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I. INTRODUCTION 

IVER cancer is the second leading cause of global 

cancer mortality (after lung cancer). In Egypt, the 

liver cancer is more epidemic. According to the 

National Cancer Registry Program (NCRP) in Egypt, around 

167 per 100,000 had diagnosed with liver cancer, representing 

the leading cancer incidence rate of 23.8% [1]. Clinically, the 

early diagnosis and assessment of tumor volumes have shown 

an ability to reduce the mortality rate. However, the visual 

assessment of Computed Tomography (CT) images is normally 

time-consuming and suffers from inter- and intra-observer 

variability. To solve these problems, different Computer Aided 
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Diagnostic (CAD) systems have been developed to detect, 

segment, and diagnose the liver cancer. 

Developing efficient CAD systems for liver segmentation, 

a primary step for more focused clinical analysis [2], and for 

hepatic tumor segmentation is a very challenging problem since 

that the CT liver images usually have low soft-tissue contrast 

and suffer from noise and other artifacts. In addition, tumor 

segmentation is more challenging due to the significant 

variations in the size of lesions, their shapes, intensities, 

textures, and how many times they occurred across different 

patients. Throughout literature, different methodologies have 

been utilized for liver segmentation and/or for liver cancer 

segmentation. These methods can be categorized as traditional 

methods or deep learning methods. Traditional methods usually 

extract features, e.g., intensity, texture, shape, from liver CT 
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 Abstract—In this paper, a system based on deep learning and majority 

voting is proposed for joint segmentation of the liver and hepatic tumors. The 

proposed system is composed of three steps. First, deep learning is utilized to 

extract deep features that describe the Computed Tomography (CT) images as 

well as cancerous nodules, using three different Convolutional Neural Networks 

(CNNs), i.e., VGG16-Segnet, Encoder-Decoder (ED)-Alexnet, and Resnet18. 

Second, a classification step using the extracted deep learning features is 

performed for each investigated network. To produce the final liver and hepatic 

tumor segmentation, the last step applies a majority voting technique to fuse the 

three utilized CNN outputs. To test the performance of the proposed system, the 

MICCAI LITS challenge database is used, composed of 130 CT volumes with a 

total of 16,917 cross-section images. The proposed system achieves Dice 

Similarity Coefficients (DSCs) of 94% and 76% for liver and lesion 

segmentations, respectively. Comparison with the related methods confirms the 

promise of the proposed system for joint liver and tumor segmentations.  
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images and use a classifier based on these features to perform 

the segmentation process. On the other hand, deep learning 

methods usually use Convolutional Neural Networks (CNN) to 

perform the segmentation. A CNN model contains a set of 

convolutional layers to encode the low- and high-level features 

of the liver images. Throughout the literature, CNN models 

show a promising result for liver and tumor segmentation. 

However, current deep learning methods suffers from the 

following limitations: 

•  They require a large database for efficient training  

• Most of them are computationally expensive, especially on 

the training phase 

• There is a need to develop new systems/ideas to improve 

the segmentation accuracy 

To overcome these limitations, a deep learning CAD system 

for simultaneous liver and liver cancer segmentation is 

proposed. The proposed system adopted transfer learning, 

where the weights of the convolutional encoder layers are 

transferred without training, to eliminate the need for huge 

training data and significantly reduce the computations.  The 

main contributions/features of this work are as follows: 

• Adopting transfer deep learning of different CNN 

architectures for simultaneous liver and tumor 

segmentation 

• Applying joint liver and lesion segmentation using parallel 

CNN models  

• Smart fusion of three CNN architectures to improve the 

overall performance 

• Performance evaluation using the challenging 

MICCAI’2017 LITS database 

In additional to the accurate automated tumor segmentation, 

the proposed system shows an ability to accurately segment the 

liver, evidenced by the highest achieved Dice Similarity 

Coefficient (DSC) metric, compared to the related work for 

tumor segmentation. The rest of this paper is organized as 

follows. Section II overviews the related liver and tumor 

segmentation methods. Section III illustrates the proposed 

system for simultaneous liver and tumor segmentation. Section 

IV details the experimentations, the comparative results, and 

the related discussions. Finally, section V concludes the paper. 

II. LITERATURE REVIEW 

This section overviews the related traditional and deep 

learning techniques for liver and tumor segmentation.  

