Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University.
Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral
biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology.
www.eajbs.eg.net

Key For Identification Of The Species Included In The Genus Chrysis Linnaeus(Hymenoptera, Chrysididae) Of Egypt With A New Record

Alla Din A. Oshibah ${ }^{(1)}$, Magdi M. Salem ${ }^{(2)}$, Mohammed T. Hossni ${ }^{(1)}$, and Ahmed M. Galhoum ${ }^{(1)}$
1- Department of Zoology, Faculty of Science, Al-Azhar University 2- Plant Protection Research Institute, Ministry of Agriculture
E.Mail : ahmadgalhoum@hotmail.com

ARTICLE INFO

Article History
Received: 16/8/2017
Accepted: 22/9/2017

Keywords:

Taxonomy, key, Chrysididae, wasps, Chrysis, new record, Chrysis elegans.

Surveying the main Egyptian entomological collections revealed that chrysidid fauna represented in Egypt with 126 species belonging to 22 genera belong to subfamily chrysidinae divided to three tribes. Genus Chrysis are represented in Egypt with 42 species.

The Egyptian Chrysis fauna are poorly studied. Buysson (1908) divided the genus Chrysis into eight divisions according to the shape of apical margin and the number of teeth of T-III. Alfieri (1913) described briefly new variety, Chrysis (Dichrysis) bihamata Spinola var. nov. innesi Alfieri, collected from Mariout (Alex.), comparing it with the typical species. Storey (1912) in his professional list of Hymenoptera Tubulifera and Aculeata of the collection of the Ministry of Agriculture "Egypt" presented a list of species of genus Chrysis Linnaeus. Trautmann (1926) gave notes on identification and distribution of some species of genus Chrysis Linnaeus in the collection of Alfieri, Egypt.

The aim of this study is to present a simple dichotomous identification key for the Egyptian species included in genus Chrysis Linnaeus, as well as revised their taxonomic status and nomenclature.

MATERIALS AND METHODS

Different Egyptian entomological collections surveyed for Chrysis species and from which specimens are used for taxonomic studies. In addition specimens have been collected by sweeping net from different geographical region in Egypt. For every species, dry mounts were made, some specimens were used to make microscopic preparations.

Credit of identification and confirmation of the most chrysidid species within the scope of the present work due to the specialists of the Plant Protection Research Institute (Insect Identification Service); in addition the available recent identification keys and taxonomic investigations. Also, preliminary determination along with some materials were confirmed by Dr. Lynn Kimsey, Professor of Entomology, University of California at Davis (USA) and Dr. Franco Strumia,Università di Pisa, Centro Interdepartmental, Museo di Storia Naturale e del Territorio, (Italia).

Examination and illustrations of the external features of the specimens were achieved using a stereo-binocular microscope. Drawings of all preparations were made with the help of a square eyepiece, micrometer eyepiece and computer's Photoshop (version 7).
Terminology (after Kimsey and Bohart, 1990):
F-I-II, etc: Antennal articles (flagellomeres) following scape and pedicel.
$M O D$: Middle ocellus diameter.
$R S$: Redial sector when greatly shortened.
S-I-III, etc: Gastral sterna.
T-I-II, etc: Gastral terga beginning at the base.
TFC: Transverse frontal carina located on or just above brow.

RESULTS

Diagnosis of chrysidid wasps:

Head hypognathous. Antenna 11-segmented (flagellomeres). Pronotum with anterior flange, thus propleuron concealed in dorsal view; pronotum with posterolateral apex usually well separated from tegula but sometimes touching. Fore wings with five closed cells or less and the hind wings without closed cells.

Key For Identification Of The Species Included In The Genus Chrysis Linnaeus

Reduction of visible abdominal segments to five or less. Both sexes macropterous, rarely brachypterous or apterous. Sexual dimorphism usually very slight.

Subfamily Chrysidinae:

It is the largest subfamily of Chrysididae, comprising about 80 percent of the family. Members of this subfamily can be recognized by their bright metallic colouration (with few rare exceptions) and are commonly encountered in all zoogeographic regions. They are generally nest parasites of wasps and bees.

