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 Optimum loading paths for successful tube hydroforming processes have been studied by several 

researchers. In this paper, an adaptive, heuristic, nonlinear mathematical model (AHNM) was 

proposed to optimize the loading path of a hydroforming process through adaptive minimization of 

the internal pressure and axial load of the process. Firstly, Finite Element Analysis (FEA) was used 

to analyze the hydroforming process where several features of the process were extracted from the 

FEA for further analyses of the relations among them. To capture these relations and include them 

in the AHNM, the paper examined several Machine Learning algorithms including Multiple Linear 

Regression, Multiple Ridge Regression, Decision Tree, and Random Forest. The Multiple Ridge 

Regression was found to give the highest accuracy to efficiently linear modelling the inputs and 

outputs of the FEA of the hydroforming process. The AHNM model was implemented, solved, and 

optimized using several steps of tee protrusion height that create several loading paths. It was found 

that increasing the number of steps and starting with small increment leads to minimizing the 

system requirements. 
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1. Introduction (Heading 1)  

Tube Hydroforming (THF) is a special type of die forming 

that was invented by Gray, Devereaux, and Parker [1] to 

manufacture seamless copper fittings with T-protrusions using a 

combination of internal pressure and axial load to produce defect-

free parts. These defects were either failure by rupture (bursting) 

due to excessive internal pressure or wrinkling due to excessive 

axial loads. 

To avoid process failure, several studies analytically 

investigated the loading path. These analytical solutions are 

useful for simple geometries only. Besides, many trial-and-error 

simulations may be required to obtain acceptable loading paths, 

which is both time and cost-inefficient. Literature review of the 

state-of-the-art which investigated the relations between process 

variables could be found in [2-4], also Reddy [5] studied the 

effect of tube material and heat treatment temperatures on tube 

hydroforming process. 

Guidelines for employing finite element modelling (FEM) in 

the process simulation were presented to predict the effect of 

process parameters. Other studies focused on determining the 

criteria to avoid major failure modes. Furthermore, several 

control techniques such as fuzzy logic had been implemented 

with the several algorithms such as Genetic algorithm, Simulated 

Annealing, Response Surface Method, Steepest Descent, Pareto, 

Line-Search and Bisection Methods, artificial neural network 

modelling...etc., utilized finite element simulations to predict the 

input parameters that would produce the desired hydro formed 

tube [6-11] 

Continuous development resulted in hydroforming modelling 

process based on adaptive process simulation. These processes 

use an incremental procedure to detect the onset of defects, where 

at the end of each increment, load values are modified for the *Moataz El-Shazly, Faisal, Giza, 01271915198, moatazmech@gmail.com 
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subsequent increments. Process parameters are adjusted to avoid 

the onset of wrinkling and bursting using Controlled Algorithms 

[12-16], Genetic algorithm (GA) by Abedrabboa et al. [17]. 

To conclude, wrinkle formation during the hydroforming 

process was mainly detected using two approaches: the instability 

theory or real-time sensing. Unfortunately, these methods cannot 

be generalized and could be only used during the free-forming 

phase. Besides, they cannot differentiate between wrinkles and 

die features with crooked details. Therefore, a more robust 

wrinkling criterion for T-tube hydroforming should be used to 

mathematically determine the amount of wrinkling while 

optimizing the hydroforming loading path. Furthermore, elliptical 

protrusions (used in this paper) received little attention in the 

literature despite its importance in the manufacturing of some 

industrial applications such as Tee-joints for automobiles and 

bicycles chassis. Moreover, the implementation of such forming 

hydroforming process necessitates the use of physical sensors 

along with an active control system and optimization tool to 

analyze and predict the wrinkling and thinning, and hence act 

accordingly. This adapted process is expensive in software, data 

acquisition system, and physical sensors, which are considered 

shortcomings.  

The objective of the present work is to tackle these expensive 

complex systems by predicting the optimum loading path for a T-

tube hydroforming process of a circular tube with an elliptical 

protrusion. This is achieved by proposing an approach to 

combine finite element simulations and Machine Learning 

Techniques to express the relations between the process 

parameters, and then apply an adaptive heuristic nonlinear 

mathematical model (AHNM) that takes into consideration the 

problem objective function to minimize the pressure and the 

applied axial load. The problem constraints are the wrinkling and 

the thinning measures. 

