
Journal of Engineering Sciences, Assiut University, Vol. 39, No 1, pp. 49-71, January 2011

49

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON
3D BUILDINGS

Samia A. Ali (1), Khaled F. Hussain (2), and Ahmed M.
Sayed (3)
(1)Department of Electrical Engineering, Computer Section, Faculty
of Engineering, Assiut University, (Egypt)
e-mail: samia_fattah@yahoo.com
(2)Department of Computer Science, Faculty of Computers and
Information, Assiut University, (Egypt)
e-mail: khaled.hussain2000@gmail.com
(3)Department of Electrical Engineering, Computer Section, Faculty
of Engineering, Assiut University, (Egypt)
e-mail: eng_ahmedsayed@hotmail.com

(Received August 8, 2010 – Accepted December 12, 2010)

Creating natural, controllable, and efficient computer-generated
demolition effects has become a challenging goal in the area of computer
graphics. Such effects are of great use in diverse areas that include video
games, computer animation, and special effects in action films.
Unfortunately, creating such effects is become complicated and time-
consuming due to the demolition's natural complex movements and its
related effects that include fragmentation, fog, debris, collapsed walls,
and dust. To generate realistic demolition special effects, there are two
well-known approaches, manual and destruction simulations. The
manual approach relies on choosing appropriate tools and setting its
parameters to achieve the desired level of realism. However, this
approach requires a long time and effort from the designers. On the other
hand, the destruction simulations depend on the nature of the demolished
objects. However, this approach is slow due to the complexity of
simulating the physical behavior of the destructed objects and the energy
produced by the collisions between them. The proposed method is based
on the automation of the manual approach which depends on creating
the effect through programming a script, list of instructions, to generate
believable and compelling demolition effect in a fast manner.

KEYWORDS: Collision Detection, Computer-generated Effects,
Demolition Effect, Fast Generation, Special Effects.

1. INTRODUCTION

Long time ago, the "Realistic Special Effects" played a great role in cinema industry.
The production of such films requires high cost to reach a believable level of realism.
So the importance of minimizing the cost of producing the realistic special effects [12,
13] has direct impact on the production of these films through the replacement of
dangerous and expensive real effects with computer-generated effects. Nowadays,
there are many films contain scenes for explosion and demolition of buildings. The

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 50

computer-generated demolition effect of 3D buildings can be performed by using 3ds
Max software [1] which is one of the most common software in modeling and
animation field. This software has many ready tools that can be used to manually
generate the effects [9, 11]. But, this requires long time and effort from designers
because it necessitates choosing appropriate tools and adjusting many of their
parameters to achieve a believable level of realism. In this paper a method is proposed
to minimize the time and effort required to generate the demolition effects on 3D
buildings. This is done by automating the manual approach for generating the desired
effects. The automation is achieved through programming scripts, list of instructions,
by means of MAXScript [1] which is one of the main parts of 3ds Max software.

The demolition effects can be created using real or computer-generated special
effects. There are many factors that differentiate between them. The first is the cost
factor; the cost of demolishing a real building is much more expensive than the cost of
creating computer-generated demolition effects. The second factor is the time required
to generate the effect; demolishing a real building requires preparation and execution
time which is much longer than the time needed to create computer-generated
demolition effects. The third factor is the creativity, which is one of the most important
factors. Computer-generated special effects enable designers to experiment and make
changes to reach the required level of realism. The designers can regenerate the same
effect many times to improve its form. The fourth factor is the scale; it is impossible to
generate demolition effect for a large site by using the real approach. The only way to
generate such effect is through using the computer-generated approach. Finally, the
dangerous factor; without using computer-generated special effects, representing real
effects may cause accidents and risks due to human mistakes.

The rest of this paper is organized as follows; Section 2 presents the related

work. Section 3 describes the proposed method, and its implementation details are
presented in section 4. Experimental results are shown in Section 5. The conclusions of
this work are presented in Section 6.

2. RELATED WORK

This section describes the related work of computer-generated demolition effects and
the factors influenced its development over time. The methods and techniques used to
produce special effects have evolved greatly over the past decade. These works
include: the simulation of controlled demolition on 3D building with finite elements,
manual computer-generated effects, as well as destruction simulation and the generated
dust and debris.

2.1 The Simulation of Controlled Demolition on 3D Building

The most efficient way of a systematic destruction of a building is to use controlled
explosives. Sikiwat T., Breidt M., and Hartmann D. [18] are presented problems and
solutions for the collapse simulation of large scale complex structures. The demolition
of structures using controlled explosives is an efficient technology in particular when it
comes to high buildings. However, the collapse induced by the sudden destruction of
the structural support requires a careful planning if serious damages are to be avoided.
For a long time, this planning has only been based upon the acquired experience and

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 51

Figure 1: The scene before and after generating the effect manually [11].

the knowledge of demolition experts. Various accidents and failures at real world
blasting events have been reported in the past, nevertheless demonstrated that
empirical approaches are prone to errors. The collapse simulation of large scale
complex real world structures on the global level requires advanced and sophisticated
multi-body modeling concepts [18].

2.2 Manual Computer-generated Effects

Most of the special effects in modern films use a combination of 2D and 3D
techniques. Hasraf Dulull [11] presented 2D technique to manipulate individual
rendered images of smoke clouds to create a sense of motion, furthermore, creating
falling debris within 3ds Max software [1]. Hasraf Dulull brought all generated
elements together in Combustion software [14], and performed the final tweaks
necessary to ensure a top-quality end result. With today's applications, 3ds Max and
Combustion, Hasraf Dulull worked in multiple planes and used virtual cameras to
make his composites and matte paintings come to life. Figure 1 displays the scene
before and after generating the effect manually.

