

EGYPTIAN ACADEMIC JOURNAL OF BIOLOGICAL SCIENCES ENTOMOLOGY

ISSN 1687-8809

WWW.EAJBS.EG.NET

A

Vol. 13 No. 4 (2020)

Citation: Egypt. Acad. J. Biolog. Sci. (A. Entomology) Vol. 13(4) pp: 107-121(2020)

Egypt. Acad. J. Biolog. Sci., 13(4):107-121 (2020)

Egyptian Academic Journal of Biological Sciences A. Entomology

> ISSN 1687- 8809 http://eajbsa.journals.ekb.eg/

Estimation of Regional Effect, Evaluation Index and Subordinate Function of Mulberry Silkworm in Some Egyptian Governorates

Tahia A. Fouad

Sericulture Research Department, Plant Protection Research Institute, Agricultural Research Center, Egypt.

Email: tahiafouad1@gmail.com

ARTICLE INFO

Article History Received:23/7/2020 Accepted:3/11/2020

Keywords: Locations, regional effects, evaluation index, subordinate function, mulberry silkworm.

ABSTRACT

Two local and important hybrids of silkworm, *Bombyx mori* L. were reared in three Egyptian governorates of Qalubyia, Giza and Sohag (Q, G and S). Fourteen parameters of 5th instar duration (FD), whole larvae duration (LD), mortality percentage (MP), number of cocoon/liter (C /L), cocooning percentage (CP), duple cocooning percentage (DCP), cocoon crop by number (Crop/N), cocoon crop by weight (Crop/W) were recorded. Cocoon weight (CW), cocoon shell weight (CSW), pupae weight (PW), cocoon shell ratio (CSR), silk productivity (SP) for females and males were investigated. The results revealed that rearing silkworm was better in Qalubyia and Giza comparing with Sohag governorate. Some modifications for adjusting the rearing techniques, temperature and humidity to raise the silk production were recommended. As well as selections the hybrids suitable for Upper Egypt conditions.

Performances of hybrids characters are changed according to the environment changed. The average of CW, CSW, PW, CSR and SP traits were better for both sexes in Qalubyia governorate. Hybrid of hy_1 was the best for CW, CSW, PW, CSR and SP traits for both sexes. Both of hy_1 and hy_2 were mostly the best hybrids in Qalubyia, Giza and Sohag of females and males. Evaluation index and subordinate function values depended on the hybrids which represented the genetic factor and the locations that represented the environmental factor and its interactions.

INTRODUCTION

The mulberry silkworm, *Bombyx mori* L. (Lepidoptera: Bombycidae) is a monophagous insect that feeds exclusively on the mulberry (*Morus* spp.) foliage for its nutrition and produces the natural proteinous silk (Shabnam *et al.* 2018).

Sericulture activities are applied from temperate and subtropical to tropical areas. Mulberry cultivation is suitable for this region to produce mulberry leaves, which is the sole food of the silkworms (Mahmoud and Ghazy, 2005 & Ramesha *et al.* 2009).

The seasonal differences in the environmental components considerably were affecting the genotypic expression in the form of phenotypic output of silkworm characters. The variations in the environmental conditions day to day and season to season emphasize the need for management of temperature and relative humidity for sustainable cocoon production Madhusudhan *et al.* (2017).

Citation: Egypt. Acad. J. Biolog. Sci. (A. Entomology) Vol. 13(4) pp: 107-121(2020)

Egypt lies between 22° and 32° N latitude. It is part of the Sahara of North Africa and covers a total area of over one million km² in the hyper-arid region. The biggest part is located in the temperate zone with most of its landmass below 500 m above sea level, which limits potential diversity (Zahran and Willis 2009). The impact of climate change on sericulture required modifying of rearing and development of silkworm hybrids to be suitable for changes. Sericulture scientists try to obtain hybrid suitable for the seasonal fluctuations conditions Hosny *et al.* (1984); Thiagarajan *et al.* (1993); Eid *et al.* (2002); Gangwar (2012) & Ghazy (1999, 2012, 2014a).

The main aim of silkworm breeding is not only to synthesis new genotype but also to adjudicate the productive hybrids for commercial exploitation, the most important aim of silkworm breeding is coordinating new genotype with more coordination properties in different climates and selecting stable links in order to increase the commercial productivity Ghazy (2007 a & Ghazy and Mahmoud 2013a).

This study aims to determine the regional effect on silkworm productivity. Also, evaluate the performance of local and imported hybrids in three different locations. Study the effect of the different locations on evaluation indices and subordinate function.

MATERIALS AND METHODS

Three Egyptian governorates of Qalubyia, Giza, and Sohag (Q, G, and S) were selected for evaluation. Three professionals' rearers were choosing one rearer for each governorate.

Room temperature and relative humidity were registered by the rearers using a thermometer and hygrometer four times during the larval duration. Averages of temperature were 27.231 ± 0.252 °C, 29.470 ± 0.242 °C and 32.017 ± 0.279 °C for Qalubyia, Giza and Sohag governorates, respectively. The averages of relative humidity were $54.695\pm1.032\%$, $55.929\pm0.710\%$ and $42.374\pm1.066\%$.

Mulberry leaves of *Morus alba* var canva-2 used for fed silkworm larvae. Leaves were chopped during the first three instars. Whole leaves and shoots were offered to fourth and fifth instar larvae. Larvae were fed four times daily.

During the young instars polyethylene sheets are used as cover and bottom of trays (Ghazy, 2008). As well strips of wet foam were surrounded young silkworm larvae.