2. Adaptive Heuristic Framework 

The hydroforming process is modelled in the adaptive 

heuristic nonlinear mathematical model (AHNM) by using 

machine learning algorithms (MLA). MLA will learn the causal 

relations between different parameters to formulate mathematical 

forms and then optimize them. Taking into consideration the 

wrinkling and thinning indicators, the adaptive heuristic 

framework proposed in this paper, Figure 1, solves the need for 

real-time data or depends on historical data by using machine 

learning algorithms (to be discussed in Section 2.3) to map the 

relations between inputs and outputs of the FEA of the 

hydroforming process. Doing that, a machine learning algorithm 

trained on an FEA dataset would be able to predict the behavior 

of the material under hydroforming, thus removing the need for 

historic or real-time data. There are two possible routes for the 

hydroforming optimization model. If the output of the machine-

learning algorithms cannot be explicitly formulated in equations 

or inequalities, i.e., machine learning algorithms are represented 

using specific data structures that cannot be simplified into 

explicit equation or inequalities; the best solution is to combine 

an iterative optimization algorithm as discussed in the literature 

(e.g. Genetic algorithm). On the other side, if the machine 

learning algorithms could be explicitly formulated, the preferred 

route is the Adaptive heuristic nonlinear mathematical (AHNM) 

model, where the equations obtained from the ML could be 

integrated into a closed-form, mathematical optimization model 

as constraints.  

As usual for most mechanical engineering and research 

problems, approximation could be used to either simplify 

calculations of complex relationships or to help build new models 

or both. In this research, linearity was assumed, linearity 

facilitated the incorporation of the finite element model 

represented by the trained machine learning model into the 

AHNM model.  

Similar research in the literature avoided reporting the time of 

the finite element analysis when being used to obtain optimal 

loading path, due to these times being extensively long. In this 

research, by representing the finite element behavior of the hydro 

formed tube using machine learning model. Any new analysis of 

the hydro formed tube for new pressures and axial loads became 

“instantons” with separable variables that could be integrated into 

a mathematical model. This is unprecedented and extremely 

helpful when formulating mathematical models similar to what is 

presented in this research. 

2.1. FEA model 

The case study investigated here is a hydroforming process of 

a tube where a straight tube is hydroformed to T-joint with an 

elliptical protrusion. The FEA of the hydroforming process is 

performed using Simulia® 2020. A seamless copper tube ASTM 

B88, CU-C12200 (Alloy C12200 Cu=99.90% minimum, 

P=0.015- 0.040%) produced by SAMPOTUBE is used. The tube 

used has an outer diameter of 22.22 mm, an initial length of 110 

mm, and a tube wall thickness of 0.2 mm. The elliptical T-branch 

major and minor diameters are 40 and 22.22 mm, respectively. 

The mechanical properties of the material are shown in Table 1. 

Figure 2 shows the dimensions of the final product and due to the 

symmetry of the model, only a quarter model is used as shown in 

Figure 3 to decrease the FEA solution time. 

The mould consists of two parts, a holder which rests on the 

protrusion zone to prevent its bursting, and a mould cavity where 

the tube will be formed. These two parts are modelled as 3D 

discrete rigid parts while the tube blank is treated as 3D 

deformable thin shell, Abdelkefi [18]. The contact between the 

tube and the die surfaces is assumed to be frictionless contact 

with boundary conditions as shown in Figure 3.  

The die is completely fixed, and the holder can move 

vertically in Y-direction only. Edge A is constrained to move in 

the Z-direction, while Edge B is constrained to move in the Y-

direction only, and Edges C can move in ZY-plane. Figure 3(b) 

shows the applied axial load (N/mm) on Edge A, and Figure 3(c) 

shows the applied internal pressure (MPa) on the internal surface 

of the tube. A mesh sensitivity analysis is conducted and 

summarized in Table 2 which shows that a model with an 

element size of 0.8 mm is appropriate for both thickness accuracy 

and solution time. 
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Figure 1: The Adaptive Heuristic Framework Proposed 

 

Table 1: Copper Tube Material Properties 

Density   8940 Kg/m3 

Yield strength (Sy), Tensile strength (Su) 276.0, 310.0 MPa 

Modulus of elasticity (E) 117 GPa 

Poisson ratio 0.33 

Strength Coefficient (K) 315.0 MPa 

Strain hardening exponent (n) 0.54 

 

 

Figure 2: Dimensions of the final product 

Based on the iterative process proposed in Figure 4, the 

values of both the internal pressure and axial load are obtained to 

produce a wrinkle-free hydro formed tube with the elliptical 

protrusion. Figure 5 demonstrates a successful implementation of 

the model developed in Figure 4, where no wrinkling happened at 

the end of the process. The minimum thickness of the hydro 

formed tube is 0.155 mm, and the protrusion height is 21.5 mm. 