A. Traditional approaches 

 Traditional techniques for liver and tumor segmentation 

perform feature extraction, followed by classification. For 

example, Bastian et al. [3] used intensity feature and applied a 

super-pixel Simple Linear Iterative Clustering (SLIC) approach 

and an AdaBoost algorithm to segment the liver, achieving a 

Dice rate of 92.13% on 16 abdomen CT test images. Ali et al. 

[4] used the first order statistical features of the liver image to 

extract the CT liver boundary. Then, a k-Mean classifier based 

on the distance and color is used for lesions classification. 

Chang et al. [5] segmented the tumors using a region growing 

algorithm. A binary logistic regression analysis, based on the 

extraction of texture, shape, and kinetic curve features, is 

performed to classify the segmented tumors into benign or 

malignant. The main limitation of traditional approaches is that 

the extracted features may not be sufficient to describe the 

complexity of the tumor segmentation problem. Therefore, 

more sophisticated features should be investigated. 

B. Deep learning approaches 

 Unlike traditional approaches, deep learning makes full use 

of the database, i.e., the CT images and the corresponding 

Ground Truth (GT) segmentations by the radiologists, to train a 

set of convolutional features/parameters that can describe the 

segmentation problem. Usually, deep approaches use a huge 

number of parameters (i.e., millions) to learn the problem. In 

the last decade, deep Convolutional Neural Networks (CNN) 

architectures have achieved outstanding performance in liver 

and lesions segmentations. This section overviews the related 

deep liver and lesion segmentation approaches.   

1) Separate liver or lesion segmentation approaches 

Liver segmentation is a preliminary step in many CAD 

systems for liver cancer or other liver diseases. For example, 

Hu et al. [6] segmented the liver, based on a 3D CNN model, to 

provide an initial prior segmentation. The surface of the prior 

segmentation was adaptability evolved based on image 

appearance to provide the final segmentation. On the other 

hand, different deep methods for lesion segmentation, a more 

challenging task, were implemented throughout the literature. 

For example, Bi et.al [7] used a deep residual networks (Resnet) 

[8] for liver lesions segmentation. Han et.al [9] built a CNN 

model to segment the liver lesion automatically. Since this work 

deal with joint liver and lesion segmentation, a more focused 

overview of the related joint methods is provided below.  

2) Joint approaches for liver and lesion segmentations  

Regarding joint liver and lesions segmentations, these 

methods can be categorized as one stage or cascaded. Below, 

we will briefly overview each category.  

One stage deep learning approach attempt to segment the 

liver and its lesions using one deep CNN stage. For example, 

Korabelnikov et.al [10] used a segmentation framework which 

is consisting of a pre-processing step, a pixel-wise classification 

using pre-trained CNN (Alexnet) and smoothing and 

thresholding as post-processing of the obtained binary 

segmented image. Badrinarayanan et al. [11] used the VGG-

Segnet model directly for joint liver and tumor segmentation. 

Cascaded deep learning approaches attempt to segment 

the liver and lesion in more than one stage, arranged in a 

cascaded manner. For example, Bellver et.al [12] used two 

cascaded VGG16 [13] models; the first one produces the liver 

segmentation, to be the input of the second VGG16 model, 

which produces the lesion segmentations. Vorontsov et.al [14] 

used a model for the joint segmentation of the liver and lesions 

from CT liver images. The model was built from two cascaded 

fully convolutional networks (Unet-like) [15] that were trained 

together end-to-end to segment the liver and lesions, 

respectively. In summary, different traditional and deep 

learning methods have been used either for liver segmentation 
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or tumor segmentation or both. However, there is a need to 

investigate better methods to improve the accuracy. To achieve 

this task, the proposed framework fuses three different CNN 

networks, adopting a transfer learning model using a majority 

voting scheme.  

III. METHODS 

The raw liver CT images are input to the proposed 

framework without any preprocessing steps. The proposed 

framework, see Fig. 1, processes a raw image through three 

stages. First, features are extracted by investigating three 

different CNN architectures. Second, pixel-wise classification 

layer is applied. Finally, a majority voting scheme is applied. 

The details of each stage is illustrated below (Fig.1). 