2.3 Destruction Simulation

There are a large number of existing researches on the destruction simulation of objects
[3, 4, 5, 6]. Norton [3] simulated fracturing by calculating the stress inside an object
according to a spring model. Smith [4] achieved a computation of fracturing by
recalculating the fracture faces of the object. Müller [5] used a finite element method to
compute physically-based fracturing of objects in real-time. For representing small
debris, the method by Zhang [6] used fine tetrahedral subdivision to create the
fragments. However, the computational cost of method [6] to generate extremely fine
debris and dust is very high.

2.4 Simulating Destruction and the Generated Dust and Debris

T. Imagire, H. Johan, and T. Nishita [2] are presented a method to simulate destruction
of objects caused by their collision and generate dust and debris with various sizes
based on the fracture energy. Their simulation [2] is based on an extension of the
Distinct Element Method or the Discrete Element Method (DEM) [8] designed to solve
the dynamic behavior of objects, called the Extended Distinct Element Method
(EDEM) [7]. Each object is represented as a set of elements and nearby elements are
connected using springs. Fracture is computed based on the physics-based simulation

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 52

Figure 2: 3ds Max software with MAXScript code.

of the springs between the elements. For each EDEM element, the fracture energy that
breaks it can be computed. Based on this energy, the amount of dust and maximum size
of the debris can be determined.

3. PROPOSED METHOD

To generate realistic demolition special effects, there are two well-known approaches,
manual and destruction simulations. The manual approach relies on choosing
appropriate tools and setting its parameters to achieve the desired level of realism.
However, that approach requires a long time and effort from the designers. On the
other hand, the destruction simulations depend on the nature of the demolished objects.
However, that approach is slow due to the complexity of simulating the physical
behavior of the destructed objects and the energy produced by the collisions between
them. Most simulation-based methods [2, 3, 4, 5, 6, 9] performed the destruction of
objects into relatively large size fragments. However, these methods have a high
computational cost. Moreover, the scale of destruction that can be handled by these
methods is small. The proposed method is based on the automation of the manual
approach which depends on generating the demolition effect in a fast manner through
programming a script by means of MAXScript [1]. Simply, MAXScript is a tool that
can be used to expand the functionality of 3ds Max software [1]. Also, it can be used to
add new features or to customize how 3ds Max behaves by typing in a list of
instructions that 3ds Max can execute. The usefulness of the MAXScript lies in its
flexibility and simplicity. MAXScript as a language is rich enough to permit the
developer to generate effects by programming scripts in 3ds Max software as shown in
figure 2.

In order to model the demolition effect on 3D buildings, many different special

effects should be combined such as dust, debris, collapsed walls, minor dust generated
due to collisions, fragmentation, and fog. These effects are designed by programming
scripts. In this paper, the demolition effect is generated on 3D building with ten-story,
shown in figure 3, which is taken as a reference model.

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 53

Figure 3: 3D Building to be demolished.

Figure 4: The Plane object.

First, the building is split into fragments. These fragments such as debris and
collapsed walls are generated offline by creating a single random piece and repeating it
with different sizes, positions, and orientations. Fog and dust are generated due to the
collisions between the fragments of demolished building. At the end, all scripts of each
effect are grouped into one script that generates the demolition effect. For more
clarification, the scripts of proposed algorithm for dust and debris effects are presented
later.

4. DEMOLITION SPECIAL EFFECTS ON 3D BUILDINGS

The destruction of the building is modeled by combining many different special
effects. The following subsections describe these effects by discussing the
characteristics of each effect and presenting the algorithm used for its generation.
These effects are applied on a 3D building with boundary box that has a length len,
width wid, and height hei.

4.1 Dust

This effect is used to generate highland of dust produced from demolition process and
cover the fragments of demolished building. The simulation of the dust effect requires
a long time because the resulting from demolition effect are billions of granules dust
with small sizes. Thus, the proposed method generated this effect by using Plane
object, shown in figure 4, in order to reduce the required time.

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 54

Figure 5: Example of a plane with segments.

Figure 6: One segment of the plane.

A plane object is created and named Dust_Plane. The position of this plane is
associated with the building position. Due to the dispersion of the demolished
fragments during the demolition process, the length len_Dust and the width wid_Dust
of the Dust_Plane equal, after experiments, five times of len and wid, respectively.
This plane is divided into segments, so the height of each segment can be controlled.
The number of rows lenseg and columns widseg of segments of the Dust_Plane equal
to, after experiments, (len_Dust / 10) and (wid_Dust / 10), respectively.

The proposed method can be explained in an example of a plane with five
rows (r=5) and four columns (c=4) of segments, as shown in figure 5. This plane is
converted to Editable Mesh [1], so it can be controlled at vertex, edge, or segment
level. Any segment can be identified with two numbers, wDust and (wDust+1). Figure
6 displays one segment of the plane. The value of wDust for any segment, with
coordinate i and j, can be identified according to the following equation:

 wDust = (j * 2 – 1) + (c * 2) * (i – 1) (1)

The height of any segment in z direction zDust of the Dust_Plane depends on
its position in x and y direction. Thus, the height of segments inside the center region
of the plane, where the presence probability of the demolished fragments increased, is
greater than others. The height of other segments is decreased whenever it moves away
from the center region. The plane of the Dust_Plane is divided into regions as shown in
figure 7. The segments in the same region have the same range of values of their
heights. After experimentation, the height zDust of any segment at region w can be
computed according to the following equation:

 zDust = (2)

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 55

Figure 7: The Dust_Plane is divided into regions.