 

Figure 3: FEA Model (a) Boundary Conditions Applied to The 

Model, (b) Applied Internal Pressure On the Tube Surface, (c) 

Applied Axial Load on Tube Edge  

 

Table 2: Results of Mesh Sensitivity Analysis 

Mesh 

size, mm 

Solving 

time, min. 

Min. Shell 

Thickness, mm 

Difference, 

mm 

2.00 2 0.1612  

1.50 3 0.1587 0.0025 

1.00 8 0.1572 0.0015 

0.80 13 0.1559 0.0013 

0.60 27 0.1551 0.0008 

0.50 44 0.1549 0.0002 

 

Machine learning algorithms require sizeable data amount 

that depends on the problem being solved. For the present case 

study, it is suggested to obtain the data of 75 cases to train the 

machine learning algorithms. A Python script was developed to 

interact with ABAQUS, to iteratively change the internal 

pressures and the axial loads, perform the FEA, and extract the 

results. The range of the internal pressures and axial loads were 

selected based on the successful initial FEA model to be from 3 

to 7 MPa for the internal pressure, and 26 to 40 N/mm for the 

axial load (Appendix-A). The FEA outputs included the 

minimum and maximum wall thickness of the tube, the maximum 

vertical displacement of the protruded section; average kinetic 

energy, average internal energy, maximum and the second 

principal stresses, and the maximum strain in the deformed non-
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circular part. A total of 57 simulations were performed 

successfully.

 

Figure 4: Flow Chart of the Iterative Process Proposed to Produce 

the Initial FEM 

 

 

Figure 5: Stress distribution, Displacement distribution, and 

Thickness distribution of the simulated model 

2.2. Machine learning algorithms 

This paper focuses on supervised learning (the input and the 

outputs of the process are known and labelled) as detailed in 

subsections. ML is not by itself an optimization tool. The main 

purpose of ML in this paper is to describe the FEA dataset 

obtained and then predict the FEA output that would not violate 

the hydroforming optimization model proposed in Section 2.3.  

In the literature, the use of the open-source machine learning 

library Scikit-Learn in the mechanics' field allows to examine 

different algorithms and obtain the best one, A. Bessa [19]. The 

algorithms that could be implemented using Scikit-Learn require 

50 data samples at least ("As of July 2020, scikit-learn.org, scikit-

learn algorithms") [20] (in this paper, 57simulations are used) to 

train the algorithms.  

Several algorithms are available including regression models, 

decision tree and random forest. Regression analysis is a 

statistical technique that models and approximates the 

relationship between a dependent and one or more independent 

variables. Regression models used include linear regression, ridge 

regression, lasso regression, and elastic net regression are 

discussed by Andreis [21]. Linear regression attempts to 

minimize the sum of the error squared between the predicted and 

actual data. Decision Tree and Random Forest are two known and 

robust machine learning algorithms that have different regression 

algorithms, Prajwala [22]. Both algorithms could be also used to 

infer relations between features in a dataset. Random forest is 

considered a collection of decision trees, where each tree 

describes a subset of the data provided to the random forest 

algorithm. Normally, the dataset features represent different 

characteristics (inputs and outputs) of a specific case study. 

2.3. Machine learning algorithms results 

The variable constituting the inputs and the outputs of the 

machine learning algorithms are also used in the AHNM model 

discussed. It is also noteworthy that these variables are those 

extracted from the FEA 57 runs. Normally, the machine learning 

algorithms discussed above could only deal with several inputs 

and one output. In this paper, it is proposed to use a multi-input, 

multi-output approach. In particular, each algorithm will relate all 

the inputs to one output at a time (i.e. all inputs are mapped to 

internal pressures, then all the inputs are mapped again to the 

axial forces). Therefore, two distinctive equations are obtained as 

shown below. 

The inputs used here are: MinTt, MaxTt: minimum and 

maximum thickness (mm) at the area of the non-circular 

protrusion at time t, MDt: maximum vertical displacement (mm) 

within the area of the non-circular protrusion at time t, KEt: 

average kinetic energy (mJ) of the whole deformed part at time t, 

IEt: average internal energy (mJ) of the whole deformed part at 

time t, HSt: maximum hoop stress (MPa) within the area of the 

non-circular protrusion at time t, ASt: maximum axial stress (MPa) 

within the area of the non-circular protrusion at time t, MSt: 

maximum principal strain within the area of the non-circular 

protrusion at time t. The outputs are: IPt: internal pressure (MPa) 

at time t, ALt: axial load (N/mm) at time t. 

