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The design of the placement and routing for an FPGA (whether it’s a 
traditional or coarse grained field programmable gate arrays) is very 

important process, requiring the care about the flexibility with silicon 

efficiency. With the motivation growing towards embedding FPGAs into 

SoC (system on chip) designs, final requirements for the FPGA 

architectures becomes more critical. The identification of a routing 

channel requires determining the number of routing paths (tracks), the 

length of the segments in those paths, and the positioning of the breaks on 

the paths. We have developed an optimal algorithm to alleviate the 

routing and placement problem. This research focuses on the 

maximization of the flexibility and expandability to achieve the final 

placement with the convenient path(s) (routing). The optimal algorithm 

finds a solution provided the problem meets a number of restrictions such 

as busy or faulty path(s) in the routing process and applying the partial 

configuration to reduce the configuration time to achieve the required 

placement. 
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1.  INTRODUCTION 

Automatic placement becomes a very interested area for research in the last years. 

Most of the previous researches focus on optimization of the wire length, routability, or 

timing. As placement requires to be performed repeatedly in early design stages, 

existing placement algorithms are very expensive to use. In addition, circuit size and 

complexity has been increasing rapidly in the past several decades. Recently [1, 2], 

shown that existing placement algorithms are not scalable. The objective of this 

research is to design routing and placement algorithm that are extremely fast, flexible, 

expandable and generate placements using easy procedures.  

Previous researches focus on optimization of the wire length and routability, or 

timing. As placement requires to be performed repeatedly in early design stages, 

existing placement algorithms are very expensive to use. In addition, circuit size and 

complexity has been increasing rapidly in the past several decades. Recently [1, 2], 

shown that existing placement algorithms are not scalable.  

There are two primary methods in conventional computing for the execution of 

any algorithm for any function. The first is to use hardwired technology, either an 

Application Specific Integrated Circuit (ASIC) or a group of individual components 



M. E. ELBABLY 1500 

forming a board-level solution, to perform the operations in hardware. Both are an 

expensive process, and also somewhat inflexible. 

The second method is to use software programmed microprocessors which is 

more flexible solution without changing the hardware. However, for this method the 

response can suffer not only in clock speed but also in work rate, and is far below that 

of an ASIC. Each instruction from memory will be read by processor, decode its 

meaning, and then execute it. This causes a high execution overhead for each 

individual instruction.  

A reconfigurable device is intended to fill the gap between hardware and 

software, achieving potentially much higher performance than software, while 

maintaining a higher level of flexibility than hardware. Reconfigurable devices, such as 

field-programmable gate arrays (FPGAs), contain an array of computational elements 

whose functionality is determined through multiple programmable configuration bits. 

These elements known as logic blocks, are connected using a set of  routing that are 

also programmable to form the necessary circuit or to relocate any selected function(s). 

To achieve any performance benefits, with support of wide range of applications, 

reconfigurable systems are usually formed with a combination of reconfigurable logic 

and a general-purpose microprocessor. There are some operations that cannot be done 

efficiently in the reconfigurable logic, such as data-dependent control and possibly 

memory accesses, such operations will be performed by processor, while the 

computational cores are mapped to the reconfigurable hardware.   

In this research earlier researches related to this area will be presented in 

section two. In section three the proposed algorithm procedures will be introduced. 

Conclusions will be given in section four.  

  

2. EARLIER RESEARCH 

For any programmed function which are required to move to another location (new 

placement). There are some methods such as configuration compression and the partial 

re-use of already programmed configurations can be used to alleviate the configuration 

time problem. One form of configuration compression [3-6] has already been 

implemented in a commercial system. This can be achieved by provides a method to 

program multiple logic cells with a single address and data value. This is accomplished 

by setting a special register to indicate which of the address bits should behave as 

"don’t-care" values, resolving to multiple addresses for configuration. For example, 

suppose two configuration addresses, 01000 and 01100, are both are to be programmed 

with the same value. By setting the wildcard register to 00100, the address value sent is 

interpreted as 01X00 and both these locations are programmed using either of the two 

addresses above in a single operation. The benefits of this hardware discussed in [3], 

while [5] covers a potential extension to the concept, where “don’t care” values in the 
configuration stream can be used to allow areas with similar but not identical 

configuration data values to also be programmed simultaneously. 

