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ABSTRACT: 
Nowadays, there are wide range of computing-intensive applications that require a powerful 
computing platform. This computational complexity can be reduced significantly using lower 
precision, but certainly the accuracy will be affected. In this work, a novel lossless mixed-
precision computation technique is used to reduce the computational complexity for such 
problems while keeping the same accuracy of higher precision. The “precision on demand” 
technique depends on iterative computation method, which utilizes discarding stages. The 
discarding stages are commonly used in many applications where some intermediate results 
are discarded, and they do not contribute to the final results. Max, min, threshold, and  ReLU       
-operations are examples of such discarding stages. Lower precision is used to compute all 
intermediate results, then non-discarded values are recomputed using higher precisions. This 
technique enhances performance, improves power-consumption, reduces memory 
requirements, and allows implementing heavy computational systems on low resources and 
low-cost platforms.  This work presents the decision on demand concept, and discuss many 
details related to hardware architecture implementations and optimizations. CNN inference is 
used as a case study, and speed is improved by a factor of 1.6x- 3.5x.   
 
KEYWORDS: Mixed Precision, Floating Point, Convolutional Neural Networks,  
                          Computational Complexity , Field Programmable Gate Arrays, Image  
                          Classification.  
 

طNO7PQ >6L5R8 >ASNة H7K5L;ام ا@;?< ا@FG7HI< دون AB;: ا@;?< =>;ا56789ج  
 

UPVاNI@ف اNXأ 
 .NPQ ھCDE@ ا>NOE وا>KC:L:ت، GHI@ ا>A6:B، @CDEF@ ا?زھ4، ا>;:ھ4ة ، 456

E-mail: a.marakeby@azhar.edu.eg  RS4وTU<Vا DW4K<ا:   
ZHGI@ا: 

ھgXه ا>DXG;ATات ا>Rh DBZW . :XFHGH;_ aXUiW @GY:PXL ھgه ا?W:م S`:ق a6 bW4c ا>GK`T;:ت ا>TL_ RT:ج إ>ZXQ \Xة ]:4XGKI @GYZXCة
 DjTXC tام  ا>N_ sLK اDjTCام ط4XUTK6 @X;W4ة اRh ھDqY .gة DEc اDjTCام ا>QD@ ا>opjEi@ و>4lmTTC nK`<:Y aU دQ@ ا>B4ji:ت

Li<ا nXX6 @XX`HTji<ا @XXQD<تا:XXB4ji<ا uXXpS \XXHc @XXOh::XXFGHc لZ5XXL<ا NXX_ RXXT<ا @XXAp_4i<ا @XXQD<ام اDjTXXC:Y .@XX;W4ط   DXXEc @XXQD<ا
 wX[4اi<ا aX6 DGpTPX_ @XW4ارU_ @GY:P[ @;W4ط \Hc DiTA_ ج:GT[tا@XGHھ:yT<م . اDjTPX_ ت:X;GK`_ RXh 4ةXzUY @XGHھ:yT<ا wX[4اi<ا

 Rh :F6اDjTCا NTW tو @`GCZ<ا {|:TE<ا bAY wھ:y_ NTW sG[ 4ةGzI @G|:FE<ا {|:TE<ب ا:P[ . 4�5ىX<ا @iG;<وا \iOA<ا @iG;<ا
 bXAY wziW يDL<ا NWZ;T<وا R`j<ا NWZ;T<ب ا:P[و@XGHھ:yT<ا wX[4اi<ا \XHc @XHz6أ . NGX;<ا nXGiB ب:PX[ NTXW @X;W4`<ه اgXھ RXh

:XFHھ:y_ NTW a< RT<ا NG;<ب ا:P[  دة:cإ Rh \Hc?ا @QD<ام اDjTCا NTW �<ذ DAYو wQأ @QDY @`GCZ<ا .gXا?داء ھ aPXL_ @X;W4`<ه ا
�ة ]:DXL6 @GYZXCودة اXGS:U6V:ت FBأ \Hc ةD;A6 @GY:P[ ت:GHic gGpE_ �GT_و @YZH`i<4ة اIاg<ا wH;_و @Q:`<ك ا�FTCا aPL_و



 
 

PRECISION ON DEMAND: A NOVEL LOSSLESS MIXED-PRECISION COMPUTATION TECHNIQUE 

 
. 

