
Journal of Engineering Sciences, Assiut University, Vol. 36, No. 6, pp.1499- 1511, November 2008

1499

ADAPTIVE ALGORITHM FOR ROUTING AND
PLACEMENT IN FPGA

M. E. ELBABLY

Dept. of Telecommunications and Electronics, Faculty of Engineering,

Helwan University, Helwan, Cairo, Egypt

(Received May 31, 2008 Accepted June 25, 2008)

The design of the placement and routing for an FPGA (whether it’s a
traditional or coarse grained field programmable gate arrays) is very

important process, requiring the care about the flexibility with silicon

efficiency. With the motivation growing towards embedding FPGAs into

SoC (system on chip) designs, final requirements for the FPGA

architectures becomes more critical. The identification of a routing

channel requires determining the number of routing paths (tracks), the

length of the segments in those paths, and the positioning of the breaks on

the paths. We have developed an optimal algorithm to alleviate the

routing and placement problem. This research focuses on the

maximization of the flexibility and expandability to achieve the final

placement with the convenient path(s) (routing). The optimal algorithm

finds a solution provided the problem meets a number of restrictions such

as busy or faulty path(s) in the routing process and applying the partial

configuration to reduce the configuration time to achieve the required

placement.

KEYWORDS: Embedding FPGAs into SoC designs, routing and

placement approaches, electronic design automation (EDA) and

algorithms design.

1. INTRODUCTION

Automatic placement becomes a very interested area for research in the last years.

Most of the previous researches focus on optimization of the wire length, routability, or

timing. As placement requires to be performed repeatedly in early design stages,

existing placement algorithms are very expensive to use. In addition, circuit size and

complexity has been increasing rapidly in the past several decades. Recently [1, 2],

shown that existing placement algorithms are not scalable. The objective of this

research is to design routing and placement algorithm that are extremely fast, flexible,

expandable and generate placements using easy procedures.

Previous researches focus on optimization of the wire length and routability, or

timing. As placement requires to be performed repeatedly in early design stages,

existing placement algorithms are very expensive to use. In addition, circuit size and

complexity has been increasing rapidly in the past several decades. Recently [1, 2],

shown that existing placement algorithms are not scalable.

There are two primary methods in conventional computing for the execution of

any algorithm for any function. The first is to use hardwired technology, either an

Application Specific Integrated Circuit (ASIC) or a group of individual components

M. E. ELBABLY 1500

forming a board-level solution, to perform the operations in hardware. Both are an

expensive process, and also somewhat inflexible.

The second method is to use software programmed microprocessors which is

more flexible solution without changing the hardware. However, for this method the

response can suffer not only in clock speed but also in work rate, and is far below that

of an ASIC. Each instruction from memory will be read by processor, decode its

meaning, and then execute it. This causes a high execution overhead for each

individual instruction.

A reconfigurable device is intended to fill the gap between hardware and

software, achieving potentially much higher performance than software, while

maintaining a higher level of flexibility than hardware. Reconfigurable devices, such as

field-programmable gate arrays (FPGAs), contain an array of computational elements

whose functionality is determined through multiple programmable configuration bits.

These elements known as logic blocks, are connected using a set of routing that are

also programmable to form the necessary circuit or to relocate any selected function(s).

To achieve any performance benefits, with support of wide range of applications,

reconfigurable systems are usually formed with a combination of reconfigurable logic

and a general-purpose microprocessor. There are some operations that cannot be done

efficiently in the reconfigurable logic, such as data-dependent control and possibly

memory accesses, such operations will be performed by processor, while the

computational cores are mapped to the reconfigurable hardware.

In this research earlier researches related to this area will be presented in

section two. In section three the proposed algorithm procedures will be introduced.

Conclusions will be given in section four.