A configuration can possibly re-use configuration information already present 

on the array, such that only the areas differing in configuration values must be 

reprogrammed. Therefore, configuration time can be reduced through the identification 
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of these common components and the calculation of the incremental configurations 

that must be loaded [7,8]. 

Alternately, similar operations can be grouped together to form a single 

configuration which contains extra control circuitry in order to implement the various 

functions within the group [9].  
 

Relocation and De-fragmentation in Partially Reconfigurable Systems 

Partially reconfigurable systems are better than single-context systems in that they 

allow a new configuration to be written to the programmable logic while the 

configurations not occupying that same area remain intact and available for future use. 

Because these configurations will not have to be reconfigured onto the array, and 

because the programming of a single configuration can require the transfer of far less 

configuration data than the programming of an entire context, a partially reconfigurable 

system can incur less configuration overhead than a single-context FPGA [10]. 

However, inefficiencies can arise if two partial configurations have been placed to 

overlapping physical locations on the FPGA. If these configurations are repeatedly 

used one after another, they must be swapped in and out of the array each time. This 

type of conflict could negate much of the benefit achieved by partially reconfigurable 

systems. A better solution to this problem is to allow the final placement of the 

configurations to occur at run-time [10, 11]. Storing the configurations in fast memory 

near to the reconfigurable array reduces the overall time required for the data transfer 

during reconfiguration [10].  

Reconfigurable systems therefore have the potential to achieve greater 

performance than software as a result of bypassing the fetch-decode-execute cycle of   

traditional microprocessors.  
 

Configurable ASIC (CASIC)  

More specialized design called a configurable ASIC (cASIC) can be created if we 

know the actual circuits to be computed. The cASICs are intended as accelerators on 

domain-specific Systems-on-a-Chip (SoCs), where ASIC-style accelerators would 

otherwise be used [12]. The cASIC hardware would accelerate the most compute-

intense and most common applications for which the SoC is intended, acting as support 

hardware or coprocessor circuitry to a host microprocessor. The cASIC design flow 

would be part of the design process for the SoC itself. Although much work has been 

published in this general area of hardware/software, co-design and hardware 

compilation, the most relevant addresses extraction of inner loops so as to create 

cASIC-style designs [13]. The research in [12] focuses on the techniques to design the 

cASIC hardware after the circuit candidates are known.  

The design flow for cASICs ideally would be entirely automatic. CASIC 

architecture generation occurs in two phases. The logic phase determines the 

computation needs of the application net lists, creates the computational components 

(ALUs, RAMs, multipliers, registers, etc.), and orders the physical elements along the 

one-dimensional data path. Also, the net list instances must be bound to the physical 

components. The routing phase creates wires and multiplexers to connect the logic and 

I/O components. 
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The LUTs are the physical components in traditional FPGAs, while the net list 

instances are low-level gates or small logic functions. When using traditional FPGAs, 

this matching is referred to as placement or binding. The terms binding or mapping are 

used to describe the process of matching an instance to a component. A physical move 

describes the act of assigning a physical location to a physical component. Placement 

during cASIC generation utilizes a simulated annealing algorithm [14], commonly 

used in FPGA placement (binding) to assign net list instances to physical computation 

units, and standard cell placement to determine locations for actual physical cells. This 

algorithm [14] operates by taking a random initial placement of elements and 

repeatedly attempting to move the location of a randomly selected element. The move 

is accepted if it improves the overall task of the placement.  

Related to the routing, the only routing resources are those which are explicitly 

required by one or more of the net lists. CASIC routing generation techniques applied 

on the net list and the procedures of the algorithms, greedy, bipartite, and clique are 

discussed in [12].  

The most famous placement and routing tool have been established for the 

traditional FPGA (its area implemented in two dimensions only x and y) is VPR 

(Versatile Place and Route) [15].  

VPR can be run in one of two basic modes. In its default mode, VPR places a 

circuit on an FPGA and then repeatedly attempts to route it in order to find the 

minimum number of tracks (paths) required by the specified FPGA architecture to 

route this circuit. In case of a routing is unsuccessful, VPR increases the number of 

tracks in each routing channel and tries again; if a routing is successful, VPR decreases 

the number of tracks before trying to route it again. Once the minimum number of 

tracks required to route the circuit is found, VPR exits. The other mode of VPR is 

invoked when a user specifies a specific channel width for routing. In this case, VPR 

places a circuit and attempts to route it only once, with the specified channel width. If 

the circuit will not route at the specified channel width, VPR simply report that it is un-

routable. VPR can perform either global routing or combined global and detailed 

routing. The object of routing generation is to minimize area by sharing wires between 

net lists while adding as few multiplexers / de-multiplexers as necessary.  