 

 
Fig. 1. Proposed framework for liver and lesion segmentation. The 3D 

narrow-band image information is input to three deep feature extraction 
CNN models, where their classification outputs are fused. 

 

A. Database Collection 

We used the LiTS dataset for the training and testing of the 

proposed system. The LiTS datasets consist of 130 contrast-

enhanced abdominal CT scans from several different clinical 

sites with different scanners and protocols. The dataset has 

largely varying spatial resolution and fields-of-view. The axial 

slices of all scans have an identical size of 512 × 512, but the 

number of slices in each scan differs greatly and varies between 

42 and 1026 resulting in a total of 16,917 CT cross-sections. 

The in-plane resolution ranges from 0.60 mm to 0.98 mm, and 

the slice spacing from 0.45 mm to 5.0 mm. Some images 

contain imaging artifacts (e.g. metal artefacts), which are 

present in real life clinical. The size of the tumors vary between 

38 mm3 and 349 cm3 [16]. The average tumor-liver intensity 

difference is defined as the average absolute difference between 

the liver voxel Hounsfield Unit (HU) values and the tumor 

voxel values. They vary between 0 and 98 and have a mean of 

31.94 (SD=20) and a median of 29.61 [16], [17]. 

B. 3D narrow band 

To account for the 3D anatomy of the tumor, the 3D narrow 

band information of each slice is taking into account. As shown 

in Fig. 1, for the current processed slice of the index k, the 

adjacent neighbors of indices k-1 and k+1 are input to the 

feature extraction block (i.e., the CNN model).  

C. Feature extraction 

Pre-trained CNN models are adopted for feature extraction. 

More specifically, VGG16-SegNet, Resnet-18, and ED-

Alexnet to extract liver and lesions features. The details of each 

network are illustrated below. 

VGG16-Segnet model is composed of the VGG16 encoder 

network, a corresponding decoder network, and a final pixel-

wise classification layer [11]. In this work, we used the 

pretrained VGG16 encoder network model, which is composed 

from only the convolutional layers with no fully connected 

layers (i.e., 13 convolutional layers in Fig. 2) that were 

pretrained on 1.2 million images of the ImageNet ILSVRC‐
2014 dataset [13] (see Table 1). Each encoder layer has a 

corresponding decoder layer and hence the decoder network is 

composed of 13 layers. The final decoder output is fed to a soft-

max classifier to produce class probabilities for each pixel 

independently. More details about the VGG16-Segnet model 

can be found in [11].  

ED-Alexnet model is composed of the Alexnet encoder 

network, a corresponding decoder network, and a final pixel-

wise classification layer [18]. The Alexnet encoder is composed 

of five convolutional layers (see Fig. 3) that were trained on 10 

million images of the ImageNet ILSVRC‐2012 dataset (see 

Table I). The decoder is composed of one deconvolutional layer 

that corresponds to the deconvolution of the encoder five layers. 

The final decoder output is fed to a soft-max classifier to 

produce class probabilities for each pixel independently. More 

details about the ED-Alexnet model can be found in [18]. 

Resnet18 model is composed of an 18 weighted layers 

encoder, a decoder, and a pixel classification layer [8]. This 

model is pretrained on 1.2 million labeled high-resolution 

images belonging to 200 categories. Table 1 summarizes the 

details of the pre-trained VGG16, Alexnet and Resnet-18 

models, their training data, and their structures. 

D. Classification 

A pixel-wise classifier is used after each model’s decoder to 

label the segmented output image. The pixel-wise classifier 

performs softmax classification. Three softmax nodes are 

utilized per each image pixel, providing the probabilities of the 

three labels: lesion, liver, or background [19], as follows: 

𝜎(𝑥𝑖) =
𝑒𝑥𝑖

∑𝑒𝑥𝑖
      (1)   

where 𝑥𝑖 denotes the input to the softmax node 𝑖 and σ(.) 

denotes the output probability of the softmax node. The final 

output label for each pixel (i.e., lesion, liver, or background) 

corresponds to the softmax node of the largest probability.  