2. EARLIER RESEARCH

For any programmed function which are required to move to another location (new

placement). There are some methods such as configuration compression and the partial

re-use of already programmed configurations can be used to alleviate the configuration

time problem. One form of configuration compression [3-6] has already been

implemented in a commercial system. This can be achieved by provides a method to

program multiple logic cells with a single address and data value. This is accomplished

by setting a special register to indicate which of the address bits should behave as

"don’t-care" values, resolving to multiple addresses for configuration. For example,

suppose two configuration addresses, 01000 and 01100, are both are to be programmed

with the same value. By setting the wildcard register to 00100, the address value sent is

interpreted as 01X00 and both these locations are programmed using either of the two

addresses above in a single operation. The benefits of this hardware discussed in [3],

while [5] covers a potential extension to the concept, where “don’t care” values in the
configuration stream can be used to allow areas with similar but not identical

configuration data values to also be programmed simultaneously.

A configuration can possibly re-use configuration information already present

on the array, such that only the areas differing in configuration values must be

reprogrammed. Therefore, configuration time can be reduced through the identification

ADAPTIVE ALGORITHM FOR ROUTING AND ……. 1501

of these common components and the calculation of the incremental configurations

that must be loaded [7,8].

Alternately, similar operations can be grouped together to form a single

configuration which contains extra control circuitry in order to implement the various

functions within the group [9].

Relocation and De-fragmentation in Partially Reconfigurable Systems

Partially reconfigurable systems are better than single-context systems in that they

allow a new configuration to be written to the programmable logic while the

configurations not occupying that same area remain intact and available for future use.

Because these configurations will not have to be reconfigured onto the array, and

because the programming of a single configuration can require the transfer of far less

configuration data than the programming of an entire context, a partially reconfigurable

system can incur less configuration overhead than a single-context FPGA [10].

However, inefficiencies can arise if two partial configurations have been placed to

overlapping physical locations on the FPGA. If these configurations are repeatedly

used one after another, they must be swapped in and out of the array each time. This

type of conflict could negate much of the benefit achieved by partially reconfigurable

systems. A better solution to this problem is to allow the final placement of the

configurations to occur at run-time [10, 11]. Storing the configurations in fast memory

near to the reconfigurable array reduces the overall time required for the data transfer

during reconfiguration [10].

Reconfigurable systems therefore have the potential to achieve greater

performance than software as a result of bypassing the fetch-decode-execute cycle of

traditional microprocessors.

Configurable ASIC (CASIC)

More specialized design called a configurable ASIC (cASIC) can be created if we

know the actual circuits to be computed. The cASICs are intended as accelerators on

domain-specific Systems-on-a-Chip (SoCs), where ASIC-style accelerators would

otherwise be used [12]. The cASIC hardware would accelerate the most compute-

intense and most common applications for which the SoC is intended, acting as support

hardware or coprocessor circuitry to a host microprocessor. The cASIC design flow

would be part of the design process for the SoC itself. Although much work has been

published in this general area of hardware/software, co-design and hardware

compilation, the most relevant addresses extraction of inner loops so as to create

cASIC-style designs [13]. The research in [12] focuses on the techniques to design the

cASIC hardware after the circuit candidates are known.

The design flow for cASICs ideally would be entirely automatic. CASIC

architecture generation occurs in two phases. The logic phase determines the

computation needs of the application net lists, creates the computational components

(ALUs, RAMs, multipliers, registers, etc.), and orders the physical elements along the

one-dimensional data path. Also, the net list instances must be bound to the physical

components. The routing phase creates wires and multiplexers to connect the logic and

I/O components.

M. E. ELBABLY 1502

The LUTs are the physical components in traditional FPGAs, while the net list

instances are low-level gates or small logic functions. When using traditional FPGAs,

this matching is referred to as placement or binding. The terms binding or mapping are

used to describe the process of matching an instance to a component. A physical move

describes the act of assigning a physical location to a physical component. Placement

during cASIC generation utilizes a simulated annealing algorithm [14], commonly

used in FPGA placement (binding) to assign net list instances to physical computation

units, and standard cell placement to determine locations for actual physical cells. This

algorithm [14] operates by taking a random initial placement of elements and

repeatedly attempting to move the location of a randomly selected element. The move

is accepted if it improves the overall task of the placement.