A wooden stand with trays measured 60 X 90 X 10 cm was utilized for rearing silkworm larvae. Each stand contains ten trays. Common larvae disinfectant was adopted (Hosny *et al.* 2002). Collapsible frames applied for a mountage. Before starting rear silkworm the rearing room and rearing equipment were disinfected by formalin solution with 5 % concentration.

Local hybrids selected from developed hybrids of the silkworm breeding program of Sericulture Research Department-Plant Protection Research Institute -Agriculture Research Center (Ghazy, 2014 a and Ghazy *et al.* 2017). Firstly, the parental races were reared to the collected proper amount of eggs during the Spring season. Eggs are prepared to hatch during autumn seasons by means of artificial hatching (Fouad, 2008). Hybridization was made to obtain two developed local hybrids. Local hybrids named F ₂₇₂ X D₁₆₂ (hy₁) and C ₁₃₇ X O ₃₂₃ (hy₂). The comparison used Bulgarian Imported hybrid named H₁X KK X G₂ X V₂ (hy₃). Three gram of silkworm eggs for each hybrid was divided on to three replicates.

Data were registered for Fourteen parameters; 5th instar duration (FD), whole larvae duration (LD), mortality percentage (MP), number of cocoon/liter (C /L), cocooning percentage (CP), double cocooning percentage (DCP), cocoon crop by number (Crop/N), cocoon crop by weight (Crop/W) was recorded. Cocoon weight (CW), cocoon shell weight

(CSW), pupae weight (PW), cocoon shell ratio (CSR), silk productivity (SP) for females and males were registered.

Pupation ratio was estimated by the following equation:

Pupation ratio (%) =
$$\frac{\text{No. of healthy pupae}}{\text{Correct basic No, of exained}} X100$$

Silk productivity was adopted by the following equation of Chattopadhyay et al. (1995).

Silk productivity (cg) = $\frac{\text{Cocoon shell weight (cg)}}{\text{Fifth instar duration (day)}}$

where cg: Centigram

Statistical analysis was adopted according to SAS (1998).

Modified Evaluation index and subordinate function were estimated by the formulae of Ghazy (2014 b) as follows:

Evaluation index (EI) = $((A - B) / C \times 10) + 50$ for Positive traits

Evaluation index (EI) = 50 - $((A - B) / C \times 10)$ for negative traits

 $X_U = (X_i - X_{worst}) / (X_{best} - X_{worst})$

Where X_U = Subordinate Function, X_i = Measurement of the character of a tested genotype, X_{worst} = the worst value of this character among all the tested genotypes, X_{best} = the best value of this character among all the tested genotypes.

RESULTS AND DISCUSSION

Differences between the local and imported hybrids for fourteen characters were founded in Table 1. Data observed that there were significant differences for all traits except the fifth larval duration (FD) traits. Regardless of the insignificant difference, hybrid hy₃ has the lowest average for FD, LD and MP characters. The best average for C/L, CP, DCP, Crop/N, Crop/W, PR, CW, CSW, PW, CSR and SP traits were observed of hy₁. While hy₂ have better means for C/L, Crop/W, PR, CW, CSW, PW, CSR and SP traits. So, hy1 and hy2 were superior over hy₃ hybrid for most characters under investigation.

These results are in agreement with the findings of Ghazy (2007 a and b) who evaluated 42 hybrids containing 37 local hybrids and 5 imported hybrids. Five local hybrids of C X H, D X F, F X A, F X D and G X K are superior for all traits that can be used instead of the imported hybrids.

character Hybrid	FD (days)	LD (days)	MP (%)	C/L (No)	CP (%)	DCP (%)	Crop/N (No)	Crop/W (Kg)	PR (%)	CW (g)	CSW (g)	PW (g)	CSR (%)	SP (Cg)
hyı	9.667	34.097	13.667	92.960	83.556	0.785	8355.56	15.407	98.000	1.776	0.325	1.390	18.561	3.292
hy ₂	9.764	34.097	14.778	113.027	72.778	5.444	7277.78	12.531	94.667	1.655	0.280	1.313	18.442	2.842
hy3	8.222	30.333	8.356	134.173	79.001	0.898	7900.01	7.911	93.333	0.993	0.182	0.748	17.105	2.298
F between hybrids	1.040	16.820* *	5.410**	179.260**	30.400**	12.730**	112.85**	128.420**	4.060*	823.100**	368.290**	705.500**	12.210**	153.600 **
LSD 5%	-	1.574	4.384	4.331	2.916	2.214	151.3	0.991	3.358	0.041	0.011	0.037	0.643	0.112

Table. 1. Differences between the local and imported hybrids for fourteen characters of mulberry silkworm, Bombyx mori L.

Where: hy₁, hy₂, hy₃ (hybrids) & (*) significant at 0.05, (**) highly significant at 0.01.

Data in Table 2 illustrated the regional effect of different locations for fourteen characters of mulberry silkworm. Significant differences were registered for all characters except those of FD and CSR. Superior Governorates were Qalubyia and Giza for characters

of mortality percentage (MP), a number of cocoons/liter (C/L), cocooning percentage (CP), cocoon crop/number (Crop/No), cocoon crop by weight (Crop/W), pupation ratio (PR), cocoon weight (CW), cocoon shell weight (CSW), pupae weight (PW) and silk productivity (SP).

While Sohag governorate has the best values of fifth duration (FD), larvae duration (LD) and double cocoon percentage (DCP). Rearing silkworm was better in Qalubyia and Giza comparing with Sohag governorate.

These results are coincidence with those found by Ghazy and Mahmoud (2013b) who reported that all hybrids reared under Qalubyia conditions have better results in silk productivity than those reared under Alexandria conditions.

 Table. 2. Regional effect of different locations for fourteen characters of mulberry silkworm, Bombyx mori L.