Figure 8: The final dust effect.

The Dust_Plane is covered by a material that has the shape of dust. Figure 8
displays the resulted dust effect. The following instructions specify the proposed
algorithm of dust effect:

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 56

len_Dust = len * 5
wid_Dust = wid * 5
lenseg = len_Dust / 10
widseg = wid_Dust / 10
Plane length:len_Dust width:wid_Dust pos:[Build_posx, Build_posy, Build_posz] isSelected:on
$.name = "Dust_Plane"
$.lengthsegs = lenseg
$.widthsegs = widseg
convertTo $ TriMeshGeometry
for iDust = 1 to lenseg do
(
 for jDust = 1 to widseg do
 (
 r = random 4.0 10
 wDust = (jDust*2-1) + ((iDust-1)*widseg*2)
 if (((iDust > lenseg/2 - lenseg/12) and (iDust < lenseg/2 + lenseg/12)) and ((jDust > widseg/2 -
widseg/12) and (jDust < widseg/2 + widseg/12))) then
 zDust = random (hei/23) (hei/20)
 else if (((iDust > lenseg/2 - lenseg/10) and (iDust < lenseg/2 + lenseg/10)) and ((jDust >
widseg/2 - widseg/10) and (jDust < widseg/2 + widseg/10))) then
 zDust = random (hei/25) (hei/22)
 else if (((iDust > lenseg/2 - lenseg/8) and (iDust < lenseg/2 + lenseg/8)) and ((jDust > widseg/2 -
widseg/8) and (jDust < widseg/2 + widseg/8))) then
 zDust = random (hei/27) (hei/24)
 else if (((iDust > lenseg/2 - lenseg/6) and (iDust < lenseg/2 + lenseg/6)) and ((jDust > widseg/2 -
widseg/6) and (jDust < widseg/2 + widseg/6))) then
 zDust = random (hei/29) (hei/26)
 else if (((iDust > lenseg/2 - lenseg/r) and (iDust < lenseg/2 + lenseg/r)) and ((jDust > widseg/2 -
widseg/r) and (jDust < widseg/2 + widseg/r))) then
 zDust = random (hei/31) (hei/28)
 else if ((iDust > r) and (iDust < lenseg-r) and (jDust > r) and (jDust < widseg-r)) then
 zDust = random 1.0 2
 else if ((iDust == 1) or (iDust == lenseg) or (jDust == 1) or (jDust == widseg)) then
 zDust = -4
 else
 zDust = random -4.0 2
 subobjectLevel = 4
 move $.faces[#{wDust..(wDust+1)}] [0, 0, zDust]
)
)

4.2 Debris

The debris presents the small broken pieces that remain after the demolition of
buildings. The debris includes rubble, splinters, and plates. This effect is done offline
by generating a single random piece and repeating it with different sizes, positions, and
orientations. In order to start the creation of debris effect, any shape object, such as a
box or a cylinder, can be used. Figure 9a displays a cylinder object that has been
created and named Debris_main. The Debris_main object's size and position have been
assigned, after experimentation, with the size of building model by using the following
equations:

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 57

Figure 9: Steps of generating random shape of debris.

Figure 9b

Cylinders overlapped with
Debris_main

Figure 9a

Debris_main object

Figure 9c

Debris_main after Subtract
operation

Figure 9d

Debris_main after Noise
operation

 Cyl_hei = hei / 18 (3)

 Cyl_rad = (len + wid) / 16 (4)

 Cyl_pos_x = building_pos_x (5)

 Cyl_pos_y = building_pos_y (6)

 Cyl_pos_z = building_pos_z + hei / 2 (7)

Where Cyl_hei and Cyl_rad are the height and radius, respectively, of the
cylinder object. Cyl_pos_x, Cyl_pos_y, and Cyl_pos_z are the position of the
Debris_main on x, y, and z direction, respectively. building_pos_x, building_pos_y,
and building_pos_z are the position of the building on x, y, and z direction,
respectively. And then many cylinder objects are created and overlapped in random
positions with Debris_main object. This can be shown in figure 9b.

A random shape piece of debris is generated by using the Subtraction operation
of the Boolean Compound Object [1]. The subtraction operation is used to subtract
each cylinder object from Debris_main object. This is shown in figure 9c. After that,
the Debris_main object is repeated to create many objects of debris with different sizes
and positions. The number k of copied objects can be computed, after many of
experiments, from the following equation:

 k = (len + wid + hei) / 1.6 (8)

This equation means that the number of copied objects was associated with the
size of building. For each copied object, the following steps are executed:

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 58

Figure 10: Debris object covered by noise material.

1) A Noise modifier [1] is applied to the object to increase the irregularity of the
shape. The Noise modifier parameters are changed randomly to generate
different random shapes for each object. Figure 9d displays the object after the
Noise modifier applied.

2) The size of each object is changed randomly by the scale equation, which can
be calculated according to the following matrix:

scale(sx, sy, sz) = (9)

Where sx, sy, and sz have the same value varies randomly between (0.2) and
(0.8) for each copied object.