E. Majority voting scheme 

The majority voting scheme [20] is applied to the binary 

classified outputs of the three utilized CNN models (VGG16-

Segnet, ED-Alexnet and Resent-18). The details of the majority 

voting scheme are illustrated Fig. 4. Let 𝐴𝐶𝐶𝑛𝑒𝑡
𝑙𝑎𝑏𝑒𝑙  denote the 

network’s accuracies for each label, where 𝐿𝑎𝑏𝑒𝑙 ∈ {BG, Liver, 

Tumor} and 𝑛𝑒𝑡 ∈ {VGG16-Segnet,  ED-Alexnet,  Resnet-18}.  
 



A. ELNAKIB, N. ELMENABAWY AND H.S. MOUSTAFA                                                                    E: 33 

 
 

 

 

 

 

 

 

Fig. 2. The VGG16 network architecture. 
 

 
Fig. 3. The Alexnet network architecture 

 
 

TABLE 1 
SUMMARY OF THE PRE-TRAINED VGG16, RESNET-18 AND ALEXNET CNN MODELS. THE SYMBOL “#” IN THE TABLE INDICATES THE NUMBER,  

FC DENOTES FULLY CONNECTED, AND CL DENOTES CONVOLUTIONAL LAYERS 

 
 

 

Fig.4. The majority vote scheme 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CNN 

model 
Database 

CNN Model Description Pre-trained Network Parameters 

Input Size # CL 
#FC 

Layers 

#Images 

per million 
#Subjects 

Parameter size 
per million 

VGG-16 
Imagenet 

(ILSVRC2014) 
224x244x3 13 3 1.2 200 138.0 

Resnet-18 
Imagenet 

(ILSVRC2014) 
224x244x3 17 1 1..2 200 138.0 

FCN-Alexnet 
Imagenet 

(ILSVRC2012) 
244x244x3 5 3 10.0 +1000 62.4 
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Let the coordinates of each image pixel be (𝑖, 𝑗, 𝑘), where 𝑖 
the row index, 𝑖 ∈ {1, … , 𝑅}, 𝑗 is the column index, 𝑗 ∈
{1, … , 𝐶}, 𝑘 is the image index, 𝑘 ∈ {1, … , 𝐾}, R is the number 

of rows, 𝐶 is the number of columns, and 𝐾 is the number of 

the input images. Let 𝑂𝑢𝑡𝑝𝑢𝑡𝑛𝑒𝑡  (𝑖, 𝑗, 𝑘) be the network output 

label at (𝑖, 𝑗, 𝑘), where 𝑂𝑢𝑡𝑝𝑢𝑡𝑛𝑒𝑡  (𝑖, 𝑗, 𝑘) ∈{BG, Liver, 

Tumor}. Let 𝑂𝑢𝑡𝑝𝑢𝑡𝑓𝑢𝑠𝑒𝑑  (𝑖, 𝑗, 𝑘) be the fused output label at 

(𝑖, 𝑗, 𝑘), where 𝑂𝑢𝑡𝑝𝑢𝑡𝑓𝑢𝑠𝑒𝑑  (𝑖, 𝑗, 𝑘) ∈{BG, Liver, Tumor}. As 

shown in Fig. 4, if the number of networks that agrees on a 

label, classified as 𝐿𝑎𝑏𝑒𝑙∗, is more or equal to two, i.e., 

𝑁𝑎𝑔𝑟𝑒𝑒>=2, then the fused output label is assigned to this label, 

i.e.,  𝑂𝑢𝑡𝑝𝑢𝑡𝑓𝑢𝑠𝑒𝑑  (𝑖, 𝑗, 𝑘) = 𝐿𝑎𝑏𝑒𝑙∗. Otherwise, a tie has 

reached, and the 𝑂𝑢𝑡𝑝𝑢𝑡𝑓𝑢𝑠𝑒𝑑  (𝑖, 𝑗, 𝑘) is selected as the label of 

the network of the highest accuracy, i.e., of the maximum 

𝐴𝐶𝐶𝑛𝑒𝑡
𝑙𝑎𝑏𝑒𝑙  among the three network outputs, 

i.e., 𝑂𝑢𝑡𝑝𝑢𝑡𝑓𝑢𝑠𝑒𝑑  (𝑖, 𝑗, 𝑘) = 𝑙𝑎𝑏𝑒𝑙(max (𝐴𝐶𝐶𝑛𝑒𝑡
𝑙𝑎𝑏𝑒𝑙(𝑖, 𝑗, 𝑘)).  