Related to the routing, the only routing resources are those which are explicitly

required by one or more of the net lists. CASIC routing generation techniques applied

on the net list and the procedures of the algorithms, greedy, bipartite, and clique are

discussed in [12].

The most famous placement and routing tool have been established for the

traditional FPGA (its area implemented in two dimensions only x and y) is VPR

(Versatile Place and Route) [15].

VPR can be run in one of two basic modes. In its default mode, VPR places a

circuit on an FPGA and then repeatedly attempts to route it in order to find the

minimum number of tracks (paths) required by the specified FPGA architecture to

route this circuit. In case of a routing is unsuccessful, VPR increases the number of

tracks in each routing channel and tries again; if a routing is successful, VPR decreases

the number of tracks before trying to route it again. Once the minimum number of

tracks required to route the circuit is found, VPR exits. The other mode of VPR is

invoked when a user specifies a specific channel width for routing. In this case, VPR

places a circuit and attempts to route it only once, with the specified channel width. If

the circuit will not route at the specified channel width, VPR simply report that it is un-

routable. VPR can perform either global routing or combined global and detailed

routing. The object of routing generation is to minimize area by sharing wires between

net lists while adding as few multiplexers / de-multiplexers as necessary.

The routing requirements will be discussed in the proposed algorithm

presented in this research. The routing contained two problems: creating the wires and

assigning of the signals to wires. Wire lengths can be adjusted for each module in

many current advanced FPGA (as coarse grained which facilitate a larger number of

possible connections in x, y, and z dimensions) architectures, by taking advantage of

programmable connections (segmentation points) between lengths of wire (potentially

forming a single long wire out of several short wires).

The proposed algorithm, identifying the empty path (routing) simply not share

at all and also avoiding the faulty (or unavailable) path(s), this identifications are

achieved by checking the sequences between any selected addressed source to the

selected addressed sink. Also, the proposed algorithm can achieve the placement for

any selected module (as a source) implemented in packs of the lookup tables (LUTs)

and flip flops FFs together to form more coarse-grained logic blocks, not on its net list

as previous algorithms. This is to decrease the complexity of the algorithm procedures.

ADAPTIVE ALGORITHM FOR ROUTING AND ……. 1503

3. THE PROPOSED ALGORITHM

Recently [16], many placement problems consist of a huge number of standard cells

together with tens to hundreds significantly larger macros (corresponding to IP blocks,

memory, etc) motivate the fast place area for research [17-20].

Currently, fast place uses wire length minimization as its only objective. To

alleviate routing congestion, a simple idea is to shift cells away from congested

regions. To extend fast place for routability-driven placement, we can perform cell

shifting based on routing congestion also, instead of cell overlaps only. In order to

maintain the efficiency of fast place, an extremely easy-to-compute pre-routing

congestion estimation model is crucial. The idea of the above technique is the basic to

achieve the placement in the proposed algorithm in this research. This can be executed

as a first step to shift the configuration for any selected addressed module (source) to a

new location, we have to be sure this new location is already empty. According to this

the FPGA area is modeled as a coarse grained dimensional array (i.e. with x number of

columns, y number of rows and z number of perpendicular (all numbers will be

positive or negative except x should be positive)), this array is called area matrix [21].

The area matrix data can be updated very efficiently after addition or deletion of a

task. Negative weight is assigned to all the cells (CLBs) occupied by the added task.

All the positive cells directly below the task are incremented by height of the newly

added task. Similarly, after deletion of a task, positive weight is assigned to all the cells

previously occupied by the deleted task. New weights reflect the number of continuous

empty cells above the cell i.e., the empty cells are already identified. Then to achieve

the shifting technique for any selected module LUTs (which contains one or many

units (or CLBs)), different routs should be available.

The routing between the logic blocks within the reconfigurable hardware is

also of great importance. Routing contributes significantly to the overall area of the

reconfigurable hardware. Yet, when the percentage of logic blocks used in an FPGA

becomes very high, automatic routing tools frequently have difficulty achieving the

necessary connections between the blocks. Good routing structures are therefore

essential to ensure that a design can be successfully placed and routed onto the

reconfigurable hardware.