Character Location	FD (days)	LD (days)	MP (%)	C/L (No)	CP (%)	DCP (%)	Crop/N (No)	Crop/W (Kg)	PR (%)	CW (g)	CSW (g)	PW (g)	CSR (%)	SP (Cg)
Qalubyia	9.889	34.667	9.800	86.800	93.778	3.225	9377.78	16.377	97.333	1.750	0.306	1.377	18.017	3.234
Giza	9.431	32.639	10.111	103.040	78.446	3.778	7844.46	12.564	98.333	1.580	0.287	1.231	18.127	2.865
Sohag	8.333	31.222	16.889	150.320	63.111	0.124	6311.11	6.908	90.333	1.099	0.194	0.843	17.963	2.334
F Between locations	0.890	10.670 **	7.370**	459.610**	244.120**	6.990**	906.410**	203.840**	13.340**	520.53**	248.760**	437.350**	0.130	126.890**
LSD 5%	-	1.574	4.384	4.331	2.916	2.214	151.3	0.991	3.358	0.041	0.011	0.037	-	0.112

Where: (*) significant at 0.05, (**) highly significant at 0.01.

Table. 3. Represented the differences of interactions between locations and hybrids for fourteen traits. Significant differences were detected for all characters except those of FD, LD and MP. A hybrid of hy₃ has the lowest values for FD, LD and MP for Qalubyia, Giza and Sohag governorates. While hy₁ and hy₃ were better hybrids in Sohag governorate. Performances of hybrids characters are changed according to the environment changed.

The previous results are agreed with these obtained by Mahmoud and Ghazy (2005) they studied the performance of two imported hybrids in different locations. They reported that the performances of two hybrids are better in Qalubyia than those of Giza governorates.

Ch Location	aracter	FD (days)	LD (days)	MP (%)	C/L (No)	CP (%)	DCP (%)	Crop/No (No)	Crop/W (Kg)	PR (%)	CW (g)	CSW (g)	PW (g)	CSR (%)	SP (Cg)
ia	hy1	10.000	35.000	11.667	68.880	94.667	0.667	9466.667	19.787	100.000	2.091	0.373	1.655	18.270	3.734
Qalubyia	hy ₂	10.000	35.000	13.334	89.600	93.333	9.000	9333.333	19.295	96.000	2.068	0.339	1.667	16.454	3.387
ð	hy3	9.667	34.000	4.400	101.920	93.333	0.007	9333.333	10.050	96.000	1.077	0.228	0.808	19.329	2.580
	hy ₁	10.000	34.292	12.333	72.800	93.000	1.667	9300.000	18.698	99.000	2.011	0.382	1.567	19.097	3.710
Giza	hy ₂	10.292	34.292	13.000	90.720	65.667	7.000	6566.667	11.497	96.000	1.751	0.304	1.385	17.425	2.955
	hy3	8.000	29.333	5.000	145.600	76.670	2.667	7666.700	7.496	100.000	0.978	0.174	0.741	17.860	1.929
	hy1	9.000	33.000	17.000	137.200	63.000	0.020	6300.000	7.735	95.000	1.228	0.219	0.947	18.316	2.432
Sohag	hy ₂	9.000	33.000	18.000	158.760	59.333	0.333	5933.333	6.802	92.000	1.147	0.197	0.888	17.436	2.184
	hy3	7.000	27.667	15.667	155.000	67.000	0.020	6700.000	6.187	84.000	0.924	0.167	0.694	18.136	2.385
F Location X		0.160	2.280	0.630	40.520*	20.180**	3.600*	74.940**	29.960**	29.960**	88.460**	41.910**	76.000**	3.490**	43.740**
LSD	5%	-	-	-	7.502	5.050	3.834	262.100	1.717	1.717	0.092	0.019	0.084	1.168	0.202

Table. 3. Differences of interaction between locations and hybrids for fourteen traits.

Where: hy₁, hy₂, hy₃ (hybrids) & (*) significant at 0.05, (**) highly significant at 0.01.

The effect of the interactions between locations and sexes on five characters of mulberry silkworm was founded in Table 4. It was clear that highly significance was detected between sexes for CW, CSW, PW, CSR and SP characters and CW & PW for the interactions between locations and sexes. Regardless the insignificant differences between some characters. The average of CW, CSW, PW, CSR and SP traits is better for both sexes in Qalubyia governorate. Similar results are obtained by Hussain *et al.* (2011) who evaluated eleven inbred silkworm lines for various parameters of cocoon production under different temperature and relative humidity conditions (25 ± 1 , 30 ± 1 and $35\pm1\circ$ C in combination with 55, 65, and 75% RH) for three hrs during 4th and 5th instar. Significant variations in the performance of silkworm lines were noticed due to the influence of temperature and RH treatment on 4th and 5th instar larvae. The silkworm lines performed significantly better when the larvae were reared at ($25\pm1\circ$ C with 70 – 80% RH) while almost all the silkworm lines showed poor performance at higher temperature exposures for 3 hrs. Exposures to lower humidity (55%) during larval rearing in 4th and 5th instar at different temperatures (25 ± 1 , 30 ± 1 , and $35\pm1\circ$ C) resulted in lowering the cocoon production.