                                                                                                                                                                                                               JAUES, 15, 57, 2020 

 

1147 

 aizX<5@ اGد . ور�:XTA<ا @XWر:iAiY �XHAT_ wGX�:p_ @qXQ:E6 NTGXC :XiI ج:XGT[tا DXEc @XQD<م اZXFp6 NWDX;_ NTGXC  sXLK<ا اgXھ RXh
 Rh مDjTPi<ا�EGPL_ 4ة وط4قUp<ه اgھ gGpE_ . aGPXL_ �XG;L_ NX_و @XCراDH< @X<:LI :F6اDjTXCا NX_ @XGh:pT<tا @GK5XA<ت ا:UKq<ا

 a6 @c4P<ا Rh a6٣.٦ إ>\ ١.٥@WDGH;T<4ق ا`<:Y @c4P<ف ا:Aأ� .  
  

>6857[I@5ت اIGO@6<،  :اB5[7@96< اP^_@5ت اOP`@ا ، >SN`_@ر?5م اbا ، >FG7HI@ا@;?< اRc@6;ات اA_7@6<،اL5 5تBd[^Q   
                        >eQNPI@5ل اeI@5ت  اLاdL ،رd^@ا g6<^h.     

1. INTRODUCTION 
There are significant improvements in computers speed, memory, architecture, and parallel 
cores. A tiny smart phone can be more powerful than Deep Blue supercomputer which beat 
Kasparov in 1997. Special hardware devices and accelerators are available with huge number of 
cores and large memory size such as GPUs, TPUs, and FPGA. Although this significant 
progress, there are many applications that are very heavy and requires more and more 
computation power. Deep learning, AI , Big Data , computer vision , video processing and 
many other applications needs tens of GFLOPs to hundreds of TFLOPs to accomplish the 
computation of simple tasks. This represents a challenge and add many difficulties for running 
these systems, especially when using embedded systems for real time performance. Vision 
systems for self-driving car needs very high computational power to analyze video frames from 
several cameras within few milli seconds. Precision represents a crucial parameter and plays a 
main rule in reducing or increasing the complexity, time, and power consumption[4][5]. Lower 
precision helps in performing more operations per second and, reduces memory bandwidth 
requirements. Higher precision arithmetic increases the computation accuracy, but with the cost 
of lower performance and higher memory bandwidth requirement. The influence of precision 
can be small in some cases, while it can be great and important in other cases. Using High level 
languages such as C++, the developer can choose single precision instead of double precision 
floating point representations, which can increase the computation speed twice.  In the case of 
designing an FPGA accelerator, a special hardware architecture can be built for arbitrary 
precision, formats, or bit widths.  Floating point, fixed point, 32 bit, 16 bit , and even 4 bit  
representations can be used if this can satisfy the given requirements. The speed, area and 
power consumption in these cases can be improved by a factor of 10 x or more[7][11]. 
However, the accuracy represents the main problem of lower precision computation. Mixed-
precision algorithms are used to achieve the accuracy of high precision computation with the 
efficiency close to low precision computation[1][2][3]. Most of mixed-precision techniques 
required careful error analysis to estimate the effects of lower precision. Also design efforts are 
needed to determine which stages can be computed using lower precision, and to determine the 
appropriate precision level. Usually, analysis and design for a specific problem cannot be 
generalized. In this work, a new mixed-precision technique  based on discarding stages is 
presented. The “Precision on Demand” (PoD) method combines different levels of precision 
without losing the accuracy of higher precision. No need for error analysis, where there is no 
precision errors or differences compared to the high precision computations.  The precision on 
demand depends on iterative computation method, which exploits discarding stages. The 
discarding stages are commonly used in many applications where some intermediate results are 
discarded, and they do not contribute to the final results. For example, the max-pooling in CNN 
passes one value from 4 values and discard others. It is not required to waste time and resources 
in computing the discarded values using high precision. This technique focusses on utilizing 
these discarding operations to apply mixed-precision computation.  The main contribution of 
this work can be summarized as follow: 