 (a) (b)

Figure 1 Coarse grained (3 D) FPGA (a), 3 D FPGA switch (b).

b

SOURCE p
SINK k

x

y

z

a
c c

d

M. E. ELBABLY 1504

The different five paths (routs) between any selected addressed source to any

addressed desired sink(s) will be shown in figure 2. Any selected path identified at the

programming switches between the CLBs units in FPGA, which contains from one

segment up to three segments as shown in Figure 2. Any selected source can be placed

in different sink locations (this as required in replication area, it can be reached up to

"m" sinks individually).

Once a circuit has been programmed onto the reconfigurable hardware, it is

ready to be used by the host processor during program execution. The runtime

operation of a reconfigurable system occurs in two distinct phases: configuration and

execution.

The programming of the reconfigurable hardware is under the control of the

host processor. This host processor directs a stream of configuration data to the

reconfigurable hardware, and this configuration data is used to define the actual

operation of the hardware. Configurations can be loaded solely at startup of a program,

or periodically during runtime, depending on the design of the system.

Figure 2 The different paths between the any selected source location (example at a

address) and selected destination (sink) (example at b address).

Because run-time reconfigurable systems involve reconfiguration during

program execution, the reconfiguration must be done as efficiently and as quickly as

possible. Therefore, fast configuration is an important area of research for run-time

reconfigurable systems. There are a number of different tactics for reducing the

configuration overhead [17-20]. An algorithm to simultaneously optimize both short-

and long-path timing in a field-programmable gate array (FPGA) presented in [22].

In the proposed algorithm the detailed routing for each module (whether it is a

source or a sink modules), will be one by one. Each routing begins with a keyword that

identifies a type of routing segment (i.e., identifying the available path). The possible

keywords are source (the source of a certain output pin(s) class, its address identified in

a counter p) and sink (the sink of a certain input pin(s) class, its address identified in a

counter k). Each routing begins on a source and ends on a sink. Finally, the class

number (if the source or sink was on a CLB) or path number (in the programming

switch at any direction) is listed whichever one is appropriate. The meaning of these

numbers should be clearly obvious. If we are attaching to a pad, the pad number given

for a resource is the sub-block number defining to which pad at location (x, y, z) we

are attached.

a c
a c

c
c

c

a a
a

b
b b

d d
d

ADAPTIVE ALGORITHM FOR ROUTING AND ……. 1505

The first wiring path will always go from a source to the selected sink. The

routing segment listed immediately after the sink is the part of the existing routing to

which the new path attaches (i.e., the other sink in this rout will not be activated). It is

important to realize that the first pin after a sink is the connection into the already

specified routing tree; when computing routing statistics not count the same segment

several times at the same moment to avoid the overlapping.

The physical location of configurations at run time based on where the free

(empty) area on the hardware is located at any given time without any problem in

configuration time. The main requirements to achieve any placement in FPGA is to

have a technique with a very good trade-off between wire length and maximum cut

[21]. This can be achieved using a graph example as shown in Figure 3. The procedure

of this technique uses row (column) swaps to sort rows (columns) such that nonzero

elements move toward the main diagonal.

For example, for the matrix in Figure 3-a, to shift nonzero elements from the

upper half toward the main diagonal (from right to left), you perform column swaps

between columns 2 and 3, and then move column 6 between columns 2 and 4.

Repeating this technique on rows and columns moves nonzero elements closer

to the diagonal. When we ran this procedure on the graph in Figure 3-b, it created the

linear arrangement in Figure 3-c.In fact we discovered there are many other suggested

linear arrangements can achieve the same wire or path length (=7) and maximum cut

(=2), i.e., the above linear arrangement is not a unique solution.

Vertices

E
d
g
es

 1 2 3 4 5 6

a 1 0 1 0 0 0

b 0 1 0 0 0 1

c 0 0 1 1 0 0

d 0 0 1 0 0 1

e 0 0 0 0 1 1

Figure 3- a Initial wire length =10, maximum cut = 3

 1 4 3 2 6 5

a 1 0 1 0 0 0

b 0 1 1 0 0 0

c 0 0 1 0 1 0

d 0 0 0 1 1 0

e 0 0 0 0 1 1

Figure 3-b Final matrix which achieve minimum wire length and maximum cut.