3) Each object is rotated randomly according to the following equation:

r(a, x, y, z) = (10)

Where r(a, x, y, z) is the rotate value in x, y, and z direction with angle a that
varies randomly for each object.

4) The area a_dib where the debris spreads randomly equals, after
experimentation, 1.7 times of the area of demolished building. The position of
each object is changed randomly in x and y direction within the area a_dib.

5) Each copied object is covered by noise material that can be look like a broken
surface. This can be shown in figure 10.

The above algorithm is used to generate various types of debris that includes:
� Rubble: broken stones of the building. This can be shown in figure 11.
� Splinters: small needle-like pieces that have separated from larger broken windows

of the building. This can be shown in figure 12.
� Plates: flat thin pieces of broken metals of the building. This can be shown in figure

13.

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 59

Figure 12: The shape of
Splinter.

Figure 11: The shape of
Rubble.

Figure 13: The shape of
Plate.

Figure 14: Debris in random positions.

Figure 14 displays the debris in random position. The following instructions
specify the proposed algorithm of debris effect:

Rub_x = Build_posx
Rub_y = Build_posy
Rub_z = Build_posz+hei/2
Ch = hei/18
Cr = (len+wid)/16
Cylinder smooth:off heightsegs:1 capsegs:1 sides:5 height:Ch radius:Cr mapcoords:on
pos:[Rub_x,Rub_y,Rub_z] isSelected:on
$.name = "Debris_main"
new_Ch = Ch/2
new_Cr = Cr/2
s_xy = -Cr+2
e_xy = Cr-2
s_z = 2
e_z = Ch-2
new_Cy_xy = random s_xy e_xy
new_Cy_z = random s_z e_z
Cylinder smooth:off heightsegs:1 capsegs:1 sides:7 height:new_Ch radius:new_Cr mapcoords:on
pos:[Rub_x+new_Cy_xy, Rub_y+new_Cy_xy, Rub_z+new_Cy_z] isSelected:on
$.name = "Debris01"
rotate $ (angleaxis 50 [1,1,1])
new_Cy_xy = random s_xy e_xy
new_Cy_z = random s_z e_z
Cylinder smooth:off heightsegs:1 capsegs:1 sides:7 height:new_Ch radius:new_Cr mapcoords:on

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 60

pos:[Rub_x+new_Cy_xy, Rub_y+new_Cy_xy, Rub_z+new_Cy_z] isSelected:on
$.name = "Debris02"
rotate $ (angleaxis 100 [1,1,1])
new_Cy_xy = random s_xy e_xy
new_Cy_z = random s_z e_z
Cylinder smooth:off heightsegs:1 capsegs:1 sides:7 height:new_Ch radius:new_Cr mapcoords:on
pos:[Rub_x+new_Cy_xy, Rub_y+new_Cy_xy, Rub_z+new_Cy_z] isSelected:on
$.name = "Debris03"
rotate $ (angleaxis 150 [1,1,1])
new_Cy_xy = random s_xy e_xy
new_Cy_z = random s_z e_z
Cylinder smooth:off heightsegs:1 capsegs:1 sides:7 height:new_Ch radius:new_Cr mapcoords:on
pos:[Rub_x+new_Cy_xy, Rub_y+new_Cy_xy, Rub_z+new_Cy_z] isSelected:on
$.name = "Debris04"
rotate $ (angleaxis 200 [1,1,1])
new_Cy_xy = random s_xy e_xy
new_Cy_z = random s_z e_z
Cylinder smooth:off heightsegs:1 capsegs:1 sides:7 height:new_Ch radius:new_Cr mapcoords:on
pos:[Rub_x+new_Cy_xy, Rub_y+new_Cy_xy, Rub_z+new_Cy_z] isSelected:on
$.name = "Debris05"
rotate $ (angleaxis 250 [1,1,1])
new_Cy_xy = random s_xy e_xy
new_Cy_z = random s_z e_z
Cylinder smooth:off heightsegs:1 capsegs:1 sides:7 height:new_Ch radius:new_Cr mapcoords:on
pos:[Rub_x+new_Cy_xy, Rub_y+new_Cy_xy, Rub_z+new_Cy_z] isSelected:on
$.name = "Debris06"
rotate $ (angleaxis 300 [1,1,1])
new_Cy_xy = random s_xy e_xy
new_Cy_z = random s_z e_z
Cylinder smooth:off heightsegs:1 capsegs:1 sides:7 height:new_Ch radius:new_Cr mapcoords:on
pos:[Rub_x+new_Cy_xy, Rub_y+new_Cy_xy, Rub_z+new_Cy_z] isSelected:on
$.name = "Debris07"
rotate $ (angleaxis 350 [1,1,1])
select $Debris_main
boolObj.createBooleanObject $
boolObj.SetOperandB $ $Debris01 4 2
boolObj.createBooleanObject $
boolObj.SetOperandB $ $Debris02 4 2
boolObj.createBooleanObject $
boolObj.SetOperandB $ $Debris03 4 2
boolObj.createBooleanObject $
boolObj.SetOperandB $ $Debris04 4 2
boolObj.createBooleanObject $
boolObj.SetOperandB $ $Debris05 4 2
boolObj.createBooleanObject $
boolObj.SetOperandB $ $Debris06 4 2
boolObj.createBooleanObject $
boolObj.SetOperandB $ $Debris07 4 2
select $Debris_main
convertTo $ TriMeshGeometry
 meditMaterials[20].bumpMapEnable = on
meditMaterials[20].bumpMapAmount = 150
meditMaterials[20].bumpMap = Noise ()
meditMaterials[20][#Maps][#Bump__Noise____Noise].size = 10
meditMaterials[20][#Maps][#Bump__Noise____Noise].type = 2
meditMaterials[20][#Maps][#Bump__Noise____Noise].color2 = color 115 115 115
meditMaterials[20].Diffuse = color 208 183 144