1- This mixed-precision technique is lossless, and the error between high precision and 
mixed-precision computations is zero.  

2- The PoD technique depends on the discarding stages which are commonly found in 
many applications.  

3- This technique supports different precision levels and can be implemented on different 
architectures. 
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2. BACKGROUND 
There are many standards and custom data formats used to represent numbers. Floating point , 
fixed point, and integer representations are wieldy used  with different bit widths. Choosing 
the appropriate format and precision depends on the problem requirements.  The IEEE-754 
standard for floating-point arithmetic (revised in 2008) [14] uses a triplet to represent a FP 
value x: (s,e,m),  where x = (−1)

s 
2

e 
m.  IEEE 32 bit FP is called single precision , and 64 bit is 

called double precision. A floating-point variable can represent a wider range of numbers than 
a fixed-point variable of the same bit width but with a lower precision. Working precision εw 
is the precision used to store the input data (εw = 2-24 for 32 bit FP, εw = 2-53 for 64 bit FP).  
While these errors are very small, but they can be magnified or accumulated when a sequence 
of calculations is applied on the initial inputs. Many systems are developed which combine 
single precision FP with double precision FP in a mixed precision computation model. Buttari 
et al. used mixed precision iterative refinement technique for the solution of dense linear 
systems [3].  They showed that, the performance of many dense and sparse linear algebra 
algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the 
resulting solution. Their approach can be applied not only to conventional processors but also 
to other technologies such as FPGA and GPUs. Lam et al. presented a framework that uses 
binary modifications to build mixed precision modifications of existing binaries that were 
originally developed to use only double precision [8]. They achieved a  speed up of 2x in 
some cases. Other work of combining single precision FP with double precision  can be found 
in [4][10]. More improvements can be achieved using lower precision if possible,  such as16 
bits, 8 bit and 4 bits(floating point and fixed point). Sun et al. used mixed precision linear 
solver on FPGA. They proposed an innovative architecture for a configurable computing [1]. 
They used custom formats and compared frequencies and resource utilization for different bit 
widths. Dynamically adjustable fixed point formats are widely used in many applications such 
as CNN and deep neural networks.  Yufei et al. optimized the convolution operation to 
accelerate deep neural networks on FPGA[11]. They used  fixed-point data representation, 
and both pixels and weights are 16-bit. The decimal points are dynamically adjusted 
according to the ranges of pixel values in different layers to fully utilize the existing data 
width. The top-1 and top-5 ImageNet classification accuracy degradation is within 2% 
compared with software floating point implementation. Dong et al.  developed a Hessian 
aware quantization of neural networks with mixed-precision[5].  Their work allowed for the 
automatic selection of the relative quantization precision of each layer, based on the layer’s 
Hessian spectrum. They quantized the SqueezeNext model to uniform 8-bit precision, with 
0.04% top-1 accuracy drop.  Reconfigurable architectures are important to exploit efficiently 
the mixed precision computation. Jaiswal et al. developed a unified architecture for double/two-
parallel single precision FP adder[7].  Liang et al. designed an ALU architecture that support 
dynamic precision operation on the fly[9]. An n-bit operand is partitioned into k sub-blocks 
with block size  of n/k bits . Adjacent sub-blocks can be combined dynamically to form a super-
block according to the required precision[9]. Tan proposed a 64-bit multiply accumulator that 
can compute one 64x64, two 32x32, four 16x16, or eight 8x8 unsigned/signed multiply-
accumulations using shared segmentation [13]. Most of existing methods of mixed precision 
reduce the accuracy and needs a careful study analysis of the errors effects. In this work, the 
proposed technique is different.  The PoD computation model does not give any errors and the 
mixed precision computations are exactly the same as higher precision. This model can be 
easily generalized to different applications and different platforms.  
 