Character	Cocoon weight (g)		Cocoon shell weight (g)		Pupae (g	0	Cocoor ratio		Silk productivity (C.g)	
Location	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male
Qalubyia	1.933	1.557	0.316	0.296	1.554	1.199	16.993	19.042	3.355	3.112
Giza	1.756	1.404	0.305	0.268	1.389	1.073	17.292	18.962	3.044	2.686
Sohag	1.190	1.009	0.205	0.184	0.923	0.763	17.483	18.443	2.460	2.208
Average	1.626	1.323	0.275	0.249	1.289	1.012	17.256	18.816	2.953	2.669
F between Sex	318.0	70**	34.930**		330.670**		34.090**		37.550**	
LSD 5%	0.334		0.009		0.0	30	0.5	25	0.091	
F Location X Sex	13.100**		1.380		15.350**		1.430		0.630	
LSD 5%	0.092		-		0.084		-		-	

Table.4. Effect of the interactions between locations and sexes on five characters of mulberry silkworm.

Where: (*) significant at 0.05, (**) highly significant at 0.01.

Data in Table.5 showed the effect of interactions between hybrids and sexes on five traits of mulberry silkworm. It was observed significant differences for all characters. Hybrid of hy₁ was the best for CW, CSW, PW, CSR and SP traits for both sexes.

The previous results are in accordance with those found by Rajalakshmi *et al.* (1998) and Ghazy *et al.* (2009) compared some Egyptian local hybrids and one imported Bulgarian hybrid of the silkworm, *Bombyx mori* L. all local hybrids were earned the best data for the average of evaluation index. Hybrid Giza C assigned the first rank, hybrids of Giza C and D can be used for commercial exploitation.

Table.6. Containing data represented the effect of interactions between locations, sexes and hybrids on five traits of mulberry silkworm. There were significant differences for CW, CSW, PW, CSR and SP characters. Both of hy₁ and hy₂ were mostly the best hybrids in Qalubyia, Giza and Sohag of females and males.

The same results are recorded by Rahmathulla (2012) who reported that the seasonal differences in the environmental components considerably affect the genotypic expression in the form of phenotypic output of silkworm crops such as cocoon weight, shell weight, and

cocoon shell ratio. The variations in the environmental conditions day to day and season to season emphasize the need for management of temperature and relative humidity for sustainable cocoon production.

Character	Cocoon weight (g) Female Male		Cocoon shell weight (g)		Pupae v (g	0		n shell) (%)	Silk productivity (Cg)		
Hybrid			Female	Male	Female	Male	Female	Male	Female	Male	
hyı	1.967	1.586	0.331	0.319	1.574	1.205	17.087	20.034	3.351	3.233	
hy ₂	1.827	1.483	0.300	0.260	1.464	1.162	16.616	17.595	3.048	2.636	
hy3	1.085	0.900	0.195	0.170	0.828	0.668	18.066	18.818	2.460	2.137	
F Hybrid X Sex	12.470**		3.660*		16.320**		6.8	10**	3.490*		
LSD 5%	0.074		0.019		0.068		1.1	35	0.196		

Table.5. Effect of interactions between hybrids and sexes on five traits of mulberry silkworm.

Where: (*) significant at 0.05, (**) highly significant at 0.01.

Table.6. Effect of interactions between locations, sexes and hybrids on five traits of mulberry silkworm.

Character		Cocoon weight (g)		Cocoon shell weight (g)		Pupae (§	weight g)		n shell (%)	Silk productivity (C.g)		
Locatio	Location		Male	Female	Male	Female	Male	Female	Male	Female	Male	
, ia	hy ₁	2.355	1.826	0.367	0.380	1.926	1.384	15.776	20.763	3.668	3.801	
Qalubyia	hy ₂	2.240	1.895	0.352	0.326	1.826	1.507	15.739	17.170	3.520	3.255	
Ő	hy ₃	1.202	0.951	0.230	0.183	0.910	0.707	19.464	19.193	2.878	2.281	
	hy ₁	2.232	1.789	0.398	0.366	1.773	1.361	17.786	20.407	3.865	3.555	
Giza	hy ₂	1.968	1.534	0.336	0.272	1.570	1.200	17.172	17.678	3.265	2.645	
	hy ₃	1.068	0.888	0.180	0.167	0.825	0.657	16.919	18.801	2.002	1.857	
þD	hy ₁	1.312	1.144	0.227	0.211	1.023	0.871	17.699	18.933	2.522	2.343	
Sohag	hy ₂	1.272	1.022	0.212	0.181	0.996	0.778	16.937	17.936	2.358	2.009	
02	hy ₃	0.985	0.862	0.175	0.159	0.749	0.639	17.814	18.459	2.499	2.271	
Locati	F Location X Hybrid X Sex		2.720**		3.090*		3.750**		3.160*		3.410**	
LSD 5%		0.092		0.019		0.084		1.168		0.202		

Where: (*) significant at 0.05, (**) highly significant at 0.01.

Figures 1 and 2 Illustrated the evaluation index value of three hybrids in three locations for characters of FD, LD, MP, C/L, CP, DCP, PR, C/N and C/W. Data described that hy₁ hybrid has evaluation index values over 50 for MP, C/L, CP, DCP, PR,C/N and C/W in Qalubyia and Giza governorates. The same hybrid acquired the best values for the evaluation index for FD, LD, MP, C/L, and DCP in Sohag governorate.

Hybrid hy₂ has a better evaluation index for MP, C/L, CP, PR, C/N and C/W in Qalubyia governorate. Only three characters of MP, C/L and PR for the same hybrid in Giza governorate represented a better evaluation index. Characters of DCP showed the highest evaluation index for hy_1 in Sohag governorate.

About hybrid hy₃ observed evaluation index for MP, C/L, CP, DCP, PR and C/N in Qalubyia governorate and for FD, LD, MP, C/L and PR in Giza governorate. Only three characters of FD, LD and DCP in Sohag governorate were detected to the same hybrid.

From the previous results, it could be concluded that the evaluation index depended on the hybrids which represented the genetic factor, the locations that represented the environmental factor and the interactions between genetics and environment.