M. E. ELBABLY 1506

Figure 3-c Initial wire length =7, maximum cut = 2

One of the other suggested solution we can be presented will be shown in the

Figure 4, the suggested solution can be depend only on columns moves nonzero

elements.

 1 4 3 6 2 5

a 1 0 1 0 0 0

b 0 1 1 0 0 0

c 0 0 1 1 0 0

d 0 0 0 1 1 0

e 0 0 0 1 0 1

Figure 4 Another suggested solution

In the proposed algorithm, the final placement for any selected module as

showed in Figure 3 can be moved or replicated to the proper location(s) which

addressed according to area matrix data. This can be achieved using partial

configuration and available routs.

Partial configuration for any selected source to the proper destination executed

simply by the following formula: the original configuration of the destination module

XOR with the result between the XORing of the original configurations of the source

and destination modules.

The movement (routing) of the selected addressed module (source) will be

executed step by step without module(s) overlaps according to the required space

location(s) as addressed destination(s) (sink).

In the proposed algorithm which is based on the ASM (algorithmic state

machine), the sources and sinks are defined as follows:

 "n" is the maximum number of addressed sources, and it will be identified in

counter p

 "m" is the maximum number of addressed sinks, and it will be identified in

counter k.

1 4

1

3 2 6 5

b

c
 a

a

e

d

ADAPTIVE ALGORITHM FOR ROUTING AND ……. 1507

Initial state

s=0

p = p - 1

5(k-1)+1

Seq=10k

5(k-1)+2

Seq=10k

5(k-1)+3

Seq=10k

5(k-1)+4

Seq=10k

Seq=10k-7

5(k-1)+5

Seq=10k

Seq=10k-9

Path 1#K

Path 2#K

Path 3#K

Path 4#K

Path 5#K

k = i-1

i = k
i = i + 1,

Mod m+1
i = k

i = k
i = i + 1,

Mod m+1
i = k

i = k
i = i + 1,

Mod m+1
i = k

i = k
i = i+1,

Mod m+1
i = k

no no

no

no

no no

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

St (1)

yes

yes

yes

yes

yes

yes

yes

yes

st (5(k-1)+2)

p = n+1
i = 0,k = 0

k = k+1

i = i + 1,
Mod m+1

i = k

Seq=10k

Seq=10k-1

Seq=10k-2

Seq=10k-3

Seq=10k-4

Seq=10k-5

Seq=10k-6

Seq=10k-8

Seq= 10 i

z =1
yes

no

src - ch.
 no

k = 0

no

yes

st (5(k-1)+3)

st (5(k-1)+4)

st (5(k-1)+5)

st (5(k-1)+6)

i = k

Seq= 10 i

Seq= 10 i

Seq= 10 i

Seq= 10 i

 St (5m+2)

St (5m+3)

St (5m+4)

St (5m+5)

St (5m+6)

St (5m+7)

St (0)

no

yes

 no

no

no

no

no

no

yes

yes

no

no

yes

yes

no

 no

no

no

 no

K=m

 yes

no

Figure 5

M. E. ELBABLY 1508

The designed of the proposed algorithm can be considered as an adaptive algorithm for

the following reasons:

 it is expandable for any "n" and any "m", and the complexity of the algorithm

design procedures can be alleviated by making the state boxes introduced as a

variable states (according to the equation inside each variable state box).

 satisfying unconditional microcontroller sequences (this algorithm is high

flexible algorithm), i.e., there is complete facility to move from the present

state (in the way to achieve the route and placement for any sink) to achieve

any other complete available sequences which are required to execute the route

and placement to another desired sink. This movement can be achieved by any

loop appears on the right hand side in Figure 5, starting by the conditional box

i = k followed by the state box i = i + 1 (mode m+1). Also, the flexibility to

change the selection to other addressed source at any moment will be achieved

by the decision box “src-ch” in the top left of Figure 5.