Algorithm 1 summarizes the overall joint liver and lesion 

segmentation algorithm using majority vote technique. 

 

Algorithm 1   Joint liver and lesion segmentation algorithm 

Input: Input image of index 𝑘 

Output: Outputfused Image 

Step1: Formulate the 3D narrow band image, 𝐼𝑀3𝐷 by 

adding the two adjacent image neighbors at 𝑘 − 1 and 𝑘 +
1. 

Step2: Extract features from 𝐼𝑀3𝐷 using the three 

pretrained networks, i.e., VGG16-Segnet, ED-Alexnet, and 

Resnet-18. 

Step 3: Apply a pixel-wise classifier after each model’s 

decoder  

Step 4: Fuse the binary classifiers’ outputs using the 

majority voting scheme in Fig.4, to produce the final fused 

output image Outputfused . 

 

F. Performance Metrics   

To test the performance of the proposed system, the Dice 

similarity coefficient (DSC) [21] is used, defined as two times 

the area of the intersection of A and B, divided by the sum of 

the areas of A and B: 

DSC (A, B) = (2 × |A∩B|)/ (|A| + |B|) × 100% (2) 

where A is the binary output labeled image, B is the binary 

ground truth image, and |. | denotes the area. DSC can be also 

defined as follows: 

DSC = 2 |A∩B| / (|A|+|B|) = 2 TP / (2 TP + FP + FN) 

where TP=True Positive, FP=False Positive, FN=False 

Negative. The better the segmentation is, the closer the DSC to 

1. The worst the segmentation, the closer the DSC to 0. Note 

that for liver segmentation, the label ‘1’ denotes the object 

(liver) and the label ‘0’ denotes the background, whereas for 

tumor segmentation, the label ‘1’ denotes the object (tumor) 

and the label ‘0’ denotes the background. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, the data specifications, the experimental 

setup, and the details and discussions of the experiments are 

illustrated. 

A. Experimental setup 

Deep learning training of the three utilized models (i.e., 

VGG16-Segnet, ED-Alexnet, and Resnet-18) is performed by 

initializing the layers in the down‐sampling (encoder) with the 

pertained VGG16, Alexnet and Resnet parameters, whereas the 

parameters of the remaining layers of the three models are set 

to small random numbers with zero mean. The whole three 

networks are then fine‐tuned using the LITS dataset in a pixel‐
to‐label way. The stochastic gradient descent (SGD) is utilized 

for training with a fixed learning rate of 10-3 and momentum of 

0.9. Before each epoch, the training set is shuffled and each mini 

batch of size of 200 images is then picked in order thus ensuring 

that each image is used only once in an epoch. The cross-

entropy loss as the objective function for training all the 

networks.  

System evaluation is performed using the standard 5-fold 

cross-validation. For each fold, the 130 separate LITS scans are 

divided into 26 test subjects (20% of the scans) and 104 training 

subjects (80% of the scans). 

B. Experimental results: 

In order to show the advantage of fusing the CNN models 

using the proposed majority voting scheme (proposed system), 

Fig. 5 provides a sample of the visual comparison results 

between the proposed system and using only one of the 

investigated CNN models (i.e., VGG16-Segnet, ED-Alexnet 

and Resnet-18). As shown in Fig. 6, ED-Alexnet provides the 

best performance between the individual investigated models 

for the segmentation of the liver as well as the tumor. However, 

the proposed fusing scheme provide a better visual match, to 

the Ground Truth (GT), than the best individual segmentation 

model (ED-Alexnet alone). To quantify these results, Table 2 

details the comparison results in terms of the average DSC 

values over the whole test images. Consistent with the visual 

results in Fig 5, the proposed fusion scheme shows the ability 

to improve the performance over the best individual model 

(ED-Alexnet). It is remarkable here to note that although that 

the Alexnet model contains the least number of encoder layers 

(only 5 convolutional layers), it provides better performance 

that the competing VGG16-Segnet (13 layers) and Resnet-18 

(18 layers) models. These may be due to the fine-tuning of the 

parameters of a smaller network is more efficient than that of 

larger networks, to avoid the overfitting problem. Note that the 

processing time of a test image to be segmented using our 

proposed system is 78 seconds.  