Face somewhat concave, usually with well-developed scapal basin and transverse frontal carina (TFC). Labial palpus usually three-segmented but sometimes absent or one-segmented. Maxillary palpus usually five-segmented but rarely may be three-, two- or one-segmented. Occipital carina absent, often replaced by transverse preoccipital welt terminating laterally in hook or lobe, located just above occiput. Pronotum broad and subquadrate dorsally, usually concave or with a broad shallow pit laterally, pronotal anterior declivity often with $1-4$ pits. Metanotum evenly convex or with medial tooth or projection, usually with carinate lateral angle or tooth adjacent to propodeal angle. Tegula usually unmodified covering fore wing base only, less commonly enlarged and covering both wing bases or reduced and partly covered by notum. Propodeum abruptly declivitous posteriorly, without dorsal surface, with well-developed lateral angle. Forewing venation complete with closed marginal (radial), discoidal and subdiscoidal cells, or reduced with these cells incomplete or absent. Abdomen with two, three or four external terga in males and two or three in females; apical tergum often dentate. Abdominal venter flat or concave; laterotergite clearly indicated by sulcus.

Tribe: Chrysidini :

Mandibles relatively slender with one or two subapical tooth or with subapical notch. Mesopleuron with scrobal sulcus, when present horizontally bisecting pleuron. Scutellum with lateral lobe (tubercle) on wing fossa. Fore wing usually with sclerotized discoidal cell. Tarsal claws edentate. Tegula unmodified, covering fore wing base only. Abdomen with three exposed terga and sterna in both sexes; Third tergum (T.III) usually with subapical pit row and dentate or at least medially notched apical margin.

Genus Chrysis Linnaeus, 1761:

Other names applied to this genus (after Kimsey and Bohart, 1990):
Euchroeus Latreille, 1809; Pyria Lepeletier and Serville, 1825; Pyrochloris Klug, 1839; Platycelia Dahlbom, 1845; Spintharis Klug, 1845; Chrysogona Förster, 1853; Pyrosoma Dahlbom, 1854; Nemophora Dahlbom, 1854; Poeciloechroa Dahlbom, 1854; Dichrysis Lichtenstein, 1876; Tetrachrysis Lichtenstein, 1876; Hexachrysis Lichtenstein, 1876; Chrysaspis Saussure, 1887; Heptachrysis Mocsáry, 1889; Cephalochrysis Semenov, 1910; Eurychrysis Bischoff, 1910; Pseudotetrachrysis Bischoff, 1910; Pseudogonochrysis Bischoff, 1910; Pseudohexachrysis Bischoff, 1910; Octochrysis Mocsáry, 1914; Chrysidium Brauns, 1928; Heterochrysis Brauns, 1928; Cornuchrysis Balthasar, 1953; Glossochrysis Semenov, 1954a; Gonodontochrysis Semenov, 1954a; Actinochrysis Haupt, 1956; Cymatochrysis Haupt, 1956; Ischnochrysis Haupt, 1956; Acanthochrysis Haupt, 1956.
Generic diagnosis: Along with the size of Chrysis spp., there is a great amount of variation. All Chrysis spp. have RS. with apex of sclerotized part at least 2 middle ocellus diameter (MOD) from anterior margin of fore wing; or if not, discoidal cell incomplete, with one or both outer veins not entirely sclerotized. Face often with hollowed scapal basin, often with polished or cross-ridged median area. Brow usually with a single TFC or none. Gena with one carina or rarely none. Propodeal
lateral angle triangular. T.III apical rim less commonly evenly rounded and edentate (sometimes drawn out into a blunt point) or with 2,4 , or 6 , sometimes broadly rounded medially. In addition, a tiny median projection may occur in several species on the distal margin of T.III.
Hosts: Members of this genus parasitize a wide range of hymenopterous hosts including Sphecidae (Philanthus, Cerceris and Mscophus), Eumenidae (Eumenes, Delta, Ancistrocerus, Gymnomerus and Symmorphus) and Masaridae. In addition, megachilid bee genera, Anthidium and Rhodanthidium.
World distripution: Widely distributed in all zoogeographical regions. The majority
of species are restricted to the Holarctic and Afrotropical regions.

Key to the species of genus Chrysis Linnaeus

1- T.III apex edentate, sometimes feebly notched medially, slightly sinuate or drawn out into a blunt point.