The proposed algorithm sequences have the ability to identify the available

path from the five available paths. This will be according to the optionally selected

sequence(s) for each path. Either faulty or unavailable path(s) can be avoided if the

selected sequence(s) will not be identified. The process of the proposed algorithm can

be terminated when the available path ready to achieve the routing and placement (by

partial placement) between any addressed source and desired sink. This will be

according to the required sequences in the proposed ASM algorithm design procedures,

as shown in the Figure 5.

While in VPR [15] if the routing is unsuccessful, VPR increases the number of

paths (tracks) in each routing and tries again; if a routing is successful, VPR decreases

the number of paths (tracks) before trying to route it again. For this reason, the

proposed algorithm is more accurate than VPR tools for achieving the required routing

and placement.

From the proposed algorithm the complexity of its hardware is based on

different parameters, one of them is the state boxes (the primary outputs and the

feedback flip-flops which depend on these state boxes). Table 1 shows the hardware

complexity for different systems:

Table 1

 Number of sources Number of sinks HW complexity

System 1 8 3 32

System 2 10 5 58

System 3 20 20 408

System 4 40 30 1208

System 5 100 70 7008

In general the hardware complexity can be determined from the following equation:

HW complexity = m * n + 8.

4. CONCLUSIONS

As we have shown, the routing and placement problem involved fairly subtle choices,

including balancing requirements for paths. Multiple algorithms were presented to

ADAPTIVE ALGORITHM FOR ROUTING AND ……. 1509

solve the routing and placement problem. One of these algorithms is probably optimal

for some situations, though it is complex and works for only a relatively restricted set

of cases. The proposed algorithm procedures have the ability to avoid both faulty or

unavailable path(s)) from the five available paths at any programming switches

between the CLBs. We presented an adaptive flexible and expandable algorithm,

which appears to be optimal in all cases (number of sources, destinations and path

identification) meeting the restrictions of other algorithms, and whose average appears

closer optimal overall.

We envision two situations where the results of this paper can be applied. First,

we believe that there is a growing need for automatic generation techniques of routing

and placement in FPGA for any selected number of sources and destinations. Second,

the ability of the identification for the available empty path to success the routing

between the selected source and the required destination.

REFERENCES

[1] P. Berman and G. Schnitger, “On the complexity of approximating the

independent set problem,” Inf. Comput., vol. 96, no. 1, pp. 77–94, Jan. 1992.

[2] H. N. Brady, “An approach to topological pin assignment,” IEEE Trans.Comput.-

Aided Des. Integr. Circuits Syst., vol. CAD-3, no. 3, pp. 250–255, Jul. 1984.

[3] S. Hauck, Z. Li, E. Schwabe, "Configuration Compression for the Xilinx XC6200

FPGA", IEEE Symposium on Field-Programmable Custom Computing Machines,

1998.

[4] S. Hauck, W. D. Wilson, “Runlength Compression Techniques for FPGA
Configurations”, Northwestern University, Dept. of ECE Technical Report, 1999.

[5] Z. Li, S. Hauck, “Don’t Care Discovery for FPGA Configuration Compression”,
ACM/SIGDA International Symposium on FPGAs, pp. 91-98, 1999.

[6] A. Dandalis, V. Prasanna, “Configuration Compression for FPGA-based

Embedded Systems”, ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2001.

[7] W. Luk, N. Shirazi, P. Y. K. Cheung, “Compilation Tools for Run-Time

Reconfigurable Designs”, IEEE Symposium on Field-Programmable Custom

Computing Machines, 1997.

[8] N. Shirazi, W. Luk, P. Y. K. Cheung, "Automating Production of Run-Time

Reconfigurable Designs", IEEE Symposium on Field-Programmable Custom

Computing Machines, 1998.

 [9] B. Kastrup, A. Bink, J. Hoogerbrugge, "ConCISe: A Compiler-Driven CPLD-

Based Instruction Set Accelerator", IEEE Symposium on Field-Programmable

Custom Computing Machines, 1999.