In addition to the comparison to the individual networks, 

we also compared the proposed system with a weighted 

softmax-accuracy fusion of the three networks. This is done by 

multiplying the softmax value with the network accuracy then 

take the maximum as a winner. As shown in Table 2, the 

proposed majority voting achieves better results than the 
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weighted softmax-accuracy fusion. This highlight the 

advantage of the proposed fusion scheme. 

To investigate the advantage of the proposed system, its 

results are further compared to the related methods on the same 

LITS competition database effectiveness (see Table 2). The 

proposed fusion scheme achieves the highest performance for 

tumor segmentation among all the compared methods. 

However, the liver segmentation results are still slightly below 

the compared methods. The superior performance for tumor 

segmentation may be due to using the proposed utilized 3D 

narrow band information as an input to the CNN models. The 

3D narrow band information takes into account the 3D 

extension of the tumor shape on both neighbor slices of the test 

image. For the liver segmentation, since the liver is of relatively 

large size than the tumor, this advantage will be less effective. 

In the future, we will investigate how to further improve the 

liver segmentation. However, in the specific case of liver 

cancer, the accurate tumor segmentation is the most clinically 

important step to stage the tumor and provide the proper 

medication. 

V. CONCLUSION 

In this paper, we proposed a framework for joint liver and 

lesions segmentation using the pre-trained CNN models 

(VGG16-Segnet, ED-Alexnet, and Resnet-18). The network 

outputs are fused using a majority vote scheme that efficiently 

improves the performance over each individual network. In 

additional, the proposed system shows superior performance 

for liver tumor segmentation, over the related compared 

methods. These results show the promise of the proposed 

system for joint liver and tumor segmentation. In the future, 

more data will be investigated to check the system robustness 

and more CNN models will be tested to improve the 

performance. 

 

 
TABLE 2.  

 A COMPARISON RESULTS FOR LIVER AND TUMOR SEGMENTATION BETWEEN EACH UTILIZED DEEP LEARNING MODEL,  

THE PROPOSED MAJORITY VOTING SYSTEM, AND OTHER RELATED METHODS 
 

CNN Model 
Liver Tumor 

DSC 

Cascaded ResNet  [7]       95.1%  50.1% 

Base network is VGG16 [12] 96.0% 43.0% 

Cascaded Unet-like [14]       95.0%  52.0% 

CDNN-Alexnet with preproceeing [22] 90.4% 62.4% 

Segnet-VGG16 82.3% 69.7% 

Resnet18 85.2% 71.4% 

ED-Alexnet 93.5% 74.7% 

 Weighted softmax accuracy Fusion 93.7% 75.2% 

Proposed Majority Voting System 94.2% 76.5% 
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Title Arabic:  

 الأغلبيةنظام آلي عميق لتجزئة الكبد والورم باستخدام تصويت 
 

Arabic Abstract: 
في هذ البحث، نقترح نظام قائم على التعلم المتعمق وتصويت الأغلبية للتجزئة 

المشتركة للكبد والأورام التي به. وهذا النظام يتكون من ثلاث خطوات. أولًا، تم استخدام 

عقيدات نظام التعلم المتعمق لاستخراج السمات التي تصف صور الأشعة المقطعية وكذلك ال

-VGG16، مثل )CNNsالسرطانية، باستخدام ثلاث شبكات عصبية تلافيفيه مختلفة ))

Segnet, ED-Alexnet, Resnet-18  ثانياً، يتم إجراء خطوة تصنيف لميزات التعلم )

المتعمق المستخرجة لكل شبكة تم تطبيقها .لإنتاج التجزئة النهائية للكبد والأورام التي به، 

الثلاثة  CNNيرة بتطبيق تقنية التصويت بالأغلبية لدمج مخرجات تقوم الخطوة الأخ

 MICCAIالمستخدمة.  لاختبار أداء النظام المقترح، يتم استخدام قاعدة بيانات تحدي 

LITS صورة مقطع عرضي.    16917مجلدًا مقطعيًا بإجمالي  130، والتي تتكون من

لتجزئة الكبد والعقيدات السرطانية، ٪    76٪ و    94( بنسبة  DSCيحقق النظام المقترح دقه )

على التوالي. المقارنة مع الطرق ذات الصلة تؤكد فعالية النظام المقترح لتجزئة الكبد  
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