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Abstract 

The number of defects, as a count time series data, is an important measure of 

product quality which is widely used in industry. We discuss M-estimation of 

INARCH-models as appropriate models for analysis and modeling such data, 

especially, in the presence of outliers. These models are proposed by Elsaied 

and Fried (2014) for conditional Poisson distributions. They compare between 

the performance of the conditional maximum likelihood estimator (CML) and 

Tukey M-estimators with and without bias correction. Liboschik et al. (2017) 

construct the tscount package in the R programming language, which provide 

likelihood-based estimation methods for analysis and modeling of count time 

series based on generalized linear models. In our paper, we compare between 

the results of the best functions, which are built in the R programming 

language, for the Tukey M-estimators in the case of the Poisson INARCH(1) 

model given in Elsaied and Fried (2014) and the tsglm function in the tscount 

package. We investigate the performance of these estimators under assuming 

different outliers scenarios by simulations. The usefulness of the chosen 

functions is applied on a real defects data example. 

 

Keywords: Defects count data; Poisson model; INARCH models; GLM  

              models; Tukey M-estimator; Additive outliers; Robustness.  

1. Introduction 

In the last two decades, count time series data have received increasing 

attention. They are found in many different applications, e.g. from medicine, 

finance or industry. Integer-valued GARCH (briefly: INGARCH) models have 

been studied by Ferland et al. (2006) and Fokianos et al. (2009), among others, 

as appropriate models for thise type of data. Fokianos and Fried (2010) model 

different types of outliers and interventions in INGARCH-processes and 

propose an iterative procedure for the detection of such effects.  

Elsaied and Fried (2012) provide INGARCH(1,0) or more briefly called 

INARCH(1) model for count time series as a simplest version of the 

INGARCH models under assuming the observation at each point in time to 

follow a Poisson distribution conditionally on the past, with the conditional 

mean being a linear function of previous observations. They construct new M-

estimators based on the Tukey function as modified versions of maximum 

likelihood estimators to fit count data robustly, where the Poisson model 

provides a standard framework for the analysis of this type of data.   
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Elsaied and Fried (2014) build some functions in R-programming language for 

these estimators and perform some simulation experiments to compare the 

performance of them. They compare the following procedures:  

 

1. The conditional maximum likelihood estimator (CML) with 

initialization from an autoregressive, AR(1), fit.  

2. The glmrob R-function with robust initialization from an AR(1) fit, see 

package robustbase.  

3. The uncorrected bias Tukey M-estimator with robust initialization from 

an AR(1) fit and tuning constant        , the tuning constant k 

regulates the trade-of between the robustness and the efficiency of the 

estimators.   

4. The bias-corrected Tukey M-estimator with robust initialization from an 

AR(1) fit and tuning constant        , called Tukeycorr in their 

notations.  

Liboschik et al. (2017) construct the R package tscount which provides 

likelihood-based estimation methods for analysis and modeling of count time 

series based on generalized linear models. The package includes methods for 

model fitting, prediction and intervention analysis.   

In this paper, we compare the performance of the CML, the best function 

(Tukeycorr), which is given above in Elsaied and Fried (2014), for the Tukey 

M-estimators in the case of the Poisson INARCH(1) model and the tsglm 

function in the tscount package, which is given in Liboschik et al. (2017) via 

simulations in case of outlier-contaminated Poisson time series data.   

Section 2 defines the defects count data. We model and estimate the defects 

count data in Section 3. We compare the performance of the chosen functions 

via simulations in Section 4. We apply these functions on a real defects data 

example in Section 5. Section 6 gives some conclusions.  

2. Defects count data 

There are many definitions for the product quality. One definition of the 

product quality relates it to decrease the number of the defects product. When 

there are no defects, it means what we call "zero defects" concept. In a practical 

sense, this concept is hard to reach. Alternatively, the scientifics suggest 

applying the six sigma concept to decrease the number of the defects product. 

Six Sigma stands for 6 standard deviations (6s) between the average and the 

acceptable limits of the quality levels, for more details, see Breyfogle (1999) 

and Bertolaccini et al. (2015). Either we agree to this concept or not, we should 

work to decrease the number of the defects product as a measure of its quality. 

The number of the defects product, as a count variable, is one of the variables 

which we can statistically control by we so called “control chart, for more 

details, see Thomas and Lonnie (1986).  Control charts are simple, robust tools 

for understanding the production process variability. They depend on taking 

random samples from a population of the products units and knowing the 

number of the defects product.  
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This paper aims to provide a statistical model for the variable of the number of 

defects product and estimate its parameters either its data contains outliers or 

not, see Figure 1.  

 

Figure 1.  Simulated data from an INARCH(1) model with parameters      and  

                 in case of clean data (top) and three additive outliers (bottom). 

 

Figure 1 (top) shows simulated clean data from an INARCH(1) model with 

parameters      and        and it shows (bottom) data with three additive 

outliers of increasing random size generated from Poisson distributions with 

means varying from 1 to 20 at times 50, 100 and 150.  

