	44.67	11.003
ALT(U/l)	30.33	30.00	30.33	30.33	30.00	36.00	23.67	35.67	37.33	35.67	5.892
ALP (U / 100ml)	96.67	68.00	112.00	69.33	79.33	77.00	83.33	92.33	90.00	89.67	18.57
GGT (U/l)	10.33	11.33	6.67	16.00	6.33	15.00	10.33	9.33	9.00	11.33	4.544
MDA (U/l)	12.31	13.30	14.52	23.70	8.58	18.46	25.93	22.94	18.78	20.44	2.231

SEM = standard error of means.

This study revealed that the impaired observed in rabbits fed the highest levels of fiber might be explained by higher fermentation losses in caecum together with an insufficient glucose from the gut to meet the requirements, while the importance of the amino acids depends on the efficiency of microbial protein synthesis. These observations are in agreement with the present results of fiber and CP digestibility of the experimental diets and on the TDNI and DEI.

The DCPI g/d was higher with feeding on R_1 , R_5 and R_7 , TDNI g/d was higher with R_1 , DE Kcal/Kg was higher with feeding on R_4 and R_9 , DEI Kcal/d with R_1 and R_4 , DEI/DCPI increased with feeding on R_4 , R_6 and R_9 .

REFERENCES

- Abou Akkada, A. R. and El-Shazly, K. (1964). Effect of absence of ciliate protozoa from the rumen on microbial activity and growth of lambs. Appl. Microbiol., 12: 384.
- AOAC (1990). Association of Official Analytical Chemists. Official Methods of Analysis. 15th Ed., Washington DC.
- Ayyat, M.S., Abd El-Monem, U.M., El-Gendy, H.M. and Hammad, M. (2000). Proenofos effects on rabbit performance and their amelioration by using natural clay mineral. World Rabbit Sci., 8(4): 169.
- Booth, N.H., and McDonald, L.E. (1982). Veterinary pharmacology and therapeutics. 5th Ed. Ames, Iowa, Iowa State University Press, 1029.
- Calsamiglia, S., M. D. Stern and J. L. Firkins (1995). Effects of protein source on nitrogen metabolism in continuous culture and intestinal digestion *In vitro*. J. Anim. Sci., 73: 1819.
- Carabano, R., Fraga, M. J., Santoma, G. and de Blas, J. C. (1988). Effect of diet on composition of cecal contents and on excretion and composition of soft and hard faeces of rabbits. J. Anim. Sci., 66: 901.
- Conway, E. J. and O'Malley, E. (1942). Microdiffusion methods. Ammonia and urea using buffered absorbents. Biochem. J., 36: 655.
- De Blas, C., Taboada, E., Mateos, G. G., Nicodemus, N. and Mendez, J. (1995). Effect of substitution of starch for fiber and fat in isoenergetic diets on nutrition digestibility and reproductive performance of rabbits. Journal of Animal Science, 73: 1131.
- Doumas, B. T., Carter, D. D., Peters, R. J., and Schaffer, T. R., (1981). A candidate reference method for determination of total protein in serum. Development and Validation. Clin. Chem., 27: 1642.
- Duncan, D. B. (1955). Multiple Range and Multiple F Test. Biometrics, 11: 10.
- Ead, H. M. E. ; El-Shinnawy, M.M.; Maklad, H. M. Eman; Dorra M. I.Tork and Sadek A.M. A. (2011). Effect of replacement of barley grains and soybean meal by distiller's dried grains with solubles with or without supplemented seaweed in growing rabbit rations on: 4nutrients digestibility, nutritive values and some caecum fermentation. Volume 21, Issue 1, Winter and Spring 2011, Page 57-82
- Fabiny DL and Ertingshausen G (1971). Automated reactionrate method for determination of serum creatinine. Clin. Chem., 17: 696.
- Freidman, R. B., Anderson, R. E., Entire, S. M. and Hinshberg, S. B. (1980). Clin. Chem., 26.
- Garcia, J., De Blas, C., Carabano, R. and Garcia. P. (1995). Effect of type of Lucerne hay on caecal fermentation and nitrogen contribution through caecotrophy in rabbits. Reprod. Nutr. Dev., 35: 267.
- Garcia, J., Gidenne, T., Falcao-e-cunha, L. and De Blas, C. (2002). Identification of the main factors that influence caecal fermentation traits in growing rabbits. Anim. Res., 51: 165.
- Gibson G.R., Probert, H.M., Van Loo, J.A.E., Rastall, R.A. and Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nut. Res. Rev., 17: 259.