After training the machine learning algorithms discussed in 

the previous sections, algorithms are automatically assessing their 

results and calculate a score of accuracy (coefficient of 

determination) ("As of July 2020, scikit-learn.org, Linear 

Regression ") [23]. The best possible score of accuracy is 1.0 and 

can be defined as: 
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𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
𝑢

𝑣
) ‚ 𝑤ℎ𝑒𝑟𝑒 

𝑢 = ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 

𝑣 = ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑡𝑟𝑢𝑒 𝑚𝑒𝑎𝑛)2 

ytrue = A True value of output, 

ypredicted = Predicted value of output. 

 

The final arranges of accuracy scores of the machine learning 

algorithms trained are given in Table 3. 

 

Table 3: Arrange of Accuracy Scores of the Trained Machine 

Learning Algorithms  

Machine learning algorithm  Arrange of accuracy scores 

Multiple Random forest Higher 

Multiple Decision tree  

Multiple Ridge regression  

Multiple Elastic net regression  

Multiple Linear regression  

Multiple Lasso regression  

 

Based on the results obtained, the most promising machine 

learning algorithms are the Random Forest and the Decision Tree. 

However, both Decision Tree and Random Forest cannot be 

reduced to explicit equations or inequalities. Hence, those 

methods cannot be incorporated into the AHNM model. The 

reason is that those models represent a tree structure (or 

collections of trees of data) that by nature do not lend themselves 

to equation or inequalities form. Therefore, the third-best 

candidate is Ridge Regression. Regression methods, in general, 

are representable in equations, and the coefficients obtained could 

give insights into how the outputs are affected by the inputs and 

vice versa. Applying the Multiple Ridge Regression as it is 

scoring the highest accuracy, the equations relating inputs and 

outputs of the FEA are: 

𝐼𝑃𝑡 = 1.794648 +  0.099449 𝑀𝑖𝑛𝑇𝑡 + 0.06269 𝑀𝑎𝑥𝑇𝑡 −
0.04937 𝑀𝐷𝑡 − 0.00056779 𝐾𝐸𝑡 + 0.00030773 𝐼𝐸𝑡 +
 0.00381359𝐴𝑆𝑡 + 0.00225969 𝐻𝑆𝑡 +  0.18261735 𝑀𝑆𝑡                                                            

                                                                                                 (1)        

𝐴𝐿𝑡 = 24.12692 + 8.260599 𝑀𝑖𝑛𝑇𝑡 +  2.18032 𝑀𝑎𝑥𝑇𝑡 +
0.707943356 𝑀𝐷𝑡 − 2.85718919 𝑥10−3 𝐾𝐸𝑡 +
4.85440054𝑥10−4 𝐼𝐸𝑡 − 6.90207861𝑥10−2 𝐴𝑆𝑡 +
7.48092522𝑥10−2 𝐻𝑆𝑡 −  4.57685 𝑀𝑆𝑡                               (2)        

2.4. Adaptive heuristic nonlinear mathematical (AHNM) model 

The objective of the proposed model is to obtain the optimum 

loading path, internal pressure and axial load, that are applied 

simultaneously to the tube, where the non-circular protrusion and 

the whole tube will follow to obtain the final shape. A Multi 

Linear Regression will learn the causal relations between the 

different parameters to be able to formulate mathematical forms 

that explain these relations, and then optimize these mathematical 

forms, taking into consideration the wrinkling and thinning 

indicators. 

Model’s indicators 

To account for the wrinkling, the literature proposed several 

indicators to be used to optimize the hydroforming process. In 

this paper, a closed-form wrinkling criteria based on instability of 

thin-walled tubes, Mellor [24] and Jain [25] is used to formulate 

the AHNM model as given in Eq. (3): 

𝜀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
2

3
𝑛 √ (

𝜎𝑎𝑥𝑖𝑎𝑙

𝜎ℎ𝑜𝑜𝑝
)2 −

𝜎𝑎𝑥𝑖𝑎𝑙

𝜎ℎ𝑜𝑜𝑝
+ 1                                    (3)      

where 𝜀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  is the strain at which instability occurs, n is the 

hardening exponent, 𝜎𝑎𝑥𝑖𝑎𝑙  is the axial stress within the tube, and 

𝜎ℎ𝑜𝑜𝑝 is the circumferential stress within the tube.  

It is assumed that the axial and the hoop stresses are 

approximately equal to the maximum and the second maximum 

principal stresses obtained from the FEA simulations. Eq. (3) will 

be incorporated into the model proposed below. Necking 

indicator used accounts for the minimum thickness of the model 

and must not be less than a minimum allowable thickness 

constraint (MIAT). 