 [10] K. Compton, J. Cooley, S. Knol, S. Hauck, “Configuration Relocation and
Defragmentation for FPGAs”, Northwestern University Technical Report,

http://www.ece.nwu.edu/~kati/publications.html, 2000.

[11] Z. Li, K. Compton, S. Hauck, “Configuration Caching for FPGAs”, IEEE

Symposium on Field- Programmable Custom Computing Machines, 2000.

[12] Katherine Compton, Member, IEEE, and Scott Hauck, Senior Member, IEEE

"Automatic Design of Area-Efficient Configurable ASIC Cores" IEEE

M. E. ELBABLY 1510

TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, pp, 662-672, MAY

2007

 [13] Z. Huang and S. Malik, “Exploiting Operation Level Parallelism through

Dynamically Reconfigurable Datapaths,” Proc. Design Automation Conf., 2002.

[14] S. Kirkpatrick, D. Gelatt Jr., and M.P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.

[15] "VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs"

http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html - Ver. 4.30 – March 27, 2000

[16] Muhammet Mustafa Ozdal and Martin D. F. Wong, Fellow, IEEE "Algorithms

for Simultaneous Escape Routing and Layer Assignment of Dense PCBs" IEEE

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, VOL. 25, NO. 8, pp. 1510-1522, AUGUST 2006.

[17] T. Cohen, “Practical guidelines for the implementation of back drilling plated

through hole vias in multi-gigabit board applications,” in Proc. IEC DesignCon,

Santa Clara, CA, 2003.

 [18] J. Cong and C. L. Liu, “On the k-layer planar subset and topological via

minimization problems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,

vol. 10, no. 8, pp. 972–981, Aug. 1991.

[19] J. S. Corbin, C. N. Ramirez, and D. E. Massey, “Land grid array sockets for

server applications,” IBM J. Res. Develop., vol. 46, no. 6, pp. 763–778, Nov.

2002.

[20] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.

Cambridge, MA: MIT Press, 1992.

 [21] Cristinel Ababei, Yan Feng, Brent Goplen, Hushrav Mogal, Tianpei Zhang, Kia

Bazargan, and Sachin Sapatnekar "Placement and Routing in 3D Integrated

Circuits" IEEE Design & Test of Computers, , pp. 520-531 November–
December 2005.

[22] Ryan Fung, Vaughn Betz, and William Chow “Slack Allocation and Routing to
Improve FPGA Timing While Repairing Short-Path Violations” IEEE Tran. ON

Computer-Aided Design of Integrated Circuits and Systems, VOL. 27, NO. 4, pp.

686-697 April 2008.

 من أماƂنها)Ƃمصادر(بمسارات مختلفة خوارزم متƂيف ƃتحقيق وضع وتحريك اƃدوال

بلة افي نبائط حقول اƃبوابات اƃمتراصة اƃق أماƂن أخري)Ƃمصبات(إƃي
 ƃFPGAsلبرمجة

 اƅدوال من متغير عددƅ اƅوضع اابتدائي تغير يقدم هذا اƅبحث تصميم خوارزم يتƄيف علي حسب
اƅمصبات اƅمطلوب تحريك اƅدوال من تغيرم عدد ƅلوصول بها اƅي اƅمطلوب تعديل أماƊƄها)Ƅمصادر(

عƊد زيادة ما هو مطلوب Ƅ اƅمصدر عƊد اƅمصبات اƅمطلوبة)يختلف هذا اƅعدد عƊد تƄرار داƅة إƅيها
 ويتم ذƅك من خال اƅمسارات اƅمتاحة متجƊبا (replication areaسرعة اƊƅظام وذƅك Ƅما في أبحاث

http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

ADAPTIVE ALGORITHM FOR ROUTING AND ……. 1511

اƅمشغوƅة أو اƅتي بها أعطال)بحد أقصي خمسة مسارات وهو اƅمسموح به عمليا فيما بين اƅمسارات
علي ƅلبرمجة بين اƅوحدات اأساسيةأي خطين من خطوط ااتصال من خال برمجة اƅمفاتيح اƅقابلة