- T.III apex with 2 , 4 , or 6 teeth or/and obtuse angles or lobes........................ 6

2(1) First tergum (T.I) with a pair of prominent submedial humps at front of dorsal area; S.II spots nearly kidney-shape, narrowly separated by metallic stripe.
mochii (Zimmermann)

- T.I at most feebly lobate at the anterior declivity, but without such humps; S.II spots part of transverse band or semi-circular, fused or narrowly separated by metallic stripe .3
3(2) Clypeus sharply incised apically in inverted V-shape; second gastral sternum (S.II) spots semi-circular and fused; female F.I length versus width (L/W) about 3.75.
rubricata Mocsáry
- Clypeus with straight apical margin; S.II spots part of transverse band, fused or narrowly separated by metallic stripe; female F.I L/W 1.5-2.5
.
4(3) small insect, about 3.5 mm in length; tergites brassy green; TFC absent; scapal basin cross-ridged medially; T.III apical margin sinuate; S.II spots narrowly separated by metallic stripe.
.leachii Shuckard
- Moderate to large insects, $7-10 \mathrm{~mm}$ in length; tergites red (with slight greenish tint on T-I anterior declivity and blackish tint on T.III apical rim; TFC at least weakdeveloped; scapal basin smooth or punctate medially
.5
5(4) Malar space about 1.5 MOD; subantennal space about 0.75 MOD ; mandible edentate subapically; fore wing M vein arising parallel with $\mathrm{cu}-\mathrm{a}$; female T.III apex drawn out into a blunt point; male scapal basin with medial smooth stripe.
germari Wesmeal
- Malar space about 0.75 MOD ; subantennal space about 1.25 MOD ; mandible with subapical small tooth; fore wing M vein arising before cu-a; female T.III apex evenly rounded; male scapal basin entirely punctuate.
elegans Lepeletier
6(1) T.III with a pair of apicolateral teeth or obtuse angles, leaving the area inbetween straight or slightly convex
.7
- T.III apex with 4 or 6 teeth or/and obtuse angles or lobes................................. 9

7(6) TFC distinct; malar space about 0.75 MOD; T.III lateral edge with angle well beyond middle, followed by well-marked concavity; S.II spots quadrangular
atechka Buysson