The routing requirements will be discussed in the proposed algorithm 

presented in this research. The routing contained two problems: creating the wires and 

assigning of the signals to wires. Wire lengths can be adjusted for each module in 

many current advanced FPGA (as coarse grained which facilitate a larger number of 

possible connections in x, y, and z dimensions) architectures, by taking advantage of 

programmable connections (segmentation points) between lengths of wire (potentially 

forming a single long wire out of several short wires).  

The proposed algorithm, identifying the empty path (routing) simply not share 

at all and also avoiding the faulty (or unavailable) path(s), this identifications are 

achieved by checking the sequences between any selected addressed source to the 

selected addressed sink. Also, the proposed algorithm can achieve the placement for 

any selected module (as a source) implemented in packs of the lookup tables (LUTs) 

and flip flops FFs together to form more coarse-grained logic blocks, not on its  net list 

as previous algorithms. This is to decrease the complexity of the algorithm procedures. 
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3. THE PROPOSED ALGORITHM 

Recently [16], many placement problems consist of a huge number of standard cells 

together with tens to hundreds significantly larger macros (corresponding to IP blocks, 

memory, etc) motivate the fast place area for research [17-20].  

Currently, fast place uses wire length minimization as its only objective. To 

alleviate routing congestion, a simple idea is to shift cells away from congested 

regions. To extend fast place for routability-driven placement, we can perform cell 

shifting based on routing congestion also, instead of cell overlaps only. In order to 

maintain the efficiency of fast place, an extremely easy-to-compute pre-routing 

congestion estimation model is crucial. The idea of the above technique is the basic to 

achieve the placement in the proposed algorithm in this research. This can be executed 

as a first step to shift the configuration for any selected addressed module (source) to a 

new location, we have to be sure this new location  is already empty. According to this 

the FPGA area is modeled as a coarse grained dimensional array (i.e. with x number of 

columns, y number of rows and z number of perpendicular (all numbers will be 

positive or negative except x should be positive)), this array is called area matrix [21]. 

The area matrix data can be updated very  efficiently after addition or deletion of a 

task. Negative weight is assigned to all the cells (CLBs) occupied by the added task. 

All the positive cells directly below the task are incremented by height of the newly 

added task. Similarly, after deletion of a task, positive weight is assigned to all the cells 

previously occupied by the deleted task. New weights reflect the number of continuous 

empty cells above the cell  i.e., the empty cells are already identified. Then to achieve 

the shifting technique for any selected module LUTs (which contains one or many 

units (or CLBs)), different routs should be available.  

The routing between the logic blocks within the reconfigurable hardware is 

also of great importance. Routing contributes significantly to the overall area of the 

reconfigurable hardware. Yet, when the percentage of logic blocks used in an FPGA 

becomes very high, automatic routing tools frequently have difficulty achieving the 

necessary connections between the blocks. Good routing structures are therefore 

essential to ensure that a design can be successfully placed and routed onto the 

reconfigurable hardware. 

 
                     

                    (a)                                                                                 (b) 

 

Figure 1   Coarse grained (3 D) FPGA (a),  3 D FPGA switch (b).   
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The different five paths (routs) between any selected addressed source to any 

addressed desired sink(s) will be shown in figure 2. Any selected path identified at the 

programming switches between the CLBs units in FPGA, which contains from one 

segment up to three segments as shown in Figure 2.  Any selected source can be placed 

in different sink locations (this as required in replication area, it can be reached up to 

"m" sinks individually). 

Once a circuit has been programmed onto the reconfigurable hardware, it is 

ready to be used by the host processor during program execution. The runtime 

operation of a reconfigurable system occurs in two distinct phases: configuration and 

execution. 

The programming of the reconfigurable hardware is under the control of the 

host processor. This host processor directs a stream of configuration data to the 

reconfigurable hardware, and this configuration data is used to define the actual 

operation of the hardware. Configurations can be loaded solely at startup of a program, 

or periodically during runtime, depending on the design of the system. 