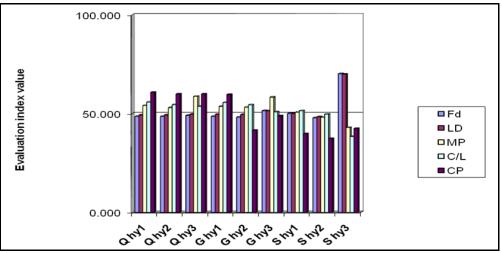


Fig.1: Evaluation index value of three hybrids in three locations for five characters.

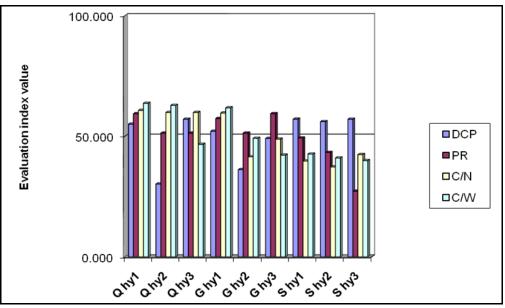


Fig.2: Evaluation index value of three hybrids in three locations for four traits.

These results are confirmed with those registered by Rao *et al.* (2001) evaluate newly evolved bivoltine hybrids of silkworm, *Bombyx mori* L. with control hybrid of KA X NB₄D₂ during three seasons of a year for seasonal performance. The result showed significant

genotype X environment interactions with respect for quantitative characters viz, fecundity, yield/10000 larvae, filament length and raw silk %. Environmental effects were significant for nine characters out of ten characters evaluated. Two hybrids were considered as highly adopted hybrids to local conditions.

The evaluation index value of three hybrids for the three locations for female and male for characters of CWF, CWM, CSWF, CSWM, PWF, PWM, CSRF, CSRM, SPF and SPM were founded in Figures 3 and 4.

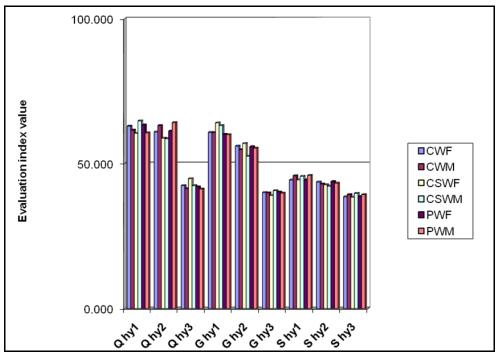
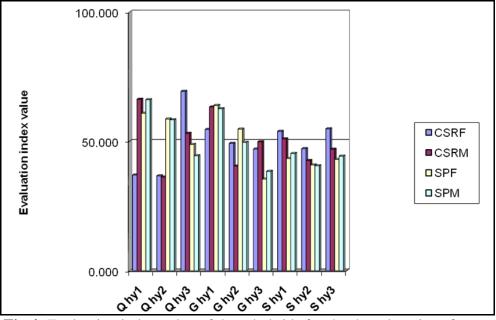



Fig. 3: Evaluation index value of three hybrids for the three locations for females and males of three characters.

Fig.4: Evaluation index value of three hybrids for the three locations for females and males of two characters.

Almost the same trend, hy₁ has a higher value over than 50 for CWF, CWM, CSWF, CSWM, PWF, PWM, CSRM, SPF and SPM characters in Qalubyia governorate and all characters for female and male in Giza governorate. While only traits of CSRF and CSRM observed a higher evaluation index of hy₁ in Sohag governorate. Hybrid of (hy₂) showed higher evaluation index in Qalubyia governorate for CWF, CWM, CSWF, CSWM, PWF, PWM, SPF and SPM traits same trend recorded in Giza governorate except the SPM.

It is clear that genetic and environmental factors is very important as well as the interactions between genetic and environmental factors.

The previous results are in agreement with those founded by Buhroo *et al.* (2017) evaluates twelve potential bivoltine mulberry silkworm, *B. mori* L. genotypes during Spring and Summer seasons, data revealed that the performance of these genotypes varies according to season. Similar results were obtained for the evaluation index which differed according to season.

Averages of evaluation index for all characters were registered in Figure 5. It demonstrated that, hy_1 and hy_2 have the best averages for all characters understudy for Qalubyia and Giza governorates. And hy_3 has the best evaluation index average in Qalubyia governorate.

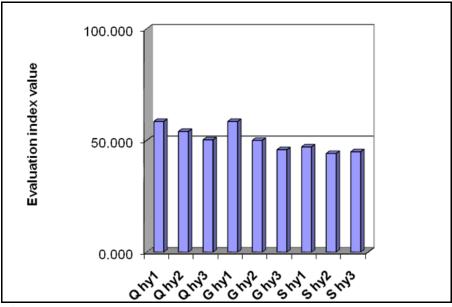


Fig. 5: Average of evaluation index for all charaters.

These results ensure the performance hybrids will be changed in different environments (locations). These results are compatible with the findings of Hussain *et al.* (2011) who reported that the average of evaluation index values for different traits showed that Pak- 4 (61.42) was the best line followed by M-101 (59.15), Pak-2 (56.37), Pak-3 (52.83) PFI-I (52.62), and M-107 (50.03). The study clearly underlines the importance of optimization of environmental conditions during larval rearing in relation to commercial cocoon production. The investigations strongly recommend that temperature and relative humidity in the range of 25-26°C and 70-80%, respectively, are mandatory for excellent results of cocoon production and Pak-4, M-101, Pak-2, Pak-3, PFI-I, and M-107 were suitable for commercial rearing.