- TFC weak or absent; malar space about 1.25 MOD; T.III lateral edge simple (rather straight); S.II spots nearly subovoid 8
8(7) Mid ocellus faintly lidded; TFC weak broadly M-like; T.III apicolateral teeth sharp.
.bihamata Spinola
- Mid ocellus not lidded; TFC absent; T.III apicolateral teeth not more than extremely obtuse angles. puella Buysson
9(6) T.III apex with 4 teeth or/and obtuse angles or lobes 10
- T.III apex with 6 teeth 40
10(9) T.III lateral edge with tooth or abrupt swelling on basal fourth 11
- T.III lateral edge without tooth or abrupt swelling on basal fourth. 12
11(10) Abdominal tergites contrasting in coloration with the head and thoracicdorsum (tergites coppery red, head and thoracic dorsum dark purplish blue); browwith crescent-like TFC; apical margin of clypeus straight; mesopleuron withstrong bi-dentate projection blow scrobal sulcus; T.III with medial longitudinalridge; T.III lateral edge with abrupt swelling in basal third.
inaequalis Dahlbom
- Abdominal tergites light green and not contrasting in coloration with the head andthoracic dorsum; brow with bi-convex TFC; apical margin of clypeus stronglyincised in wide inverted V-shape; mesopleuron edentate; T.III without mediallongitudinal ridge; T.III lateral edge with obtuse tooth or hook in basal third.
macrodon Mocsáry
12(10) TFC represented by a pair of small submedial tubercles; metanotum strongly projecting posteriorly into pointed mucro; T.III lateral edge with sharp medial denticle lincea Fabricius
- TFC varies but not as above or absent; metanotum evenly convex; T.III lateral edge without median denticle (at most gently curved or obtuse angled at or beyond the middle 13
13(12) T.III apex with middle pair of teeth, obtuse angles or lobes projecting well beyond lateral ones. 14
- T.III with middle pair of teeth, obtuse angles or lobes not projecting markedlybeyond lateral pair.17
14(13) Lateral pair of teeth mount-like. 15
- Lateral pair of teeth sharp 16
15(14) Abdominal tergites strongly contrasting in coloration with the head andthoracic dorsum (tergites coppery red with slightly greenish tint on T.I and T.II,head and thoracic dorsum green to bluish green); scapal basin cross-ridgedmedially, reticulate-punctate laterally; fore wing M vein meet $\mathrm{M}+\mathrm{Cu}$ before $\mathrm{cu}-\mathrm{a}$
aestiva Dahlbom
- Abdominal tergites not contrasting in coloration with the head and thoracic dorsum(general colour dark green to purple); scapal basin completely reticulate-punctate;fore wing M vein meet $\mathrm{M}+\mathrm{Cu}$ parallel with cu-a.opacula Buysson
16(14) General colour bluish green with purplish tint; pronotal medial groove weak;T.III apicomedial teeth rather sharp, long and widely separated; the extreme edgeof T.III dark.friesei Buysson
- Colour contrasting on the different parts of the body from light green or goldengreen to brassy or coppery green; pronotal medial groove absent; T.IIIapicomedial teeth rounded, short and close together (represented by bi-lobateprojection); the extreme edge of T.III hyaline..................grohamanni Dahlbom
17(13) T.III apex with medial pair of distinctly obtuse angles or lobes 18
- T.III apex with medial pair of sharp teeth or acute angles 21
18(17) T.I and T.II with evidence of brassy to coppery red colour; T.II posterolateral corner sharply pointed posteriorly .elegantula Spinola
- Abdominal tergites without evidence of brassy or coppery red colour particularlyon T.I and T.II; T.II posterolateral corner obtuse.19
19(18) Mid ocellus faintly lidded; malar space about 1.75 MOD; S.II spots nearly oblong viridissima Klug
- Mid ocellus plainly lidded; malar space shorter, about 1 MOD; S.II spots rounded 20
20(19) Omaulus and verticaulus distinctly weak-developed; T.III apical margin with short and broadly rounded four lobes (essentially middle pair)..laetabilis Buysson
- Omaulus and verticaulus well-developed; T.III apical margin with slightly longerobtusely angulate four teeth..palliditarsis Spinola
21(17) Mesopleuron dentate on lower part 22
- Mesopleuron edentate 23
22(21) Lower part of mesopleuron with large tooth along omaulus- Lower part of mesopleuron with two teeth, one along verticaulus and the other atthe position of junction of verticaulus with omaulus.
angolensis Radoszkowski
23(21) Head venter without tooth at the end of preoccipital carina; female headunusually greatly enlarged; mandible strongly broadened subapically in females,slight in males; genal carina absent; pronotal humeral angle strongly projectingoutward causing deep concavity at the sides; interval between medial pair of teethon T.III (interval one) about 1.75 times as wide as interval between medial andlateral ones (interval two.ehrenbergi (Dahlbom)
- Head venter with tooth at the end of preoccipital carina; male and female headnormally sized; mandible unmodified; genal carina weak to well-developed;pronotal humeral not projecting outward; generally, intervals one and two areequal, rarely interval one narrower or slightly wider than interval
two. 24
24(23) Antennal sockets unusually close together 25
- Antennal sockets considerably widely separated 29
25(24) Apical margin of clypeus strongly incised in inverted V-shape; T.III apex with very small tubercle between medial part of teeth .eatoni Buysson
- Apical margin of clypeus slightly concave or convex or straight; T.III apex without tubercle between medial pair of teeth. 26
26(25) TFC sharply well-developed and has two branches extended dorsally
26(25) TFC sharply well-developed and has two branches extended dorsally
humeralis Klug
- TFC absent or extremely weak-developed, without such branches 27
27(26) Apical margin of clypeus slightly concave; subantennal space about $\mathbf{1 . 5}$MOD; T.III lateral edge slightly sinuate; S.II spots large, nearly ovoid andnarrowly separatedpharonum Mocsáry
- Apical margin of clypeus slightly convex or straigh; subantennal space longer,1.75-2 MOD; T.III lateral edge obtusely angled beyond middle; S.II spots smallto moderate, rounded and widely separated.28
28(27) General colour bright green; clypeal apical margin slighty convex; tegulaegreen; TFC absent; M vein meet $\mathrm{M}+\mathrm{Cu}$ parallel with cu-a; sublaterally, the areain front of dorsal surface of T.I punctate; T.III subapical pit row weak (pits widelyseparatedplusia Mocsáry
- Colouration varies from green or golden green to coppery on the different parts ofthe body; clypeal apical margin stright; tegulae shining brown; TFC weak-developed; M vein meet $\mathrm{M}+\mathrm{Cu}$ before cu-a; sublaterally, the area in front ofdorsal surface of T.I smooth; T.III subapical pit row absent.29(24) Scapal basin cross-ridged medially and reticulate-punctate laterally........... 30