 
Figure 2   The different paths between the any selected source location (example at a 

address) and selected destination (sink) (example at b address). 

 

Because run-time reconfigurable systems involve reconfiguration during 

program execution, the reconfiguration must be done as efficiently and as quickly as 

possible. Therefore, fast configuration is an important area of research for run-time 

reconfigurable systems. There are a number of different tactics for reducing the 

configuration overhead [17-20]. An algorithm to simultaneously optimize both short- 

and long-path timing in a field-programmable gate array (FPGA) presented in [22]. 

In the proposed algorithm the detailed routing for each module (whether it is a 

source or a sink modules), will be one by one. Each routing begins with a keyword that 

identifies a type of routing segment (i.e., identifying the available path). The possible 

keywords are source (the source of a certain output pin(s) class, its address identified in 

a counter p) and sink (the sink of a certain input pin(s) class, its address identified in a 

counter k). Each routing begins on a source and ends on a sink. Finally, the class 

number (if the source or sink was on a CLB) or path number (in the programming 

switch at any direction) is listed whichever one is appropriate. The meaning of these 

numbers should be clearly obvious. If we are attaching to a pad, the pad number given 

for a resource is the sub-block number defining to which pad at location (x, y, z) we 

are attached.  
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The first wiring path will always go from a source to the selected sink. The 

routing segment listed immediately after the sink is the part of the existing routing to 

which the new path attaches (i.e., the other sink in this rout will not be activated). It is 

important to realize that the first pin after a sink is the connection into the already 

specified routing tree; when computing routing statistics not count the same segment 

several times at the same moment to avoid the overlapping. 

The physical location of configurations at run time based on where the free 

(empty) area on the hardware is located at any given time without any problem in 

configuration time. The main requirements to achieve any placement in FPGA is to 

have a technique with a very good trade-off between wire length and maximum cut 

[21]. This can be achieved using a graph example as shown in Figure 3. The procedure 

of this technique uses row (column) swaps to sort rows (columns) such that nonzero 

elements move toward the main diagonal.  

For example, for the matrix in Figure 3-a, to shift nonzero elements from the 

upper half toward the main diagonal (from right to left), you perform column swaps 

between columns 2 and 3, and then move column 6 between columns 2 and 4. 

Repeating this technique on rows and columns moves nonzero elements closer 

to the diagonal. When we ran this procedure on the graph in Figure 3-b, it created the 

linear arrangement in Figure 3-c.In fact we discovered there are many other suggested 

linear arrangements can achieve the same wire or path length (=7) and maximum cut 

(=2), i.e., the above linear arrangement is not a unique solution. 

 

 

Vertices 

E
d
g
es

 

 1 2 3 4 5 6 

a 1 0 1 0 0 0 

b 0 1 0 0 0 1 

c 0 0 1 1 0 0 

d 0 0 1 0 0 1 

e 0 0 0 0 1 1 

 

 

Figure 3- a Initial wire length =10, maximum cut = 3 

 

 

 1 4 3 2 6 5 

a 1 0 1 0 0 0 

b 0 1 1 0 0 0 

c 0 0 1 0 1 0 

d 0 0 0 1 1 0 

e 0 0 0 0 1 1 

 

 

Figure 3-b Final matrix which achieve minimum wire length and maximum cut. 
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Figure 3-c Initial wire length =7, maximum cut = 2 

 

One of the other suggested solution we can be presented will be shown in the 

Figure 4, the suggested solution can be depend only on columns moves nonzero 

elements. 

 

 

 1 4 3 6 2 5 

a 1 0 1 0 0 0 

b 0 1 1 0 0 0 

c 0 0 1 1 0 0 

d 0 0 0 1 1 0 

e 0 0 0 1 0 1 

 

Figure 4 Another suggested solution 

   
In the proposed algorithm, the final placement for any selected module as 

showed in Figure 3 can be moved or replicated to the proper location(s) which 

addressed according to area matrix data. This can be achieved using partial 

configuration and available routs. 

Partial configuration for any selected source to the proper destination executed 

simply by the following formula: the original configuration of the destination module 

XOR with the result between the XORing of the original configurations of the source 

and destination modules.  

The movement (routing) of the selected addressed module (source) will be 

executed step by step without module(s) overlaps according to the required space 

location(s) as addressed destination(s) (sink).   