3. PRECISION ON DEMAND CONCEPT 
The precision on demand technique depends on iterative computation with different precisions 
starting with lower precision and then higher precisions as required. The main condition for the 
success of this concept is the existence of discarding process for some calculated values. At 
these discarding stages, some calculated values contribute to the next computations stages while 
some other calculated values are completely discarded and have no effects for the next 
computations.  For example, the max function for finding the maximum value of a list  N values 
are considered as a discarding stage. Only the maximum value will be used for the next 
computations while the other values are discarded. These discarding processes are massively 
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found in many applications, and they represent the base of the precision on demand PoD 
technique.  Fig .1 shows the discarding process for max function where all values are discarded 
except for the maximum value. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Discarding process for max function 
The function I=f(x) can be computed with a lower precision εL for all values of I. After 
finding the max value, the computation of Imax =f(x) is repeated with a higher precision εH  . 
Hence, the function y=g(Imax) is computed using the same accuracy of higher precision 
without any losses, but with a reduced computational cost. A simplified speedup model is 
given in eq. 1.  

S = Th / Tmix   
Tmix= NTSL+TSH 

Th=NTSH  

S=NTSH / ( NTSL+TSH )                  (1) 

Where N is the size  of the list, Th is the total time required to calculate all variables using 
higher precision , and Tmix is total time using mixed precision.  The average time for single 
variable calculation is denoted as TSH and TSL for higher precision and lower precision 
respectively.  Assuming  N=100, and TSH=2 TSL, the Speedup S=1.96 .  Assuming β is the 
ratio between TSH and TSL  ,  eq. 1 can be written as  
 

S= β N / ( N + β )                  (2) 

The value of β for small bit widths will be increased. If 16 bit floating point is used with 64 
bit floating point , β can be within the range of 4  ,and the speed up is improved to S=3.8 .  
As stated before, mixed precision not only improve speed, but also power , area utilization , 
memory size , memory bandwidth,….etc. Assuming R is the number of recalculations and D 
is the number of discarded values,  it is required to increase D and decrease R to improve the 
performance.  In the previous example, R =1 for max function, but it’s not for other problems. 
Also, R can be increased for the max function if there is an overlap in the error bounds. If the 
two max values of the list I are:   I1=4.8±0.2 , I2=4.7±0.2, it is required to recalculate both of 
I1 and I2 . In this case, R=2 and there are two candidates for the max value and the lower 
precision calculations cannot determine exactly the max value.  Fig.2 shows the repeated 
values and discarded values based on the overlap between error bounds. 
 
 
 

 
 

overlap 
 
 
 

 
Fig.2 recalculation of the max function (Dashed arrows represent recalculation with higher precision- 

solid arrows represent discarded values) 
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To include the number of recalculations in eq.2 the speedup is expressed as  
 

S= β N / ( N + β R )  (3) 
 
The same concept is applied to different discarding functions such as min , thresholding, 
ReLU , ..etc. in fig.3 the range of values which requires recalculations with higher precision is 
illustrated for different functions. The R value (number of recalculations) is large for these 
functions. If R   is very large or tends to N , all values will be computed twice using different 
precisions and the mixed precision performance will be less than  higher precision 
performance. The value of R in these cases depends on the input data and profiling is required 
to ensure the improvements. 
Multi levels mixed precision 
Three or more different precisions can be used to give improvements more than using only 
two levels of mixed precision. The main problem of multi-levels mixed precisions is the 
repetition of the same computation several times. If this model is not used carefully, it can 
degrade the performance instead of improving it. Assuming we have three levels of precisions 
with single variable computation times TS1,TS2, and TS3,   R2, and R3 is the number of variable 
computed again using precision 2 and 3.  The speedup is given by 
 

S= NTS3   / ( N TS1+R2 TS2 + R3 TS3 )  (4) 
 
From this equation, multi -level mixed precision can improve performance using only very 
low precisions with fast computation time.  
 