AHNM model development 

The nonlinear mathematical model variables are: 

Objective function Minimize. 

∑ (𝐼𝑃𝑡
𝑁
𝑡=1 +  𝐴𝐿𝑡)                                                    (4)                                                                                                                     

where t is the period (1 to N) and N is the total number of 

periods 

Constraints: 

𝐼𝑃𝑡 = 1.794648 +  0.099449 𝑀𝑖𝑛𝑇𝑡 + 0.06269 𝑀𝑎𝑥𝑇𝑡 −
0.04937 𝑀𝐷𝑡 − 0.00056779 𝐾𝐸𝑡 + 0.00030773 𝐼𝐸𝑡 +
 0.00381359𝐴𝑆𝑡 + 0.00225969 𝐻𝑆𝑡 +  0.18261735 𝑀𝑆𝑡                                                                                                                 

                                                                                                 (5)        

𝐴𝐿𝑡 = 24.12692 + 8.260599 𝑀𝑖𝑛𝑇𝑡 +  2.18032 𝑀𝑎𝑥𝑇𝑡 +
0.707943356 𝑀𝐷𝑡 − 2.85718919 𝑥10−3 𝐾𝐸𝑡 +
4.85440054𝑥10−4 𝐼𝐸𝑡 − 6.90207861𝑥10−2 𝐴𝑆𝑡 +
7.48092522𝑥10−2 𝐻𝑆𝑡 −  4.57685 𝑀𝑆𝑡                               (6)      

𝑀𝑆𝑡 ≤
2

3
𝑛 √ (

𝐴𝑆𝑡

𝐻𝑆𝑡
)2 −

𝐴𝑆𝑡

𝐻𝑆𝑡
+ 1                       (7)                     

𝐴𝑆𝑡 =  𝐻𝑆𝑡 + 𝐶, where C is a constant                                  (8)                     

𝑀𝐷𝑡+1 =  𝑀𝐷𝑡 + 𝑆, where S is a constant of maximum 

allowable vertical displacement per period                          (9)     

𝐾𝐸𝑡 ≤  𝐼𝐸𝑡*Y, where Y is a constant between 5-10%          (10) 

MIAS≤ 𝐴𝑆𝑡 ‚ 𝐻𝑆𝑡 ≤ 𝑀𝐴𝑆, where MIAS is the minimum 

allowable deformation stress, and the MAS is the maximum 

allowable deformation stress                                                 (11)  

𝑀𝐼𝐴𝑇 ≤ 𝑀𝑖𝑛𝑇𝑡 ≤ 𝑀𝐴𝑇, where MIAT is minimum allowable 

thickness and MAT is the maximum allowable thickness    (12)     

𝑀𝐷𝑁 = 𝐹𝐻, where N is the last period, and FH is the final 

height of the non-circular protrusion                                     (13)  
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𝑀𝑖𝑛𝑇𝑡 ‚ 𝑀𝑎𝑥𝑇𝑡 ‚ 𝑀𝐷𝑡 ‚ 𝐾𝐸𝑡 ‚ 𝐼𝐸𝑡 ‚ 𝐴𝑆𝑡 ‚ 𝐻𝑆𝑡 ‚ 𝑀𝑆𝑡 ∈ 𝑅+, where 𝑅+ 

is the set of positive real                                                        (14)         

The objective function (4) is to minimize the total internal 

pressures and axial loads during the hydroforming process to 

reduce the system forming requirements and minimize the 

production costs. Constraints (5) and (6), using the ridge 

regression, represent the relations between the outcomes of the 

several FEAs of the hydroforming process of the non-circular 

protrusion. Constraint (7) ensures that the maximum strain in the 

deformed part including the non-circular protrusion does not 

exceed the strain that could cause plastic instability. Constraint (8) 

ensures that the axial and the hoop stresses induced in the 

deformed part are close to each other from the point of value. 

This condition is necessary to be able to use the wrinkling 

criterion in Constraint (7). Constraint (9) ensures that the 

maximum height of the non-circular protrusion is within a 

specific limit at each step. Constraint (10) keeps the ratio between 

the average kinetic and internal energy of the deformed body 

constant. Constraint (11) puts upper and lower limits of the axial 

and hoop stresses to enable the hydroforming process without 

excessive stresses. Constraint (12) ensures that the minimum 

thickness of the protruded section does not exceed or fall under 

specific limits. This constraint is dedicated to avoiding thinning 

phenomena. Constraint (13) limits the maximum height that 

could be achieved by the non-circular protrusion to a specific 

value. Constraint (14) guarantees that the values of all variables 

are real positive numbers. 