- Gidenne, T. (1992). Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. Br. J. Nut., 67: 133.
- Gidenne, T. and Garcia, J. (2006). Nutritional strategies improving the digestive health of the weaned rabbit. PP. 229 - 238. In : Recent Advances in Rabbit Science, edited by Macrtens, L. and P. coudent, published by Instite for Agricultural and Fisheries Research, ILVO, Melle, Belgium.
- Gidenne, T., Debray, L., Fortun Lamothe, L. and Le Huerou, I. (2007). Maturation of the intestinal digestion and microbial activity in the young rabbit: impact of the dietary fiber: starch ratio. Comparative Biochemistry and physiology - part A. Mol. Integr. Physiol. 148: 834.
- Girard, I.D., Jones, C.R. and Dawson, K.A. (1993). Lactic acid utilization rumen - stimulating cultures receiving a yeast culture supplement J. Anim. Sci. 71 (Suppl. 1): 288.
- Greenwood, P., Hunt, A., Slepetis, R., Finnerty, K., Alston, C., Beermann, D. and Bell, A. W. (2002). Effects of birth weight and postnatal nutrition on neonatal sheep: 111. Regulation of energy metabolism. J. of Animal Sci., 80: 2850.
- Harper, H. A., Rodwell, V. Bw. and Mayes, P. A. (1977). Review of Physiological Chemistry, 16th ed., Lange Medical Publications, Los Altos, California, 94022.
- Hill, P. G. and Wells, T. N. (1983). Ann. Clin Biochem., 20: 265.
- Hillyer, E. V., Quesenberry, K. E. and Donnelly, T. M. (1997). Biology, husbandry and clinical techniques [guinea pigs and chinchillas]. In Quesenberry K, Hillyer E.eds: Ferrets, Rabbits, and Rodents: Clinical Medicine and Surgery. Philadelphia, PA, WB Saunders, 243 – 59.
- Igwebuike, J. U., Anugwe, F. O. I. Raji, A. O., Ehiobu, N. G. and Ikurior, S. A. (2008). Nutrient digestibility, hematological and serum biochemical indices of rabbit fed graded levels of Acacia Alida pods. ARPN J. of Agric. and Bio. Sci., 3(4): 33.
- Krasicka, B, Gralak, M.A., Sieranska, B. and Kulasek, G. (1999). The influence of dietary sulpher loading on metabolism and health in young sheep fed low fiber and high starch diet. Reprod. Nut. Develop., 39: 625.
- Li, Z., Liu, Y., Yang, X., Pu, J., Liu, B., Yuan, Y., and Fei, Y. (2011). Kinetic analysis of Y-glutamyl transference reaction process for measuring activity via an integration strategy at low concentrations of Yglutamyl-P-nitroaniline. Journal of zhejiang university science B 12(3): 180.
- Maklad, H. M. Eman; Ead, H. M. E. ; El-Shinnawy, M.M.; Dorra M. I.Tork and Sadek A.M. A. (2011). Effect of replacement of barley grains and soybean meal by distiller's dried grains with solubles with or without supplemented seaweed in growing rabbit rations on: 3glucose absorption and glucose, thyroxin and triiodothyronine concentration in blood plasma of growing rabbits. Egyption J. of Rabbit Sci.Volume 21, Issue 1, Winter and Spring 2011, Page 41-55.
- McDonald, P., Edwards, R. A., and Greenhalgh, J. F. D. (1973). Animal Nutrition. 2nd Edition. Longman Inc., New York