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 61

select $Debris_main
$.material = meditMaterials[20]
showTextureMap $Debris_main.material true
frm = animationRange.end / 10
for i = 1 to hei do(
 Deb_main = copy $Debris_main
 select Deb_main
 modPanel.addModToSelection (Noisemodifier ()) ui:on
 Noise_seed = random 1 1000
 $.modifiers[#Noise].seed = Noise_seed
 $.modifiers[#Noise].fractal = on
 Noise_ro = random 0.0 1.0
 $.modifiers[#Noise].roughness = Noise_ro
 Noise_it = random 1.0 10.0
 $.modifiers[#Noise].iterations = Noise_it
 Noise_stx = random 15 25
 Noise_sty = random 15 25
 Noise_stz = random 15 25
 $.modifiers[#Noise].strength = [Noise_stx,Noise_sty,Noise_stz]
 scale_rub = random 0.2 0.8
 scale Deb_main [scale_rub, scale_rub, scale_rub]
 Deb_main.wirecolor = $Debris_main.wirecolor
 widx = (float(wid) * 1.6)
 leny = (float(len) * 1.6)
 dr = random 10 100
 pos_x = random (-widx-dr) (widx+dr)
 pos_y = random (-leny-dr) (leny+dr)
 if (pos_y > -len and pos_y < len and pos_x > -wid and pos_x < wid) then(
 if (pos_x >= 0) then pos_x = pos_x+wid else pos_x = pos_x-wid
 if (pos_y >= 0) then pos_y = pos_y+len else pos_y = pos_y-len)
 pos_z = random 4.0 6
 rot_x = random 1.0 360
 rot_y = random 1.0 360
 rot_z = random 1.0 360
 rot_deb = eulerangles rot_x rot_y rot_z
 rotate Deb_main rot_deb

if (mod i 10 == 0) then frm += 1
 set animate on
 at time animationRange.start Deb_main.visibility = off
 at time frm Deb_main.visibility = on
 at time (frm-1) Deb_main.visibility = off
 at time frm Deb_main.pos = [Build_posx, Build_posy, Build_posz + hei/2 - i/2]
 at time (animationRange.end/2) Deb_main.pos = [Build_posx+pos_x,
Build_posy+pos_y, Build_posz+pos_z]
 set animate off)

4.3 Collapsed Walls

The collapsed walls look like big broken walls that remain after the demolition of the
building. This effect is done offline by generating a single random piece and repeating
it with different sizes, positions, and orientations. The algorithm used for this effect is
the same as the algorithm which written for debris effect but box tool is used instead of
cylinder tool. Figure 15 displays the steps of generating random shape of collapsed
walls. Figure 16 displays the wall object after covered by brick material. Figure 17
displays collapsed walls in random positions.

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 62

Figure 18: The Debris, Collapsed Walls, and Dust

Figure 17: Collapsed walls in random

Figure 15b

Boxes overlapped with

Wall object

Figure 15: Steps of generating random shape of collapsed walls.

Figure 15a

Wall object

Figure 15c

Wall object after
Subtract operation

Figure 15d

Wall object after
Noise operation

Figure 16: Wall object covered by brick material.

Figure 18 displays the debris, collapsed walls, and dust effects after demolishing the
building.

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 63

Figure 19: Bounding sphere for two collapsed
walls.

Figure 21: Computing the
separation vector between two

Figure 20: Comparing the separation between
two bounded sphere objects with the sum of

4.4 Minor Dust generated due to Collisions

During the destruction process, the demolished parts of the building collide with each
other and cause minor dust and debris. To detect the collision between two objects, the
intersection between all the polygons of these objects must be calculated. The
algorithm to compute these intersections requires long time for calculation specially
when applied to large number of objects. One of the many ways used to simplify this
algorithm is the bounding volume method. The common shapes of bounding volumes
are boxes and spheres. The corresponding bounding volumes must be updated when
objects perform geometrical transformations. Bounding spheres is a simple task that
can be accomplished by updating the coordinates of their centers only. While in
bounding boxes, the computation time of the collision detection is longer than the
bounding spheres to compare all the coordinates of the vertices of objects to obtain the
updated bounding boxes. Thus bounding spheres is the fastest type of collision
detection [10]. Figure 19 displays bounding sphere for two collapsed walls.

Two objects are said to have collided if their bounding spheres overlap. To
detect whether a collision has taken place, the radii of the two bounding spheres and
the position vectors of the objects must be known. The separation between two
bounded sphere objects is compared with the sum of their radii, as shown in figure 20.
If the separation between the two objects is less than the sum of their radii, a collision
has taken place. If the positions vectors of the centers of these objects object01_pos
and object02_pos were known, the distance dist between them can be computed by
subtracting the vector object02_pos from vector object01_pos.

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 64

Figure 22: Minor dust generated due to collision detection between two collapsed walls.

Figure 22a: Collapsed walls before collision.
.

Figure 22b: Collapsed walls after collision.