3. Results and discussion of proposed AHNM model 

The AHNM model is implemented using Pyomo, an open-

source optimization formulation models written in 

Python language with a diverse set of optimization capabilities. 

Since Pyomo is not a solver but a mathematical algebraic 

modelling language, a solver named IPOPT (Interior Point 

OPTimizer) is used to solve the nonlinear AHNM model. To 

solve the model, the following parameters are used: 

N = 10 periods, C = 5 MPa, S = 2 mm, Y = 5%, MIAS = 300 

MPa, MAS = 340 MPa, MIAT = 0.15 mm, MAT = 0.3 mm 

The output value of the objective function was 42.5, which 

represents the average of the total algebraic summation of 

internal pressures and axial loads that are used through the total 

hydroforming period. The model can obtain a minimum thickness 

of 0.15 mm in the non-circular protrusion part. The optimized 

maximum axial stress in the deformed part is 300 MPa, and the 

optimized maximum hoop stress is 295 MPa. The maximum 

principal strain to avoid plastic instability (wrinkling and necking) 

is 0.363. It should be noted that the maximum allowed vertical 

displacement per period is 2 mm. The optimum results for the 

internal and axial load obtained are shown in Figure 6. 

The results of the optimized AHNM model provide useful 

insight into how to balance the progress of both the internal 

pressure and the axial load. The AHNM model optimizes the 

loading path to a linear path as shown in Figure 6, since it is 

calculated through a balance between both the internal and the 

axial load. The axial load at the beginning of the forming process 

begins at the lowest value (approx. 30 N/mm), then it slowly 

increases to reach 43 N/mm. Concurrently, the internal pressure 

began at the highest value at 6.3 MPa, and slowly decreases to 

5.4 MPa. This gradual axial load increase supports the deformed 

non-circular protrusion in addition to the rest of the deformed 

tube. The model balances the different aspects of the 

hydroforming process, where restrictions on stresses, minimum 

thicknesses, and maximum vertical displacement are taken into 

consideration. Due to Constraint (7), the model also decreases the 

occurrence of plastic instability that ranges from wrinkling to 

necking. It is noteworthy that the obtained pressures and axial 

loads are not from those values in which the Ridge Regression 

and the other machine learning algorithms were trained on. 

However, the AHNM is able to predict these pressures and forces 

from the relations that are obtained from the ML algorithms. 

The previously obtained paths of internal pressure and axial 

load show that the optimum path is always linear with equal steps 

of protrusion height. The effect of the loading steps on the system 

requirements (summation of internal pressure and axial load at 

certain protrusion height) and the maximum protrusion height can 

be reached for the tee joint is also investigated. The maximum 

displacement at each step and the number of steps are varied 

using a random number generator script written in Python to 

generate different arrays of steps while keeping the sum of steps 

to 20 mm. In the previous study, there were 10 equal steps, where 

each step would increase the height of the protrusion by 2 mm. 

Table 4 shows different arrays of steps which are solved using the 

AHNM model to produce new forming paths. For example, in 

Array No. 2, the first step will increase the protrusion height by 

2mm, then 2 mm, then 1 mm, etc.  
 

Each array steps express the input in the AHNM model, 

where the output is an internal pressure value and axial load value 

at each step (loading path). Comparing these values indicates that 

the step numbers and values of each array are affecting directly 

the solver objective function. The minimum values for the 

objective function are for Arrays No. 5 and No. 7 with values of 

40.7 and 39.71, respectively. The differences between the results 

of the internal pressure and axial load of each array cause the 

difference in the objective function, while the boundaries (first 

and last) values are almost the same. This shows the 

consideration of physical process parameter by the AHNM model. 

Noteworthy that, the internal pressure and axial load versus the 

protrusion height for all arrays is straight lines with identical 

slope. 
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Figure 6: Optimized AHNM Progress of (a) Internal Pressure and 

(b) Axial Load Through Non-Circular Tube Hydroforming 

 

Table 4: The Arrays of Various Steps On the Vertical Displacement 

Array 

No. 
No.1 

No. 

2 

No. 

3 

No. 

4 
No.5 No.6 No.7 

No. of 

steps 
10 10 10 10 10 50 50 

Steps 

values 

2,2 

,2,2 

,2,2 

,2,2 

,2,2 

2,2 

,1,1 

,5,2 

,3,2 

,1,1 

2,3 

,2,1 

,2,1 

,5,1 

,2,1 

1,3 

,2,1 

,1,1 

,5,2 

,1,3 

0.004, 

0.508, 

1.267, 

1.719, 

2.106, 

2.468, 

2.848, 

3.254, 

3.678, 

2.148 

0.001, 

0.408143 

*(49) 

0.001 

,0.0173 

(0.001 

+0.1628) 

,0.0336 

(0.0173 

+0.1628)  

……etc. 