- Moussavian, S., Becker, R. C., Piepmeyer, J. L., Mezey, E. and Bozian, R. C. (1985). Serum gamma - glutamyl transpeptidase and choronic alcoholism. Influence of alcohol ingestion and liver disease. Dig. Dis. Sci., 30 (3): 211 - 214.
- Nadziakiewicza, M., Kehoe, S. and Micek, P. (2019). Physio - chemical preparation of clay minerals and their use as a health promoting Feed additives. Animals, 9 : 714.
- National Research Council (NRC) (1977). Nutrient Requirements of demestic Animals, No. 9. Nutrient requirements of rabbits. Second Revised Ed. National Academy of Science – National Research Council, Washington, DC, USA.
- Poortmans, J. R., and Dellalieux, O. (2000). Do regular high protein diets have potential health risks on kidney function in athletes. Int J. Sport Nutr. Exerc. Metab.
- Rasby, R.J., Anderson, B.E. and Kononoff, P.J. (2014). Nitrates in livestock feeding. University of Nebraska, Lincoln Extension Institute of Agriculture and Natural Resources.
- Reitman, A. and S. Frankel (1957). A colourimetric method of determination of s.GOT and s.GPT. American J. of Clinical Pathology, 28: 56.
- Reynolds, C. K. (2005). Glucose balance in cattle. Department of Animal Science, the Ohio State University.
- Richards, M. W., Spicer, L. H., and Wettermann, R. P. (1995). Influence of diet and ambient temperature on bovine serum insulin - like growth factor - I and thyroxin: relationships with non - esterifies fatty acids, glucose, insulin, luteinizing hormone and progesterone. Animal Reproduction Sci., 37: 267.
- SAS (2000). Statistical Analysis System / STAT user, s Guide, release 6.03. Ed., SAS Institute Inc., Cary, Nc. USA, PP. 125.

- Schiemann, R., Nehring, K., Hoffmann, L., Jentsch, W. and Chudy, A. (1972). Energetische Futterbewertung und Energienormen. VEB Deutscher Landwirtschafts Verlag, Berlin, pp. 72.
- Schumann, G., Klauke, R., Canalias, F., Bossert Reuther, S., Frank, P.F.H, Gella, F. J., Jorgensen, P. J., Kang, D., Lessinger, J. M., Panteghini, M- and Ceriotti, F-(2011). IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 C^o : Part 9: Reference procedure alkaline phosphate. Clin Chem Lab Med; 49(9) : 1439.
- Skyler, J. S., Skyler, D. L., Seigler, D. E. and O'Sullivan, M. J. (1981). Algorithms for adjustment of insulin dosage by patients who monitor blood glucose. Diabetes care, 4(2): 311.
- Tadele, Y. and Amha, N. (2015). Use of different non protein nitrogen sources in ruminant nutrition: A review. Adv. in Life Sci. and Technol., 29: 100.
- Tork, M.I. Dorra, Ead, H.M.E., El-Shinnawy, M.M., Eman, H.M. Maklad and Sadwk, A.M.A. (2011). Effect of replacement of barley grains and soybean meal by distillers dried grains with solubles with or without supplemental seaweed in growing rabbit rations on: Calcium and phosphorus intake and absorption and some blood constituents of growing rabbits. Egyptian J. of Rabbit Sci., 21 (1): 21.
- Van Soest, J. P. (1994). Nutritional Ecology of the ruminants. 2nd Edition, Cornell univ., Press Ichaca. NY.
- Zeb, A. and Ullah, F. (2016). A simple spectrophotometric method for the determination of thiobarbituric acid reactive substance in fried fast foods. Journal of analytical method in chemistry volume 2016 article ID 9412767.