Ƅما هو في (z,xأو بين مستوي y, zأو بين مستوي x, yأي من مستويات اƅفراغ سواء Ƅان بين
يمƄن أي مسار مختار أن يتƄون من جزء أو . coarse grained FPGAاƊƅبائط اƅحديثة واƅمسماة ب

ر وأي مصب يمƄن اختيارهما ويتم تحقيق ذƅك عن بين أي مصد اجزئين أو ثاثة أجزاء بحد أقصي فيم
 جزاء اƅمسار.طريق خطوط اƅتمƄين عƊد اƊƅقاط اƅمفصلية بين أ

معتمدا علي مصفوفة اƅوحدات يƄون في اƊƅظام أƅمحتواƋبتدائي أماƄن جميع اƅدوال ااضع اƅو و
اƅمصفوفة Ɗƅصل أعمدة بقاعد تحريك صفوف و تحديدƋواƅتوصيل فيما بيƊها وهذا اƅوضع اابتدائي يتم

 إƅيأقل عدد من اƅتقاطعات في اƅوصات بين وحدات اƊƅظام اƅمبرمج وقد رأيƊا أƊه يمƄن اƅوصول إƅي
 اƅمصفوفة فقط . أعمدةاƅوضع اƊƅهائي اƅمطلوب بتحريك

من ممƄن بأƄبر قدر ƄƄل وااستفادةاƅهدف مƊه هو تحسين أداء اƊƅظام أماƄن اƅدوال)اƅمصادر(تعديل
Ɗفس اƊƅبيطة اƅقابلة ƅلبرمجة ƅبƊاء اأƊظمة اƅمعقدة بها ويمƄن برمجة هذا اƅخوارزم بداخل مساحة اƊƅبائط

 .(system on chip) في Ɗبيطة واحدة ƅ (embedded)يƄون Ɗظام متƄامل ومتضمن
ي مƄان مرغوب أ إƅيتحقيق تعديل أو تحريك داƅة أي مصدر بإمƄانأيضا بمروƊته زماƅخوار يتميز هذا

اƅمترافقة ƅه)من (sequences) تتوفر ƅه اƅتتابعات Ƅهدف من خال اƅمسارات اƅمتاحة إƅيه ااƊتقال
وان Ƅان يتعامل مع هدف حتى) هذƋ اƅتتابعاتبموƅد شفرات رتبطة اƅم sensorsخال ااستشعارات

 ا يƄون هƊاك أي حتىوذƅك دو يوذƅك دون أي ق هبمجموعة اƅتتابعات اƅخاصة ƅه بعد آخر ƅم تƄتمل
 .مطلوب اƅتعامل معه هدف فقد ƅتحقيق أي

اƅمصب اƅجديد يتم استخدام اƅتشƄيل اƅجزئي ƅداƅة اƅمصب إƅيوƅسهوƅة تحقيق اƅتعديل أي داƅة مصدر
واƅتي بين اƅداƅتين(XOR) بواسطة عن طريق تحديد ااختاف فيما بين داƅتي اƅمصدر واƅمصب

اƅمصب ƅتتطابق مع داƅة وبهذا ااختاف يمƄن تعديل داƅة LUTs بأسلوبمبرمجه يفضل أن تƄون
أو اƅتشƄيل اƄƅامل ƅداƅة اƅمصب علي اƅمسارات اƅمتوفرة يتم تخفيف مشاƄل اƅتحريك اƅمصدر وبذƅك

تتواجد عƊد اƅتعامل مع برمجة اƅدوال أن ويتم تجƊب اƅصعوبات اƅتي يمƄن ƅتتطابق مع داƅة اƅمصدر
وي اƅبوابات اƅمƊطقية أو ما واƅتي يفضل اƅتعامل بها عƊد برمجة اƅدوال علي مست net lists بأسلوب

 شابه

	KEYWORDS: Embedding FPGAs into SoC designs, routing and placement approaches, electronic design automation (EDA) and algorithms design.
	[15] "VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs" http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html - Ver. 4.30 – March 27, 2000