Subtracting P2 from P1, as shown in figure 21, gives a vector specifying the
distance between the two centers of mass. Thus, the magnitude mag of the distance
vector can be computed. The mag value is compared with the mindist which is the sum
of the radii of the bounding spheres (object01_radius + object02_radius). If the
distance mag is less than the sum of the radii mindist, the objects have collided but
otherwise, there is no collision.

The above algorithm is slow because it’s applied for every pair of particles in
the region. The square root in the norm calculation takes about 70 times as long as
multiplying floats. To reduce the calculation time of this algorithm, the fast numerical
approximations of square root can be used. If there are two numbers a and b, and a is
greater than b, then a2 is greater than b2. The same concept holds here: Instead of
comparing the separation distance mag with the sum of the radii mindist, the square of
the separation mag2 is compared with the square of the sum of the radii mindist2.

If there are n objects, the above algorithm is applied for each pair of these
objects. The number of pairs p can be calculated from p = n * (n – 1) / 2, which
requires long calculation time, O(n2). This calculation time can be minimized as
follows:
1- For each pair of objects, if the separation between their centers is greater than a

threshold value, this pair is dropped from the calculations because the collision
detection is impossible.

2- For each pair of objects, if the separation between their centers is less than the
above threshold value, the collision detection is applied for this pair but not in each
frame. The frame number that detects the collision depends on the separation
between the centers of objects pair. For example, if the separation between two
objects is S, the collision detection is applied for this pair after fr frame, where
fr=S / 20. This value is deduced after many of experiments. If fr ≤ 1, the collision
detection is applied for this pair after one frame.

Applying this collision detection algorithm results a minor dust shown in figure 22.

4.5 Fragmentation

This effect is used in the process of demolishing the building. It's generated by splitting
the building with many slices planes. Each plane is applied with a Noise modifier [1]
and with different position and rotation, in order to increase the irregularity of the

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 65

Figure 23: Fragments with different colors of
demolished building after splitting it with slices

Figure 24: Fragmentation effect.

Figure 24a: Fragmentation at frame 55-400. Figure 24b: Fragmentation at frame 400-400.

fragments. The building box is fragmented with these slices planes. Figure 23 displays
the fragments with different colors of demolished building after splitting it with slices
planes. The fragments of the demolished building are moved towards the ground with
the effect of the gravity. Figure 24 displays the fragmentation effect.

4.6 Fog

This effect is used to generate mist of dust, which results during the demolition
process. It's generated by using Super Spray tool [1] with help of AfterBurn plug-in
[1]. Figure 25 displays the fog effect.

5. EXPERIMENTAL RESULTS

In this section a comparison between the proposed demolition algorithm on 3D
buildings and other algorithms [15, 16, 17, 18] on the basis of computation time.

S. Mattern, G. Blankenhorn and K. Schweizerhof [15] are presented computer-
aided destruction in order to predict the collapse of complex structure buildings
subjected to controlled explosives. Global finite element simulations allow the
detection of zones with accumulated damage and structural parts with rigid body like
behavior. Combined simulations with flexible finite element part and rigid bodies are
compared with the validated finite element analysis. All simulations are performed on
eight parallel processors of the Intel® Ithanium® 2-based HP - XC6000 Cluster at the

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 66

Figure 25: The fog effect.

Figure 25a: Fog effect at frame 85-400. Figure 25b: Fog effect at frame 110-400.

Figure 25c: Fog effect at frame 145-400. Figure 25d: Fog effect at frame 250-400.

University Karlsruhe. The average turnaround time for the finite element simulation of
one single complete collapse of 9 seconds duration in reality requires approximately 18
hours computation time on the cluster.

J. Griffin [16] evaluates the effectiveness of dynamic analysis program in
modeling progressive collapse scenarios. He presented a new method of numerical
analysis, known as Applied Element Method (AEM). The research is performed to
investigate the accuracy of the analysis method contained within the Extreme
Loading® for Structures (ELS®) software [16] in modeling progressive collapse of
building structures through comparison with the response of each structure during
implosion. The analysis was performed on a desktop computer running 64 bit Windows
2003, with a 2.4 GHz Core 2 Duo processor and 4 gigabytes of RAM. It took
approximately 55 hours to complete.

Eun-Jin Lee and Sherif El-Tawil [17] are explained the use of virtual reality to
present FEMvrml, an interactive virtual environment in which users can interact with
and explore the results of finite element simulations. The finite element (FE) method is
a popular computational simulation technique which produces information that is
proportional to the size of the numerical model. An effective way to develop cost-
effective tools is to use readily available open standards software such as the Virtual
Reality Markup Language (VRML) [17]. An application, that demonstrates the
capabilities of FEMvrml, involves a collapse simulation for an 8-story steel frame
building. Data processing time for converting the finite element results into VRML is
approximately 8.0 CPU minutes on a machine with a 1.73 GHz Xeon processor and 1
gigabyte of RAM.

Sikiwat T., Breidt M., and Hartmann D. [18] are explained that the simulation
of large scale complex real world structures requires sophisticated concepts such that

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 67

Table 1: Comparison of simulation time between the proposed algorithm with previous algorithms.

the simulation model used in the software system can cover the entire dynamic
collapse process as well as determine the final debris hill. The physical core of the
simulation model is based on a so-called "special multi-body system (special MBS)"
that is created adaptively during the simulation process. This concept makes it possible
to obtain an efficient and realistic simulation of structural collapse, particularly with
regard to the major collapse kinematics. A multi-body simulation model of the
reference building is created using 220 rigid bodies. The simulation of the real world
duration of 3 seconds requires only approximately 2 hours of calculation time. Hereby,
the multi-body model is executed on a machine with a 1.6 GHz Intel Xeon CPU 5110
processor and 2 gigabytes of RAM.