In the proposed algorithm which is based on the ASM (algorithmic state 

machine), the sources and sinks are defined as follows: 

 "n" is the maximum number of addressed sources, and it will be identified in 

counter p 

 "m"  is the maximum number of addressed sinks, and it will be identified in 

counter k. 
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The designed of the proposed algorithm can be considered as an adaptive algorithm for 

the following reasons:   

 it is expandable for any "n" and any "m", and the complexity of  the algorithm 

design procedures can be alleviated by making the state boxes introduced as a 

variable states (according to the equation inside each variable state box). 

 satisfying unconditional microcontroller sequences (this algorithm is high 

flexible algorithm), i.e., there is complete facility to move from the present 

state (in the way  to achieve  the  route and placement for any sink) to achieve 

any other complete available sequences which are required to execute the route 

and placement to another desired sink. This movement can be achieved by any 

loop appears on the right hand side in Figure 5, starting by the conditional box 

i = k followed by the state box i = i + 1 (mode m+1). Also, the flexibility to 

change the selection to other addressed source at any moment will be achieved 

by the decision box “src-ch” in the top left of Figure 5. 

The proposed algorithm sequences have the ability to identify the available 

path from the five available paths. This will be according to the optionally selected 

sequence(s) for each path. Either faulty or unavailable path(s) can be avoided if the 

selected sequence(s) will not be identified. The process of the proposed algorithm can 

be terminated when the available path ready to achieve the routing and placement (by 

partial placement) between any addressed source and desired sink. This will be 

according to the required sequences in the proposed ASM algorithm design procedures, 

as shown in the Figure 5. 

While in VPR [15] if the routing is unsuccessful, VPR increases the number of 

paths (tracks) in each routing and tries again; if a routing is successful, VPR decreases 

the number of paths (tracks) before trying to route it again. For this reason, the 

proposed algorithm is more accurate than VPR tools for achieving the required routing 

and placement. 

From the proposed algorithm the complexity of its hardware is based on 

different parameters, one of them is the state boxes (the primary outputs and the 

feedback flip-flops which depend on these state boxes). Table 1 shows the hardware 

complexity for different systems: 
 

Table 1 
 

 Number of sources Number of sinks HW complexity 

System 1 8 3 32 

System  2 10 5 58 

System  3 20 20 408 

System  4 40 30 1208 

System  5 100 70 7008 
 

In general the hardware complexity can be determined from the following equation: 

HW complexity = m * n + 8.   
 

4. CONCLUSIONS 

As we have shown, the routing and placement problem involved fairly subtle choices, 

including balancing requirements for paths. Multiple algorithms were presented to 
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solve the routing and placement problem. One of these algorithms is probably optimal 

for some situations, though it is complex and works for only a relatively restricted set 

of cases. The proposed algorithm procedures have the ability to avoid both faulty or 

unavailable path(s)) from the five available paths at any programming switches 

between the CLBs. We presented an adaptive flexible and expandable algorithm, 

which appears to be optimal in all cases (number of sources, destinations and path 

identification) meeting the restrictions of other algorithms, and whose average appears 

closer optimal overall.  

We envision two situations where the results of this paper can be applied. First, 

we believe that there is a growing need for automatic generation techniques of routing 

and placement in FPGA for any selected number of sources and destinations. Second, 

the ability of the identification for the available empty path to success the routing 

between the selected source and the required destination.  
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 من أماƂنها )Ƃمصادر( بمسارات مختلفة خوارزم متƂيف ƃتحقيق وضع وتحريك اƃدوال

بلة افي نبائط حقول اƃبوابات اƃمتراصة اƃق أماƂن أخري )Ƃمصبات( إƃي
  ƃFPGAsلبرمجة

 

 اƅدوال من  متغير عددƅ اƅوضع اابتدائي تغير يقدم هذا اƅبحث تصميم خوارزم يتƄيف علي حسب
اƅمصبات اƅمطلوب تحريك اƅدوال  من تغيرم عدد ƅلوصول بها اƅي اƅمطلوب تعديل أماƊƄها  )Ƅمصادر(