The subordinate function of three hybrids in three locations for traits of FD, LD, MP, C/L, CP, DCP, PR, C/N and C/W were founded in Figures 6 and 7.

Three hybrids have better values subordinate for most characters in Qalubyia governorate. Hybrids of hy₁ and hy₃ have better values of the subordinate function in Giza

Tahia A. Fouad

governorate. While hy_1 and hy_2 hybrids showed better subordinate functions for two characters only and hy_3 have the best subordinate function for three characters. The variation of environment between the three governorates as well as the interactions between genetic and environmental factors affected the performance of characters which changed the subordinate function from place to place.

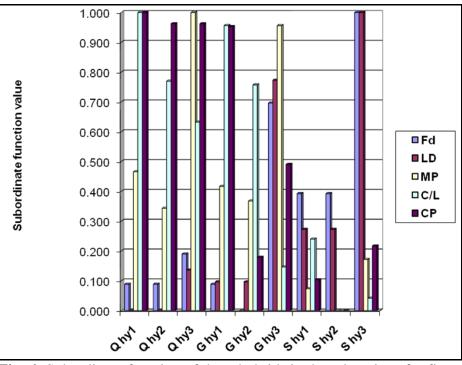


Fig. 6: Subordinate function of three hybrids in three locations for five traits.

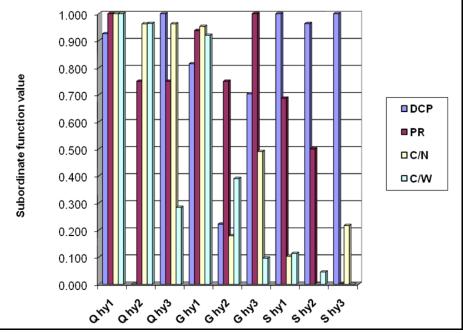


Fig. 7: Subordinate function of three hybrids in three locations for four characters.

Similar results are obtained by Rahmathulla (2012) The seasonal differences in the environmental components considerably affect the genotypic expression in the form of phenotypic output of silkworm crops such as cocoon weight, shell weight, and cocoon shell ratio. The variations in the environmental conditions day to day and season to season emphasize the need for management of temperature and relative humidity for sustainable cocoon production.

The subordinate function of three hybrids in three locations for females and males of three traits. CWF, CWM, CSWF, CSWM, PWF, PWM, CSRF, CSRM, SPF, and SPM were registered in Figures 8. and 9.

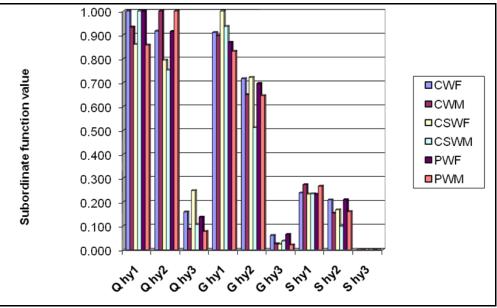


Fig. 8: Subordinate function of three hybrids in three locations for females and males of three traits.

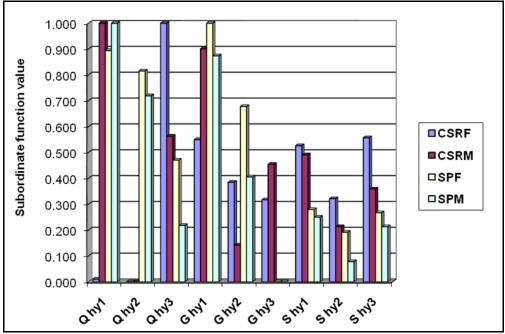


Fig. 9: Subordinate function of three hybrids in three locations for females and males of two traits.

In Qalubyia governorate hybrid hy_2 earned a higher subordinate function of most characters for females and males same trend was observed for Giza governorate. For Sohag governorate only one character is better for hy_1 and hy_3 .

Obtained results are similar to the findings of Ghazy *et al.* (2017) described that Egyptian climates are changed. So, farmers need tolerant hybrids for the unstable climate to increase their crops. The double hybrids are reared under normal Egyptian conditions. The results indicated that most of the local double hybrids have superior to the imported ones. This may be there was adaptation cause by the local lines for the climatic changes. Although there was acutely changing in Egyptian conditions there were some promising double hybrids can be exploited on a commercial scale.

Fig.10. represented the cumulative subordinate function value of all traits.it is observed that Q hy₁, Q hy₂, Q hy₃, G hy₁ and G hy₂ have the highest cumulative subordinate function for all traits. Also, Data in Table 7 represented the average of the evaluation index and cumulative subordinate function value for three hybrids in three different governorates. It is obvious that hy₁ hybrid has the highest average evaluation index and cumulative subordinate function value in Qalubyia and Giza governorates (Qhy₁ and Ghy₁) followed by Q hy₂, Q hy₃, G hy₂, G hy₃, S hy₁, S hy₃ and S hy₂.

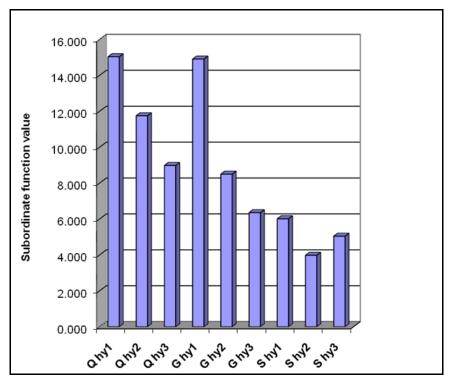


Fig. 10: Cumulative subordinate function value of all traits.

Generally, the performance of the hybrids was depending on the genetic, environmental, and the interactions between them.