In the proposed algorithm, all programmed scripts of each effect are grouped
into one script that generates the demolition effect. This script is installed over a user
rollout, shown in figure 26. This rollout allows the user to click on "Generate" button
to generate the demolition effect on the selected building. The total time required to
execute the proposed demolition algorithm has an average value equals 10 minutes.
Then, the user clicks on "Render" button to generate the demolition movie of the
building. The total time required to render output movie file with 400 frames has an
average value equals 15 hours. This analysis is performed on a laptop running 32 bit
Windows Vista, with a 2 GHz Core 2 Duo Intel® processor and 2.5 gigabytes of RAM.
The total time required to manually execute the proposed algorithm without using
scripts has an average value equals 5 hours without taking the render time in
consideration.

Paper Title System Specification Simulation Time
Numerical Simulation of
Controlled Building Collapse
with Finite Elements and
Rigid Bodies [15]

Eight parallel processors of
the Intel® Ithanium® 2–based
HP – XC6000 Cluster

One single complete collapse
of 9 seconds duration in
reality requires approximately
18 hours computation time

Experimental and Analytical
Investigation of Progressive
Collapse through Demolition
Scenarios and Computer
Modeling [16]

Desktop computer, 64 bit
Windows 2003, 2.4 GHz Core
2 Duo processor, and 4 GB
RAM

Approximately 55 hours

FEMvrml: An Interactive
Virtual Environment for
Visualization of Finite
Element Simulation Results
[17]

Machine with a 1.73 GHz
Xeon processor and 1 GB
RAM

Approximately 8.0 CPU
minutes

Collapse Simulations of
Large Scale Complex
Structures due to Controlled
Explosives [18]

Machine with a 1.6 GHz Intel
Xeon CPU 5110 processor
and 2 GB RAM

3 seconds of real world
duration = 2 hours of
calculation time

Fast Generation of
Demolition Special Effects
on 3D Buildings (Proposed
algorithm)

Laptop with 32 bit Windows
Vista, 2 GHz Core 2 Duo
Intel® processor, and 2.5 GB
RAM

10 minutes (calculation time)
15 hours (render time)

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 68

Figure 26: The User Rollout.

The comparison of simulation time between the proposed algorithm and
previous algorithms can be grouped in the following table:

As documentation of the real collapse process, the validation is accomplished
by a visual comparison of the numerical results to video sequences of the real collapse
event. This event was performed on building in 50 High Street, Buffalo, NY City,
USA, which was demolished at 6:00AM on May 26, 2007. A visual validation of the
simulation is reached via a position of the frames of the video and the visualized
results of the simulation at particular points in time during the collapse, as shown in
figure 27.

6. CONCLUSIONS

• This paper presented both, manual and destruction simulations, approaches that used
to generate realistic demolition special effects.

• The factors that differentiate between computer-generated and real demolishing
special effects are illustrated. These factors include cost, time, creativity, scale, and
dangerous.

• The related work of computer-generated demolition effects and its factors that have
influenced its development over time are described.

• Finally, this paper focused on the proposed method and explained the details of
implementing this method for generating demolition special effects on 3D buildings
with its related effects that include fragmentation, fog, dust, debris, collapsed walls,
and minor dust generated due to collisions.

Finally, it can be concluded that creating computer-generated demolition
effects can often become complicated and time consuming due to the demolition's
natural complex movements and its related effects. The proposed method depended on
automation of the manual approach. It generates the desired effects through
programming scripts by means of MAXScript which is one of the main parts of 3ds
Max software. Thus, the proposed method minimizes the time and effort to develop
believable and compelling demolition effects.

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 69

Figure 27: The numerical results to video sequences of the real collapse event.

Figure 27a: Frame 001 – 400.

Figure 27b: Frame 053 – 400.

Figure 27c: Frame 064 – 400.

Figure 27d: Frame 097 – 400.

Figure 27e: Frame 144 – 400.

7. REFERENCES

[1] Kelly L. Murdock, 3ds Max 2008, Bible, 2007.
[2] T. Imagire, H. Johan, and T. Nishita, “A Fast Method for Simulating Destruction

and the Generated Dust and Debris,” The Visual Computer Journal, Volume 25,
Issue 5-7, pp. 719–727, 2009.

Samia A. Ali, Khaled F. Hussain, and Ahmed M. Sayed 70

[3] A. Norton, G. Turk, B. Bacon, J. Gerth, and P. Sweeney, “Animation of Fracture
by Physical Modeling,” Vis. Comput. 7(4), 210–219, 1991.

[4] J. Smith, A. Witkin, and D. Baraff: “Fast and Controllable Simulation of the
Shattering of Brittle Objects,” Comput. Graph. Forum 20(2), 81–91, 2001.

[5] M. Müller, L. McMillan, J. Dorsey, and R. Jagnow, “Real-time Simulation of
Deformation and Fracture of Stiff Materials,” In: EUROGRAPHICS 2001
Computer Animation and Simulation Workshop, pp. 27–34, 2001.