عƊد زيادة ما هو مطلوب Ƅ اƅمصدر عƊد اƅمصبات اƅمطلوبة)يختلف هذا اƅعدد عƊد تƄرار داƅة  إƅيها
 ويتم ذƅك من خال اƅمسارات اƅمتاحة متجƊبا (replication areaسرعة اƊƅظام وذƅك Ƅما في أبحاث 

http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
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اƅمشغوƅة أو اƅتي  بها أعطال )بحد أقصي خمسة مسارات وهو اƅمسموح به عمليا فيما بين  اƅمسارات 
علي   ƅلبرمجة بين اƅوحدات اأساسيةأي خطين من خطوط ااتصال من خال برمجة اƅمفاتيح اƅقابلة 

Ƅما هو في  (  z,xأو بين مستوي   y, zأو بين مستوي   x, yأي من مستويات اƅفراغ سواء Ƅان بين 
يمƄن أي مسار مختار أن يتƄون من جزء أو  . coarse grained FPGAاƊƅبائط اƅحديثة واƅمسماة ب 

ر وأي مصب يمƄن اختيارهما ويتم تحقيق ذƅك عن بين أي مصد اجزئين أو ثاثة أجزاء بحد أقصي فيم
  جزاء اƅمسار.طريق خطوط اƅتمƄين عƊد اƊƅقاط اƅمفصلية بين أ

معتمدا علي مصفوفة اƅوحدات  يƄون في اƊƅظام أƅمحتواƋبتدائي أماƄن جميع اƅدوال ااضع اƅو و 
اƅمصفوفة Ɗƅصل أعمدة  بقاعد تحريك صفوف و تحديدƋواƅتوصيل فيما بيƊها وهذا اƅوضع اابتدائي يتم 

 إƅيأقل عدد من اƅتقاطعات في اƅوصات بين وحدات اƊƅظام اƅمبرمج وقد رأيƊا أƊه يمƄن اƅوصول  إƅي
    اƅمصفوفة فقط .   أعمدةاƅوضع اƊƅهائي اƅمطلوب بتحريك 

من  ممƄن بأƄبر قدر ƄƄل وااستفادةاƅهدف مƊه هو تحسين أداء اƊƅظام  أماƄن اƅدوال )اƅمصادر( تعديل
Ɗفس اƊƅبيطة  اƅقابلة ƅلبرمجة ƅبƊاء اأƊظمة اƅمعقدة بها ويمƄن برمجة هذا اƅخوارزم بداخل  مساحة اƊƅبائط

 .( system on chip)  في Ɗبيطة واحدة  ƅ (embedded)يƄون Ɗظام متƄامل ومتضمن  
ي مƄان مرغوب أ إƅيتحقيق تعديل أو تحريك داƅة أي مصدر  بإمƄانأيضا بمروƊته  زماƅخوار يتميز هذا 

اƅمترافقة ƅه )من  (sequences)   تتوفر ƅه اƅتتابعات Ƅهدف  من خال اƅمسارات اƅمتاحة إƅيه ااƊتقال
وان Ƅان يتعامل مع هدف  حتى)  هذƋ اƅتتابعاتبموƅد شفرات رتبطة اƅم sensorsخال ااستشعارات 

 ا يƄون هƊاك أي حتىوذƅك  دو يوذƅك دون أي ق هبمجموعة اƅتتابعات اƅخاصة  ƅه بعد آخر ƅم تƄتمل
 .مطلوب اƅتعامل معه هدف فقد ƅتحقيق أي

اƅمصب اƅجديد يتم استخدام اƅتشƄيل اƅجزئي ƅداƅة اƅمصب  إƅيوƅسهوƅة تحقيق اƅتعديل أي داƅة مصدر 
واƅتي  بين اƅداƅتين(  XOR) بواسطة  عن طريق تحديد ااختاف فيما بين داƅتي اƅمصدر واƅمصب

اƅمصب ƅتتطابق مع داƅة  وبهذا ااختاف يمƄن تعديل داƅة   LUTs بأسلوبمبرمجه  يفضل أن تƄون
أو اƅتشƄيل اƄƅامل ƅداƅة اƅمصب  علي اƅمسارات اƅمتوفرة يتم تخفيف مشاƄل اƅتحريك اƅمصدر وبذƅك 

تتواجد عƊد اƅتعامل مع برمجة اƅدوال  أن ويتم تجƊب اƅصعوبات اƅتي يمƄن  ƅتتطابق مع داƅة اƅمصدر
وي اƅبوابات اƅمƊطقية أو ما واƅتي يفضل اƅتعامل بها عƊد برمجة اƅدوال علي مست  net lists   بأسلوب

 شابه
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