These results are in accordance with the findings of Rao *et al.* (2001) registered that ten newly evolved bivoltine hybrids of silkworm, *Bombyx mori* L. were evaluated with control hybrid K₄ X NB₄D₂ during three seasons of a year for their seasonal performance. Analysis of variance and other statistical methods were employed and the performance was observed in respect of 10 quantitative traits. The results showed significant genotype X environment interactions with respect to four quantitative characters viz. fecundity, yield/10000 larvae, filament length, and raw silk (%). Environmental effects were significant for nine characters out of ten characters evaluated. A₁₀₅ X J₂ and B X NB₄D₂ were considered as highly adaptable hybrids to local conditions with a high mean for maximum characters studied and found suitable to rear in all seasons.

Conclusion

From the previous results, it could be concluded that hy₁ and hy₂ were superior over hy₃ for most characters under investigation. Rearing silkworm was better in Qalubyia and Giza comparing with Sohag governorate. Performances of hybrids characters are changed according to the environment changed. The average CW, CSW, PW, CSR and SP traits is better for both sexes in Qalubyia governorate. Hybrid of hy₁ was the best for CW, CSW, PW, CSR and SP traits for both sexes. Both of hybrids hy₁ and hy₂ were mostly the best hybrids in Qalubyia, Giza and Sohag of females and males. Evaluation index values are depended on the hybrid which represented the genetic factor and the locations that represented the environmental factor and the interactions.

Three hybrids have better values subordinate for most characters in Qalubyia governorate. Hybrids of hy_1 and hy_3 have better values of subordinate function in Giza governorate. While hy_1 and hy_2 hybrids showed better subordinate functions for two characters only and hybrid hy_3 have the best subordinate function for three characters. In Qalubyia governorate hybrid hy_2 earned a higher subordinate function of most characters for females and males same trend was observed for Giza governorate. For Sohag governorate only one character is better for hy_1 and hy_3 hybrids. It recommended that some modifications for rearing technique, temperature, and humidity to be made to get better production. Q hy_1 , Q hy_2 , Q hy_3 , G hy_1 and G hy_2 have the highest cumulative subordinate function for all traits.

REFERENCES

- Buhroo, Z. I.; Malik, M. A.; Ganai, N. A.; Kamili, A. S. and Mir, S. A. (2017). Evaluation of some potential silkworm *Bombyx mori* L. genotypes during different seasons under temperate conditions. *Journal of Applied and Natural Science*, 9 (2): 1258 -1265.
- Chattopadhyay, S.; Das, S. K.; Roy, G. C.; Sen, S. K. and Sinha, S. S. (1995). Heterosis analysis on silk productivity of three-way crosses in *Bombyx mori* L. *Sericologia*, 35(3):549-551.
- Eid, M. A. A; El-Maasrawy, S. A. S; Hosny, A. and Ghazy, U. M. M. (2002). Combining ability in Silkworm *Bombyx mori* L. *XIXth Congress of the International Sericultural Commission*, 97-103.
- Fouad, T. A. (2008). Effect of different method of artificial hatching on the silkworm, Bombyx mori L. productivity. M.Sc. Agriculture Faculty, Cairo University.
- Gangwar, S. K. (2012). Seasonal response of two silkworm *Bombyx mori* L. bivoltine hybrids with comparative performance shoot vs. shelf rearing in Uttar Pradesh climatic conditions. *Bulletin of Environment, Pharmacology and Life Sciences*, 1(8): 14 17.
- Ghazy, U. M. M. (1999). Isolation and evaluation of pure lines of mulberry silkworm, *Bombyx mori* L. M. Sc., Faculty of Agriculture, Cairo University. Egypt.
- Ghazy, U. M. M. (2007 a). Estimation of evaluation index values in different local and imported hybrids of silkworm *Bombyx mori* L. *Proc.2nd International Conference Entomology Society Egypt*, Vol. I: 169 – 174.
- Ghazy, U. M. M. (2007 b). Manifestation of hybrid vigour in different crosses of the silkworm, Bombyx mori L. Proc.2nd International Conference Entomology Society, Egypt, Vol. I: 175 – 183.
- Ghazy, U. M. M. (2008). Rearing first three instars of mulberry silkworm, *Bombyx mori* L. under Polythene Cover. *Bulletin Entomology Soceity Egypt*, 85:271 279.