تاثير إضافة نترات الصوديوم بدون او مع إضافات علفية في علائق الأرانب النامية على معاملات الهضم وبعض تخمرات الأعور وبعض مكونات الدم

ايمان حنفي محمود مقلا¹*، هادي فتحى عباس مطاوع ²، حسين محمد الشافعي عيد³ و السيد جاب الله الشافعي² 1 قسم انتاج الحيوان – كلية الزراعة – جامعة المنصورة- مصر 2 المركز الأقليمي للاغنية والأعلاف- مركز البحوث الزراعية- وزارة الزراعة – مصر 3 معهد بحوث الانتاج الحيواني- - مركز البحوث الزراعية- الدقي – الجيزة – مصر

أجريت هذه الدراسة بهدف بحث تأثير أربعة أنواع من الاضافات الغذائية وهى كبريتات صوديوم وطين وخميرة وبريبيوتك فى علائق بنون إضافة نتر ات صوديوم . تم اختيار 30 ارنب نيوز لاندى عمر (14) اربعة عشرة أسبوع بمتوسط وزن الارنب 2 كجم حيث تم توزيعها إلى (10) عشره مجامع متساويه ومتماثله فى الوزن (ثلاثة أر انب بكل مجموعة) وتم تغذيتها على العلائق التجريبيه . تم تكوين 10 علائق تجربية فى صورة مكعبات حيث قسمت الى مجموعتين متسلويتين فكانت المجموعة الأولى بنون إصافة نتر ات صوديوم بينما المجموعة الثانية تحتوى على 2% نتر ات صوديوم وتم البتتونيت (طين) وخميرة وبريبيوتك فى كل من المجموعتين متسلويتين فكانت المجموعة الأولى بنون إصافة نتر ات صوديوم بينما المجموعة الثانية تحتوى على 2% نتر ات صوديوم وتم استخدام أربعة أنواع من الاضافك مجموعتين متسلويتين فكانت المجموعة الأولى بنون إصافة نتر ات صوديوم بينما المجموعة الثانية تحتوى على 2% نتر ات صوديوم وتم البتذار (بنه بنور الحين الحنون الصافة نتر ات محموعة) وتم من الاستونين وكانت المجموعة الأولى بنون إصافة نتر ات صوديوم وبيوتك فى علائي وتميرة وبريبيوتك فى كام من المحموعة الثانية تمثل 10 علائي وخميرة وبريبيوتك فى كل من المجموعتين وكانت المجموعة الأولى تمثل 80, R4, R7 عد تكينه المحموعة الثانية تمثل 10 علائي وخميرة وبريبيوتك فى كل من المجموعة ين وكانت المجموعة الأولى تمثل 80, R7, R4 من الا صافة مرة ما معائي ولي اختفية على العلائق 70 على يلى بنين زاحت كمية المادة الجافة المولى (مر ايوم) عند التغذية على العلائق 10 علائق 10 على عدل التغذية على العلائق 80, R4, R4 من عالى المكول (جم / يوم) عند التغذية على العلائق 80 معائيل معائيل معام عند التغذية على العلائق 70 مروم عن ين وكان الار بنوين المحضوم عند التغذية على العلائق 70 من المروم في مند معانيل 10 معائيل معامل المائيل الاصفات العنون وكان خليوز لائدى عمر والا على على الائيل على عد التغذية على العلائق 70 مروم أو معن البنتونيت (طين) على معالى البروتين المون الا على عن وكان النولي من المون الموني عد التغذية على عدالة الم معر وين منتولي وين الذكر ولدن المين المن عام معلى معان الدون استخدام إضافة البريبيوتيك والايل على عد التغذية على العلائق 10 ما على عد العليان قابي من الخلي 10 ما على عد العليان قاد مر مروم أو ما من على على ما مائي الخافة من عال الغذية