[6] N. Zhang, X. Zhou, D. Sha, X. Yuan, K. Tamma, and B. Chen, “Integrating Mesh
and Mesh Free Methods for Physics-based Fracture and Debris Cloud
Simulation,” In: Symposium on Point-based Graphics, pp. 145–154, 2006.

[7] K. Meguro and M. Hakuno, “Fracture Analyses of Concrete Structures by the
Modified Distinct Element Method,” Struct. Eng./Earthquake Eng., JSCE 6(2),
283–294, 1989.

[8] N. Bell, Y. Yu, and P. Mucha, “Particle-based Simulation of Granular Materials,”
In: Proceedings of the 2005 ACM SIGGRAPH/ Eurographics Symposium on
Computer Animation, pp. 77–86, 2005.

[9] P. Draper, Deconstructing the Elements with 3ds Max, Third Edition, Focal
Press, 2009.

[10] Chin-shyurng Fahn and Jui-lung Wang, “Efficient Time-Interrupted and Time-
Continuous Collision Detection among Polyhedral Objects in Arbitrary Motion,”
Journal of Information Science and Engineering 15, 769-799, 1999.

[11] H. Dulull, The War Zone, Part two, 3ds Max/Combustion, 3D WORLD, pp. 62–
65, 2006.

[12] A. Cullen, “Computers and Culture,” Microsoft European Product Development
Centre and DCU School of Computer Applications, 2002.

[13] Vesselin I. Shaoulov and Jannick P. Rolland, “Design and Assessment of
Compact Optical Systems Towards Special Effects Imaging,” Ph.D, College of
Optics and Photonics, University of Central Florida, Orlando, Florida, 2005.

[14] Gary M. Davis, The Focal Easy Guide to Discreet Combustion 4, Focal Press,
2005.

[15] S. Mattern, G. Blankenhorn and K. Schweizerhof, “Numerical Simulation of
Controlled Building Collapse with Finite Elements and Rigid Bodies – Case
Studies and Validation,” German Research Foundation, 2007.

[16] Joshua Wayne Griffin, “Experimental and Analytical Investigation of
Progressive Collapse through Demolition Scenarios and Computer Modeling,”
Master of Science, Civil Engineering, North Carolina State University, 2008.

[17] Eun-Jin Lee and Sherif El-Tawil, “FEMvrml: An Interactive Virtual
Environment for Visualization of Finite Element Simulation Results,” Advances
in Engineering Software, Science Direct, Volume 39, Issue 9, pp. 737-742,
September 2008.

[18] Sikiwat T., Breidt M., and Hartmann D., “Collapse Simulations of Large Scale
Complex Structures due to Controlled Explosives,” 7th EUROMECH Solid
Mechanics Conference, Lisbon, Portugal, September 2009.

FAST GENERATION OF DEMOLITION SPECIAL EFFECTS ON 3D .. 71

 التوليد السريع لتأثيرات التهديم الخاصة على بنايات ثلاثية الأبعاد

منذ وقت طويل والتأثيرات الخاصة الواقعية تلعب دوراً كبير فى صناعة السينما من خلال الأفلام التى
لعاب ومن أكثر التأثيرات إستخداماً فى صناعة الأفلام وأ. تحتاج الى قدرة إنتاجية ضخمة للوصول الى الواقعية

حيث أن التهديم الحقيقى لبناية يحتاج لتكلفة عالية جداً وصعوبة فى التطبيق . الفيديو هى تأثيرات التهديم للبنايات
ومن هنا تظهر أهمية إستبدال مشاهد تهديم البنايات الحقيقية . وقد ينتج عنه مخاطر بسبب الأخطاء البشرية

. لحاسب الآلى فى تخفيض تكاليف إنتاج هذه الأفلام بشكل واضحبالتأثيرات الخاصة المُخَلقة باستخدام برامج ا
كما أنه فى بعض البُلدان يتم الإستعانة بالشركات المتخصصة لتهديم البنايات القديمة بإسلوب علمى بحيث لا

توليد ويتم تطبيق هذا الإسلوب العلمى بإنشاء محاكاة لتهديم البناية بما يصاحبها من . تتأثر البنايات المجاورة
ولكن هذا الإسلوب بطئ لأنه يعتمد على . تأثيرات اخرى تتضمن الغبار وضباب الأتربة والحطام والجدران المنهارة

ويمكن أيضاً توليد هذه التأثيرات بطريقة يدوية . دراسة حركات التهديم المعقدة من الناحية الفيزيائية والهندسية
والذى يعتبر من البرامج الأكثر شيوعا 3ds Maxالآلى مثل برنامج بإستخدام الأدوات الجاهزة فى برامج الحاسب

الطريقة . ولكن هذا الإسلوب يتطلب مجهود أكبر من المُصَممين لخلق هذه التأثيرات. فى مجال الرسومات
المقترحة من خلال هذا البحث تعتمد على خلق تأثيرات التهديم بطريقة أوتوماتيكية عن طريق برمجة قائمة من

وهذه الطريقة إستلزمت خبرات فى . MAXScriptة بالبرنامج وهو وامر بواسطة أحد الأجزاء الرئيسيالأ
. المقترحة البرمجة للحصول على تأثيرات تهديم قريبة من المشاهد الواقعية عن طريق تنفيذ قائمة الأوامر

 .رات تهديم واقعيةفى ضوء ذلك، يتضح أن الطريقة المقترحة تقلل الوقت والجهد للحصول على تأثي