 
 
 
 
 
 

 
a) ReLU 

 
 
 
 
 
 
 

b) Step Thresholding  
 
 
 
 
 
 
 
 

c) Soft thresholding 
 

Fig.3   recalculation of different discarding functions  
 
Error bounds 
Lower precision representations and calculations have problems in approximation errors, 
overflow , and underflow. Error bounds calculation is important for obtaining accurate results 
using precision on demand technique. Error bounds depends on both the round off errors and 
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the accumulation of errors due to the sequence of calculations. For the example shown in fig. 
1, let f(x) =3 x

2
-2 x+ 5, and xj=1.43453 . Using  16 bit Fixed point Q8.8,  x will be 

represented approximately as 1.43 with rounding error =0.00453. But after multiplication and 
addition the final error will be -0.0298689. The final computation error is denoted as δ,  and  
f(x)= flow_prec(x)± δ.  Hence, if abs(Imax-Ik)>δ , then  it is required to repeat the computation of 
Ik with higher precision to check if Ik> Imax. The value of δ should be computed on the worst 
case based on the used precision and the sequence of calculations.   
 
Incremental Precision Computation 
It is assumed that, higher precision computations don’t depend on lower precision 
computations nor exploit their results. Dedicated architectures can be implemented to exploit 
the lower precision results in higher precision computation for the same variable. This can 
save time and resources significantly. For example, the 32 bit fixed point addition consists of  
the 16 bit LSB addition combined with the lower precision result. Not all operations nor 
architectures  support this incremental precision computations, but performance can be 
improved using this technique. The precision on demand technique can be summarized in the 
following steps illustrated in fig.4.  
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Precision on Demand steps 
 
4. CASE STUDY: CNN INFERENCE 
Convolutional Neural Network (CNN) has achieved great success in a large number of 
applications and became among the most powerful and widely used techniques in computer 
vision[12].  However, CNN  models are  computational-intensive and they are difficult to be 
integrated into embedded systems and real time applications  such as smart phones, , robots 
,and self driving cars. A lot of research can be found for solving  these computation problems 
by finding new lite models such as MobileNet[16] or optimizing existing heavy 
models[2][10]. The Precision on Demand (PoD) technique is suitable for CNN inference due 
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to the existing of many discarding stages. Applying PoD for CNN inference does not prevent 
other optimizations and the combination of PoD with other techniques improves performance 
more and more. The main difference between this technique and others is the lossless 
computation accuracy. Many research in this field achieve zero system accuracy   losses, but 
the computations contains many errors. Some mixed precision and reduced precision CNN 
inference systems achieve the TOP-1, and TOP-5 accuracy as same as the higher precision, 
but with completely different values. Hence, there is no certainty that, the reduced precision 
model version is typically like the original high precision model. The behavior of reduced 
precision models can be completely different in many non-tested cases. However, PoD 
technique gives the same system accuracy and the same computation values. Hence, the 
mixed precision version is the same as the higher precision version in all cases. Fig.5 shows 
the structure of CNN model.  
 