Key For Identification Of The Species Included In The Genus Chrysis Linnaews

- Scapal basin completely reticulate-punctate or at most smooth on medial third.33
30(29) Abdominal tergites fairly contrasting in colouration with the head andthoracic dorsum (tergites varies from brassy green on T.I and T.III to coppery onT.II, head and thoracic dorsum bluish green); S.II spots diverging posteriorly(oblique)taczanovskii Radoszkowski
- Abdominal tergites not contrasting in colouration with the head and thoracicdorsum (general colour graduate from green, dark green to bluish green); S.IIspots parallel.31
31(30) T.III with strong medial longitudinal ridge extending nearly up to the apicalrim; T.III subreticulate to sparsely punctate; male first flagellomere (F.I) and F.IInot shorter than F.III.albipilis Mocsáry
- T.III without more than a trace of medial ridge, or completely absent; T.III reticulate-punctate; male F.I and F.II shorter than F.III. 32
32(31) Malar space $0.5-0.75 \mathrm{MOD}$; face converging below eyes in frontal view;pronotum subreticulate-punctate, with interspaces between punctures micro-sculptured; T.II with weak to well-developed medial longitudinal ridge.coelestina Klug- Malar space greatly longer, about 1.5 MOD ; face parallel-sided below eyes infrontal view; pronotum reticulate-punctate; T.II without medial longitudinalridge.kokandica Radoszkowskii
33(29) Mid ocellus plainly lidded or faintly so. 34
- Mid ocellus not lidded 38
34(33) Large insect, about 13.5 mm in length; general colour dark purple (males withreddish tint on vertex and scutum); malar space about 2 MOD.
syriaca Guerin
- Moderate in size, 6-7 mm in length; colouration varies but not as above; malar space up to 1.5 MOD .35
35(34) Abdominal tergites with distinctive colour pattern, each tergite much darker anteriorly than posteriorly, the dark areas restricted to T.I anterior declivity, a bilobed area occupying about the basal half of T-II and the whole of T.III except rather triangular area in the middle near the apical rim................................ 36
- Abdominal tergites without such colour pattern.. 37

36(35) T.II and T.III apically coppery red; scapal basin completely reticulatepunctate; malar space about 1.5 MOD; mandible with subapical tooth; male F.I and F.II not shorter than F.III; medial longitudinal profile of T.III feebly convex
aurifascia Brullé

- T.II and T.III apically light green; scapal basin polished on medial third; malar space greatly shorter, about 0.5 MOD ; mandible edentate; male F.I and F.II shorter than F.III; medial longitudinal profile of T.III strongly convex...blanchardi Lucas
37(35) T.III apical rim contrasting in colouration with remaining of tergum (T.III apical rim bluish green, remaining of tergum red); malar space very short, less than 0.25 MOD ; T.III apicolateral teeth obtuse; T.III lateral edge with an obtuse angle in front of lateral tooth.
zobeida Buysson
- T.III apical rim not contrasting in colouration with remaining of tergum (both are green); malar space about 0.5 MOD ; T.III apicolateral teeth sharp; T.III lateral edge without such angle.
.maculicornis Klug
38(33) Abdominal tergites brassy green in females, dark green with to purplish blue in males; TFC inverted U-shape (slightly angled medially to upward in males);
scapal basin polished on medial third; male F.I and F.II shorter than F.III; T.III apical teeth very long. quadrispina Buysson
- Abdominal tergites red (males sometimes have greenish T.I anterior declivity); TFC M-like or biconvex; scapal basin completely reticulate-punctate (sometimes with extremely narrow medial polished strip); F.I and F.II not shorter than F.III in both sexes; T.III apical teeth moderately long. .39
39(38) Median part of scutum bluish green; TFC strongly prominent, bi-convexshape; mandible edentate; malar space about 1 MOD; clypeus strongly convex in the middle; propodeal lateral angle obtuse apically; T.II with extremely welldeveloped medial longitudinal ridge; T.II posterolateral corner sharply pointed; SII spots moderately sized, sub-basal and well-separated...........ignita (Linnaeus)
- Median part of scutum black; TFC less prominence, broadly M-like; mandible with subapical tooth; malar space about 1.5 MOD ; clypeus flat; propodeal lateral angle subacute apically; T.II without more than a trace of medial longitudinal ridge; T.II posterolateral corner obtuse; S.II spots large, basal and narrowly separated.
.comparata Lepeletier
40(9) T.III apical teeth double-edged; metanotum strongly projecting posteriorly into U-shaped mucro; mesopleuron armed with four teeth below scrobal sulcus.
.stilboides Spinola
- T.III apical teeth single-edged; metanotum evenly convex; mesopleuron with or without tooth blow scrobal sulcus .41
41(40) Mesopleuron with large obtuse tooth below scrobal sulcus; propodeal lateral angle with ventral lobe; T.III apicolateral pair of teeth acutely angled, medial two paris sharp, each tooth of six has a conspicuous distal hair tuft; T.III lateral edge straight
intricata Bullè
- Mesopleuron edentate (at most coarsely sculptured on lower part); propodeal lateral angle without ventral lobe; all T.III apical teeth acutely angled and without such hair tuft; T.III lateral edge feebly concave distally
.jousseaumei Buysson