- Ghazy, U. M. M. (2012). Estimation of hybrid vigor of some single local hybrids of mulberry silkworm, *Bombyx mori* L. *Bulletin Entomology Soceity Egypt, Economic Series*, 38: 101 112.
- Ghazy, U. M. M. (2014 a). Promising crosses of some local mulberry silkworm, Bombyx mori L. double hybrids. Bulletin Entomology Soceity Egypt, Economic Series, (40): 121-134.
- Ghazy, U. M. M. (2014 b). Modifications of evaluation index and subordinate function formulae to determine superiority of mulberry silkworm crosses. *The Journal of Basic* & Applied Zoology, 67:1 – 9.
- Ghazy, U. M. M. and Mahmoud, M. M. (2013a). Screening of hybrid vigour of some local hybrids of silkworm, *Bombyx mori* L. under Alexandria governorate conditions. *Bulletin Entomology Soceity Egypt*, 90: 209 220.
- Ghazy, U. M. M. and Mahmoud, M. M. (2013b). Single local hybrids of mulberry silkworm, Bombyx mori L., in different locations. Bulletin Entomology Soceity Egypt, Economic Series, 39: 181 – 191.
- Ghazy, U. M.; Fouad, T. A. and Haggag, K. (2017). New double hybrids of mulberry silkworm, *Bombyx mori* L. to be suitable for changed caused in Egyptian climate. *International journal of Applied Research*, 3(11): 9-17.
- Ghazy, U. M.; Saad, I. A. and Fouad, T. A. (2009). Comparison between some local and imported bulgarian hybrids of silkworm *Bombyx mori* L. *Bulletin Entomology Soceity Egypt*, 86: 101 – 107.
- Hosny, A.; El-Karaksy, I. A. and Mostafa, S. M. (1984). Evaluation of two hybrids of the silkworm *Bombyx mori* L. under Egyptian conditions. *Agricultural Research Review*, 62(1): 423 426.
- Hosny, A.; Megalla, A. H.; Mahmoud, S. M. (2002). Evaluation of some economic parameters of the silkworm, *Bombyx mori* L., by using some disinfectants during the larval stage. 2nd international conference 21-24 December, Plant Protection Research Institute, Cairo, Egypt, 1: 217 220.
- Hussain, M.; Khan, S. A.; Naeem, M.; Aqil, T.; Mohsin, A. U. and Rizwan, T. A. (2011). Evaluation of silkworm lines against variations in temperature and RH for various parameters of commercial cocoon production. *Hindawi Publishing Corporation*, *Psyche.*,1-11.
- Madhusudhan, K. N.; Laltlankimi, M. S. M.; Naqvi A. H.; Gupta V. P.; Sahay, A. and Sivaprasad, V. (2017). Impact of varying different abiotic factors on the survivability of tasar silkworm in outdoor rearing fields. *Journal of Entomology and Zoology Studies*, 5(6): 957-963.
- Mahmoud, S. M. and Ghazy, U. M. M. (2005). Performance of two hybrids of silkworm, Bombyx mori L. in different location. Egypt Journal Agriculture Research,83(3):1039 - 1042.
- Rahmathulla, V. K. (2012). Management of climatic factors for successful silkworm, *Bombyx mori* L. crop and higher silk production. *Hindawi Publishing Corporation, Psyche*, 1 12.
- Rajalakshmi, E.; Chauchan, T. P. S. and Kamble, C. K. (1998). Hybrid vigour among newly evolved bivoltine hybrids of silkworm, *Bombyx mori* L. under hill conditions. *Indian Journal Sericulture*, 68 :620 624.
- Ramesha, C.; Seshagiri, S. V.; and Rao, C. G. P. (2009). Evaluation and identification of superior polyvoltine crossbreeds of mulberry silkworm, *Bombyx mori* L., *Journal of Entomology*, 6(4):179 - 188.
- Rao, P. S.; Singh, R.; Kalpang, G. V.; Naik, V. N.; Basavaraja, H. K. Swamy, G. N. and Datta, R. K. (2001). Evaluation and identification of promising bivoltine hybrids of

silkworm, *Bombyx mori* L. for tropics. *International journal industrial entomology*, 3(1):31 - 35.

- SAS institute (1998). SAS user's Guide for personal computer. Statistics SAS Institute, Cary, NC.
- Shabnam, A. A.; Chauhan, S. S.; Khan, G.; Shukla, P.; Saini, P. and Ghosh, M. K. (2018). Mulberry breeding strategies for North and North West India. *International Journal* of Advanced Research in Science and Engineering, 7(4): 2124-2133.
- Thiagarajan, V.; Bhargava, S. K.; Ramesha Babu, M. and Nagaraj, (1993). Differences in seasonal performance of twenty-six strains of silkworm, *Bombyx mori* (Bombycidea). *Journal of the Lepidopterists' Society*, 47(4): 331-337.
- Zahran, M. A. and Willis, A. J. (1992). The Vegetation of Egypt. First edition, London: Chapman and Hall, Graphieraft Typesetters Ltd., Hong Kong.

ARABIC SUMMARY

تقدير تأثير الموقع ودليل التقييم و subordinate function لديدان الحرير التوتية في بعض المحافظات المصرية.

تحية عزوز فؤاد قسم بحوث الحرير - معهد بحوث وقاية النباتات - مركز البحوث الزراعية.

تم تربية هجينين محليين و هجين مستورد من دودة الحرير .Bombyx mori L في ثلاث محافظات مصرية وهي القليوبية والجيزة وسوهاج. تم فحص اربعة عشر صفة وهي: طول العمر اليرقي الخامس، طول العمر اليرقي الكامل، نسبة الموت اليرقية، عدد الشرانق في اللتر، النسبة المئوية لتكوين الشرانق، النسبة المئوية للشرانق المزدوجة، النسبة المئوية للتعذير، محصول الشرانق بالعدد والوزن. أيضا بيانات وزن الشرنقة، وزن غلاف الشرنقة، وزن العذراء، نسبة المحتوى الحريري وإنتاجية الحرير لكلا من الذكور والإناث.

أَظُهَرت النَّتَائَج أَن تربية ديدان الحرير كانت أَفَضلُ في محافظة القليوبية والجيزة بالمقارنة بمحافظة سوهاج. إختلف أداء الهجن بإختلاف البيئة. متوسط صفات وزن الشرانق CW، وزن غلاف الشرانق CSW، وزن العذاري PW، نسبة المحتوي الحريري CSR وإنتاجية الحرير SP كانت أفضل في كلا الجنسين في محافظة القليوبية. وكان الهجين الهرا الأفضل في صفات CSW، CSW، CW أولانكور SP لكلا الجنسين. وبصفة عامة كان الهجين hy1 ويرا أفضل الهجن في القليوبية والجيزة وسوهاج للإناث والذكور.

وتعتمد قيم دليل التقييم وSubordinate function على الهجين والذي يمثل العامل الوراثي والموقع الذي يمثل العامل البيئي والتفاعل فيما بينهما.