 

 

      Input            convolution        sub-sampling  convolution            full connection 

 
 
Fig.5 Convolutional Neural Network  (CNN ) model 

 

The Rectified Linear Units   (ReLUs) are widely used in CNN models, and they represent  
good discarding stages for PoD. The function f(x) = max(0,x) can be computed using lower 
precision to discard easily the values which are far from zero. The non-discarded values will 
be computed again using the higher precision. When a convolution layer is followed by a 
ReLU as shown in fig.6 , the mixed precision computation can save time , power and 
resources. For 3x3 kernels, there are 9 multiplications and 9 additions (or 9 multiply and 
accumulate operations ), then the discarding stage is applied to the result of convolution. Very 
small bit widths can be used initially to discard many values with small computational cost. 
Overflow represents a challenge for small bit widths, but dynamic range can be used to 
overcome this problem.      
 

 

 

 

 

           Input features         Kernel        ReLU        Output Features  
 

Fig.6 Convolution + ReLU layer 
 

Max-pooling is  an important stage in CNN models and usually 3 values are discarded from 
each 4 values. Fig.7 shows the max-pooling stage and the discarded values.  More than one 
value may require recalculation if there is an overlap between error bounds.  
 

 
 
 
 
 
 

Fig.7 sub-sampling (max-pooling) discarding stage 
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5. HARDWARE ARCHITECTURES 
Most CPUs and GPUs use standard fixed bit widths arithmetic units. Algorithms which 
exploit custom bit widths and custom data format such as PoD, are not efficient on CPUs and 
GPUs. Dedicated hardware gives very high flexibility  to implement such algorithms and the 
performance can be improved significantly using these custom architectures. In the case of 
CNN inference, the operations are restricted almost in multiplications and additions (or 
MACs) .  Arithmetic units  can be reconfigurable to work with different precisions as 
required. Mixed precision adders, multipliers , and MACs are designed with different bit 
widths and different formats. They can be configured on fly using control signals to work as a 
single high precision unit or multiple low precision units[7][9]. Fig.8 (a) shows a simple ALU 
architecture which can be used as a single 16 bit or double 8 bit ALUs.  This technique saves 
resources, but it is not applicable to many cases. Many operations and  data formats are not 
suitable for implementation as reconfigurable  mixed precision units . Another solution is to 
add different separate units for each precision. Special  arithmetic units are implemented for 
low precision computation and another arithmetic units are implemented for high precision 
computation.   
 
 
 
 
 

 

 

 

 

 

 
 
 

 
 
 
 
 

Fig.8  Mixed precision ALU  
a) Reconfigurable mixed units.         b)Separate units 

Separate mixed precision units looks  as a bad choice for working with mixed precision, but 
actually,   it is a practical solution in many cases . In some cases, the same work done by 32-
bit floating point multiplier can be done by 8-bit multiplier. The IP core of 32 bit floating 
point multiplier requires 7  x (DSP 9-bit multiplier) +111 LUT + 464 reg, while the 8-bit 
multiplier requires only a single DSP multiplier unit (or about 90 LUT). This means that, load 
can be reduced from high precision   units, with a very small cost. Also, power consumption 
and time of  8-bit multiplier  is very small compared to 32-bit floating point multiplier. For 
parallel structures,  a simple reduction in the number of high precision  cores may allow the 
addition of a huge number of low precision cores which can attract a big computation load.  
 
6. EXPERIMENTAL RESULTS 
Precision on Demand (PoD) Technique can be used in different application and can be 
implemented on different platforms. To test this technique, CNN inference is chosen as a case 
study.  
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Fig.9 VGG-16 mixed precision (PoD) image classification 
 
General purpose CPUs are chosen as the testing platform, but  also other platforms expected 
performance  are evaluated using simulation. Different parameters such as processing time , 
precision , data formats are used  to estimate the expected speedup of PoD technique using 
other platforms. VGG-16 model with imagenet weights is used to classify images and the 
convolution layers are computed using PoD technique. The number of operations in the 
convolution layers is about 90% of the total operations. The convolution layers outputs are 
computed using lower precision, then  ReLU and max-pooling stages determine discarded and 
non-discarded results. Only non-discarded results are recomputed again using the higher 
precision. All computation using lower precision are not propagated, and they do not 
contribute to the final results. They either discarded or recomputed again. The results of 
mixed precision system are exactly the same as higher precision system as shown in fig.9.  
The input image is 224 x 224 x 3 and the total number of computations and re-computations 
for each layer is given in table 1.  These results in table.1 represents the number of operations 
for classifying a single image using 32-bit /16-bit floating point representations. The error 
between higher precision computations and mixed precision is zero for all values.  
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Table.1 mixed precision (32-bit /16-bit ) floating point  PoD for VGG-16 
 

layer #  C
om

putations(N
) 