DISCUSSION

Hymenopterists argued that if undescribed species of Hymenoptera were added to the world list, the Hymenoptera would be more species-rich than all other insect orders (e.g., Grissell, 1999). Upon the results of this paper, the total number of Egyptian species of genus Chrysis Linnaeus 42 species. This study added one species, Chrysis elegans Lepeletier from tribe Chrysidini, as new record for the Egyptian chrysidid fauna and added specimens of Chrysis pharaonum Mocsáry to the Egyptian entomological collections, where, it has not been represented in the Egyptian insect collections although it was recorded from Egypt by Buysson (1908) in his monograph on the chrysidids of Egypt.

The key will hopefully arouse more interest in chrysidids among entomologists, and provide a basis for further, more detailed studies on the distribution, biology and morphology of Egyptian species (Paukkunen, 2015).

The taxonomic revision carried out to genus chrysis during the present study leads to changes in taxonomic status as well as nomenclature as follow:

Previously, the earlier authors placed the chrysidid species representing to Egyptian fauna in three subfamilies, Ellampinae, Euchrysidinae and Parnopinae. Recently, according to the world revision of chrysidid wasps by Kimsey and Bohart (1990), these species arranged in three tribes, Elampini, Chrysidini and Parnopini, all
assigned to subfamily Chrysidinae, and so on, genus chrysis became assigned to to tribe Chrysidini within subfamily Chrysidinae.

Two Chrysis species were subjected to change in both the generic and specific names and dropped as synonyms: C. foveata Dahlbom changed to Chrysura trimaculata (Förster) and C. pustulosa Abeille changed to Chrysura radians (Harris).

Five species: austriaca (Fabricius), dichroa (Dahlbom), oraniensis (Lucas), osiris (Buysson) and varicornis (Spinola) were transferred from genus Chrysis Linnaeus to genus Chrysura Dahlbom.

Three species: humboldti (Dahlbom), incrassata (Spinola) and uniformis (Dahlbom) were transferred from genus Chrysis Linnaeus to genus pseudospinolia Linsenmaier.

Three species: innesi (Buysson), vagans (Radoszkowski) and variscolor (Spinola) were transferred from genus Chrysis Linnaeus to genus Spintharina Semenov.

Two species transferred from genus Chrysis Linnaeus to other genera: inops (Gribodo) to genus Praestochrysis Linsenmaier, scioensis (Gribodo) to Trichrysis Lichtenstein.
mochii (Zimmermann) transferred from genus Gonochrysis Zimmermann to genus Chrysis Linnaeus.

Twelve Chrysis pecies subjected to change in specific name and dropped as synonyms Chrysis: acceptabilis Radoszkowski changed to C. kokandica Rado., C. aegyptiaca Buysson to C. minutissima Rado., C. andreana Buysson to C. macrodon Moscáry, C. angularis Moscáry to C. nitidula Fabricius, C. diversa Dahlbom to C. palliditarsis Spinola, C. episcopalis Spinola to C. syriaca Guérin, C. fasciolata Klug to C. viridissima Klug, C. fuscipennis Brullé to C. angolensis Rado., C. octavii Buysson to C. chlorospila Klug, C. proxima Cameron to C. intricate Brullé, C. teilhardi Buysson to C. quadrispina Buysson, C. vestita Buysson to C. humeralis Klug.Four species were recorded from Egypt in combination with varieties: Chrysis blanchardi var. rubescens Buysson, C. grohmanni var. bolivari Mercet, C. grohmanni var. cyanea Trautmann and C. ignita var. infuscate Moscáry, these species were corrected to appear without such varieties and dropped as synonyms to the typical species.