O.F 

Value 

∑(𝐈𝐏𝐭

𝐍

𝐭=𝟏

+ 𝐀𝐋𝐭)/(𝐍𝐨. 𝐨𝐟 𝐬𝐭𝐞𝐩𝐬) 

42.5 42.7 42.8 41.9 40.7 41.8 39.71 

 

4. Conclusions and future work 

Although the AHNM model is linear, the results obtained 

showed the ability of the ML algorithms to be improved to 

optimally predict and understand the incremental internal 

pressure and the axial load needed to accomplish the 

hydroforming process. The solution time is in milliseconds, and 

nearly instantaneous, which allowed the testing, development, 

and examining of different variables affecting the hydroforming 

process of an elliptical protrusion. A sensitivity analysis was 

performed regarding the effect of mesh size. The values of steps 

of the non-circular protrusion height, and the number of steps, are 

directly affect the optimum loading path needed to successively 

complete the hydroforming process.  

Since the optimization model proposed contained nonlinear 

constraint and was solved using interior-point optimizer, then the 

solution is not guaranteed to be the global optimum. As the 

process is highly non-linear, an additional effort is required either 

to linearize the nonlinear constraint or to produce sufficient 

mathematical conditions to ensure more compatibility with the 

high non-linearity of the process and be closer to the global 

optimality 

Other parameters that could affect the tube hydroforming 

process (such as coefficient of friction, applying the internal 

pressure at different times than the axial loads can be applied – 

the axial load my delayed in application after applying internal 

pressure – and counter punch force) can be added examined and 

incorporated to the AHNM model.  
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Appendix (A) 

Sr. 

Internal 

pressure 

Axial 

force 

min 

thickness 

max 

thickness 

Protrusion 

height 

avg_kinetic_

energy 

Avg.intern

al_energy 

max. axial 

stress 

max. hoop 

stress 

Max. 