# re-com
putations(R

) 

R
e-com

putation 

ration 

# operations/ 

com
putation 

E
rror 

Conv1 3.2M 1.42M 44.3% 27 0.00 

Conv2 

+Pooling 

3.2M 0.9M 28.1% 576 0.00 

Conv3 1.6M 1.1M 68.75 % 576 0.00 

Conv4 

+Pooling 

1.6M 0.298M 18.6% 896 0.00 

Conv5 0.8M 0.45M 56.25% 896 0.00 

Conv5 0.8M 0.42M 52.5% 1792 0.00 

Conv7 

+Pooling 

0.8M 0.09M 11.2% 1792 0.00 

Conv8 0.4M 0.15M 37.5% 1792 0.00 

Conv9 0.4M 0.12M 30% 4608 0.00 

Conv10 

+Pooling 

0.4M 0.025M 6.25% 4608 0.00 

Conv11 0.1M 0.024M 24% 4608 0.00 

Conv12 0.1M 0.019M 19% 4608 0.00 

Conv13 

+Pooling 

0.1M 0.004M 4% 4608 0.00 

Total Operations =13.6 GOPs 

Re-Computed Operations =3.9 GOPs 

Re-Compute Ratio=28.6% 

 

For each layer the number of computations N (number of pixels in output features) are given 
and the number of re-computations R. The number of operations required to compute a single 
pixel in output features is different for each layer. The ratio of re-computations is very small 
for convolution layers followed by a max-pooling. This is due the existence of two discarding 
stages (ReLU and max-pooling) . Usually, max-pooling re-compute one value from each 4 
values, but in some cases more than one value can be re-computed due to error bounds 
overlapping. These results depends on the input data (image), but different images are tested 
and the results are within these ranges. Equation 3 can be used to estimate the speedup for 
different hardware architectures. Assuming the ratio between 32-bit FP and 16-bit FP time (β 
) is 3, then the speedup s=1.6 . This evaluated speedup depends only on the improvement in 
arithmetic processing time. Including many factors such as memory bandwidth, and  number 
of processing elements will increase the speedup significantly. In some cases, one high 
precision processing elements (PEs), can be replaced with 10 or more low precision PEs with 
the same area. Using Fixed point representation has the advantage of fast processing and low 
resources, but the range is small. The same results are obtained using 16-bit fixed point, but 
with a step increase in re-computation ratio due to the overflow. Lower bit widths can be used 
also, but error bounds increase, causing more re-computations. An estimated speedup using 
FPGA/ASIC dedicated hardware is s=3.5. This technique can be combined with other 
optimization techniques to give more improvements such as zero-skipping, and depthwise 
separable convolution[1][2]. While the mixed precision behaviour is typically the same as 
high precision without any losses, hence the results will be the same for all situations and for  
tested and non-tested images. The same concept can be applied to other computing-intensive 
applications specially for systems which  are error-sensitive. 
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7. CONCLUSION  
Mixed precision algorithms improve performance, power consumption, and resource 
utilization, but with a cost of low accuracy. Precision on Demand (PoD) technique is a mixed 
precision technique which achieves the same accuracy of high precision computation. PoD 
technique works only with computational models containing discarding stages such as max, 
min and thresholding. PoD is more efficient if dedicated hardware is used which allow 
custom bit widths and data formats.  PoD can be combined with other optimization techniques 
to achieve more improvements.  
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