Paukkunen (2015) applied a combination of several variable and non-unique characters to identify Nordic and Baltic counteries species of genus Chrysis, such as the closed or nearly closed forewing marginal cell, the usually four- or sixt-toothed posterior margin of T3, and the usually distinct transverse frontal carina on the frons; these characters are so far similar to those used in the current study.

ACKNOWLEDGEMENTS

We express our appreciation to the late Prof. Dr. Alaa Din A. Oshaibah, whose contribution to this work was of great significance. He is among the great pioneer scientists in the field of taxonomy, established a taxonomy school in the faculty of science, Al- Azhar University. We express our respect and gratitude for his parental, scientific and moral support. We pray to God to grant him his mercy, may Allah bless his soul, forgive him, make his grave a garden of Paradise and grant him the highest levels of heaven..... Ameen"

REFERENCES

Alfieri, A. (1913): Chrysidies novalles pour I’Egypte Bulletin de la Société Entomologique d'Egypte, 19: 139-140.

Buysson, R. (1908): Revision des chrysides de l‘Égypte. Mem. Soc. Ent. d‘Égypte, 1: 1-99.
Kimsey, L. S. and Bohart, R. M. (1991): The Chrysidid Wasps of the World. Oxford University Press, New York: 652 pp .
Morgan, D. (1984): Cuckoo-Wasps Hymenoptera, Chrysididae. Handbooks for the Identification of British insects. Royal Entomological Society of London, London 6 (5): 37 pp .
Parn, M.; Soon, V., Vallisoo, T.; Hovi, K. And Luig, J. (2015): Host specificity of the tribe Chrysidini (Hymenoptera: Chrysididae) in Estonia ascertained with trap-nesting. Eur. J. Entomol. 112 (1): 91-99, 2015.
Paukkunen, J.; Alexander, B.; Villu, S.; Frode, O.; and Rosa, P. (2015): An illustrated key to the cuckoo wasps (Hymenoptera, Chrysididae) of the Nordic and Baltic countries, with description of a new species.ZooKeys 548: 1-116.
Storey, G.B.A. (1912): List of the Hymenoptera Tubulifera and Aculeata in the collection of the Ministry of Agriculture of Egypt. Bull.Soc.Ent.Egypte, 3:102-103
Trautmann, W. (1926): Beitrag zur kentnis Aegyptischer chrysididen. Bull. R. Soc. Ent. Egypt, 19: 90-96.
Tyrner, P. (2007): Chrysidoidea: Chrysididae (zlatenkovití). Acta Entomologica Musei Nationalis Pragae 11: 41-63.

ARABIC SUMMARY

1- ب- قـ ععه الحيوان، كلية العلوم، جامعة الأزهر .

فَصِيلة كريسييدبدي ، أو ما يسمى بالزنابير الذهبية، تمثل مجموعة كيبرة من رتبـة غثـائية الاجنحـة، عالمية الانتشار و ذات طبيعة إنفرادية، تتباين أنو اعها كثير افي الثككل و الحجم ولكنها تتشثابه إلى حد كبير فى اللون، كما أنها تتفق فى الطبائع، و تعتبر أفراد هذه الفَّصِيلة من المتطفلات فى طور ها اليرقى، وتتخذ من النحل و بعض أنواع الزنابِير الأخرى عوائل لها

- تغيير الثنقين النوعيو الجنسي لنوعين.
- تفل ثالثة عثرة نوعامن جنس لآخر.
- الثا شثر اسما اعتبرت اسماء تنراففة.
- ترقية اربعة اسماء من variety لأواع.
- تم اضفةة الثوع (Chrysis elegans Lepeletier) كنسيل جبير للفونة المصرية. كما تم إضـافة عينـات فى المجموعات الحشرية للنوع (Chysis pharaonum Mocsáry) حيث لل تكن متو افرة من قبل.