strain 

Mpa N/mm mm mm mm m.Joule m.Joule Mpa Mpa   

1 3 26 0.2000 0.2001 0.0186 0.0114 57.0556 191.4234 191.3049 0.0001 

2 3 27 0.2000 0.2001 0.0188 0.0115 58.4184 193.9088 193.8744 0.0002 

3 3 28 0.2000 0.2001 0.0190 0.0117 59.8181 198.0152 197.8375 0.0003 

4 3 29 0.2000 0.2001 0.0192 0.0118 61.2596 206.1028 205.8819 0.0004 

5 3 30 0.2000 0.2001 0.0199 0.0120 62.7644 223.7656 223.4652 0.0007 

6 3 31 0.2000 0.2001 0.0277 0.0122 64.4460 218.9582 218.5411 0.0018 

7 3 32 0.1999 0.2005 0.2443 0.0940 74.2745 292.6276 280.7490 0.0291 

8 3 33 0.1993 0.2006 0.6047 0.6270 114.6001 318.5265 298.9641 0.0483 

9 3 34 0.1953 0.2121 1.4754 2.0785 198.0988 319.0298 318.8756 0.1767 

10 4 26 0.1949 0.2009 1.4942 3.0630 670.1483 318.5616 317.6994 0.1129 

11 4 27 0.1938 0.2067 1.8512 4.6903 785.6933 318.6682 318.5539 0.1473 

12 4 28 0.1925 0.2169 2.2735 7.2686 911.9425 319.1902 318.6080 0.2521 

13 4 29 0.1867 0.2425 3.1208 18.6244 1096.4772 320.2469 320.8145 0.6783 

14 4 30 0.1808 0.2429 4.0760 78.0195 1371.9486 344.8228 339.4066 0.5910 

15 4 31 0.1801 0.3892 4.9025 186.0417 1796.8985 325.6680 357.6669 1.9908 

16 5 26 0.1884 0.2113 4.3821 49.3106 3287.5227 319.0443 318.8345 0.3723 

17 5 27 0.1884 0.2151 4.6350 57.0155 3460.5523 319.1562 317.3199 0.3963 

18 5 28 0.1883 0.2152 4.9199 66.5774 3635.5680 318.1945 319.0578 0.4138 

19 5 29 0.1879 0.2179 5.1486 77.2440 3818.0128 318.3931 319.3716 0.4405 

20 5 30 0.1878 0.2232 5.5316 88.8924 4005.3164 319.5698 318.3752 0.4620 

21 5 31 0.1876 0.2290 6.0509 102.6367 4206.5666 319.0847 318.6105 0.4923 

22 5 32 0.1876 0.2365 6.6720 118.9098 4419.5772 319.4340 319.2233 0.5250 

23 5 33 0.1881 0.2425 7.3345 137.8943 4646.7379 318.8747 319.9839 0.5801 

24 5 34 0.1886 0.2479 7.9961 160.6842 4888.5950 318.9688 319.2912 0.6653 

25 5 35 0.1892 0.2521 8.7054 186.4522 5139.3093 318.9074 318.7920 0.7418 

26 5 36 0.1900 0.2572 9.4868 215.9533 5406.7169 318.5141 319.1826 0.8291 

27 5 37 0.1907 0.2595 10.2083 249.2859 5687.0561 318.8894 357.1854 0.8633 

28 5 38 0.1915 0.2604 10.7955 284.7461 5968.6107 314.8751 353.2955 0.8712 

29 5 39 0.1920 0.2605 11.4035 324.2320 6263.9818 316.3286 354.3741 0.8742 

30 5 40 0.1910 0.2604 12.1333 366.7869 6570.9068 318.6487 353.3761 0.8755 
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31 6 26 0.1634 0.2281 12.6121 374.5482 7937.5469 319.5815 319.3662 0.7683 

32 6 27 0.1642 0.2329 13.1376 409.3883 8169.3554 319.4843 319.6591 0.7853 

33 6 28 0.1649 0.2319 13.7077 445.7426 8409.0888 317.1463 319.0305 0.7994 

34 6 29 0.1653 0.2371 14.2606 484.5914 8652.9718 318.2832 318.6976 0.8138 

35 6 30 0.1659 0.2382 14.8400 526.4630 8904.3050 317.1594 318.6645 0.8292 

36 6 31 0.1664 0.2407 15.4175 570.1203 9161.9421 317.4857 317.9878 0.8460 

37 6 32 0.1671 0.2437 15.9932 615.1258 9425.1353 315.4202 319.6006 0.8624 

38 6 33 0.1682 0.2449 16.5852 663.4803 9696.6318 318.5674 319.7949 0.8804 

39 6 34 0.1688 0.2477 17.1762 714.7423 9978.4684 318.4283 318.2563 0.8980 

40 6 35 0.1696 0.2498 17.7544 765.1055 10258.939 318.6850 318.5635 0.9159 

41 6 36 0.1702 0.2515 18.3660 822.6155 10560.995 319.2977 318.7357 0.9347 

42 6 37 0.1715 0.2538 18.9975 884.9566 10879.960 318.8527 319.7320 0.9545 

43 6 38 0.1723 0.2567 19.6113 945.8481 11196.489 318.4601 320.4799 0.9753 

44 6 39 0.1730 0.2611 20.2021 1001.8185 11497.378 319.7740 321.0491 0.9943 

45 6 40 0.1742 0.2625 20.8869 1075.6273 11858.414 318.3438 319.1384 1.0177 

46 7 29 0.0051 0.2300 25.4460 1706.9802 14136.260 354.4324 341.3822 2.3196 

47 7 30 0.0091 0.2333 25.9262 1734.6505 14424.859 356.5959 357.0408 2.1150 

48 7 31 0.0157 0.2362 26.6264 1789.5863 14710.857 354.6410 337.7912 1.9143 

49 7 32 0.0491 0.2392 26.9122 1855.2540 15002.815 357.9521 352.6538 1.2625 

50 7 33 0.1094 0.2422 27.4204 1929.3315 15320.064 319.7207 321.3746 1.1660 

51 7 34 0.1315 0.2449 28.0235 2008.9141 15656.094 318.3130 332.2327 1.2145 

52 7 35 0.1456 0.2474 28.6695 2092.2536 16007.172 318.3230 322.9135 1.2541 

53 7 36 0.1506 0.2500 29.3743 2179.5852 16371.363 317.8943 321.3615 1.2959 

54 7 37 0.1522 0.2569 30.0029 2270.3201 16744.128 318.7203 320.9495 1.3356 

55 7 38 0.1536 0.2620 30.6270 2364.7165 17123.574 318.1297 322.0998 1.3740 

56 7 39 0.1551 0.2615 31.2606 2462.8171 17512.535 318.4039 322.0403 1.4085 

57 7 40 0.1561 0.2611 31.9079 2564.5174 17910.458 321.3089 319.7015 1.4557 
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