3. Modeling and Estimation 

 Let (  )  denotes the variable of the number defects product with range   = 

{0, 1, ...}. The adequate distribution for   is the Poisson distibution with mean 

  and probability density function        
     

  
,     . Ferland et al. (2006) 

define an INGARCH (   ) process          of orders   and   through the 

relationships  
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for    . The dynamics of the process are modeled via the conditional mean 
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Elsaied and Fried (2012) provide INARCH(1) model as a simplest version for 

these models under assuming the observation at each point in time to follow a 

Poisson distribution conditionally on the past, with the conditional mean being 

a linear function of previous observations is as follows:  

 

 
              (2) 

 

The properties of INARCH(1) model have been given in Wiss (2010) as 

follows:  

 

1. An INARCH(1) process with      and        is a stationary 

Markov chain with the transition probabilities  

                                  
         

 

  
  . 

         It is irreducible and aperiodic and hence ergodic.  

2. The marginal mean is         
  

    
, and the marginal variance is   

            
  

           
  

. 

3. The autocorrelation function                     equals   
 , like in 

the standard AR(1) model. An INARCH(1) model can be described by 

an AR(1) structure satisfying the equation              with    
being a white noise error term.  

 

The data can be contaminated with one or more different types of outliers, 

transient, level shift or additive (spiky) outliers. When the data contains for 

example three additive outliers of increasing expected size generated from 

Poisson distributions with means varying from 1 to 20 at times 50, 100, and 

150 then the INARCH(1) model can be defined by  

 

          (3) 

   

where    is the new contaminated observed value at a specific time   and   is 

the size of the outlier such that    Poisson( ) with               . Here,    
follows model (2) and       if     with     ,       and      , see 

Figure 1.   

 

According to Elsaied and Fried (2012), the conditional maximum likelihood 

(CML) approach is used to estimate the parameters of the INARCH(1) as the 

solution of the following set of estimation equations:  
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where           be a time series from an INARCH(1) process,          
  

denotes to the vector of its parameters and                
 .  

 

M-estimation for the INARCH(1) model with asymptotic bias correction 

       
  as a robust version for Equation (4) is as follows:  

 

 

  

 

   

 
     

   
 

 

   
 

 

   
      

 
   

  

 

       
  
  
   

 
 
   

 

(5) 

where observations with large standardized residuals             are 

truncated using Huber’s or Tukey’s   function, and do the same with 

regressors      which are outlying w.r.t. the marginal distribution with 

            is the marginal mean and                   
    is the 

marginal variance. For more details and the calculation methods, review 

Elsaied and Fried (2012).  

4. Simulations 

In this section, we perform some simulations to compare the performance of 

the CML estimator and the best-Tukey M-estimators with bias correction given 

in Elsaied and Fried (2012).  Because the INARCH(1) model belongs to the 

class of generalized linear models, we include the R-function tsglm from 

package tscount, which is based on the work of Liboschik et al. (2017), in our 

comparison using the identity link, family Poisson and the lagged variables as 

regressors. Altogether, we compare the following procedures:  

 

1. CML with initialization from an AR(1) fit.  

2. The bias-corrected Tukey M-estimator defined in (5) with robust 

initialization from an AR(1) fit and tuning constant      , called 

Tukeycorr here.  

3. tsglm function in tscount package to fit a generalized linear model 

(GLM) for time series of counts.  

These estimators are compared in terms of bias and root of the mean square 

error (RMSE) in finite samples from an INARCH (1) model in the following 

cases:  

 

1. The case of presence twenty additive outliers of fixed small size in 

subsection 4.1.  

2. The case of presence twenty additive outliers of fixed large size in  

     subsection 4.2.  

3. The case of presence three additive outliers of of increasing size in 

subsection 4.3.  
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4-1  Twenty additive outliers of fixed small size 

Here, we compare the biases in the presence of twenty additive outliers of fixed 

small size equal 5 considering data from an INARCH(1) model with 

parameters      and       . The results are based on 200 data sets of size 

100.  

The results for the RMSE are dominated by the bias and thus not shown here.  

In Figure 2, isolated outliers cause a strong bias effect on all compared 

estimators, but tsglm works better than CML and Tukeycorr if the numbers of 

outliers more than or equal 5. When the number of outliers is less than 5, 

Tukeycorr works better than the others. To be sure from these results, we 

suggest to perform another simulation in case of presence number of outlier 

less than 5 for example in case of presence three outliers, see the subsection 

4.3.  

 

 
 

Figure 2. Simulated biases of the CML, Tukeycorr with tuning constant    , and    

         tsglm in case of twenty additive outliers of fixed small size = 5 and true values  

              and       , sample size n=100, for    (left) and    (right). 
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4-2  Twenty additive outliers of fixed large size 

Here, we compare the biases in the presence of twenty additive outliers of fixed 

large size equal 15 considering data from an INARCH(1) model with 

parameters      and       . The results are based on 200 data sets of size 

100. Also the results for the RMSE are dominated by the bias and thus not 

shown here.  

In Figure 3, Tukeycorr gives the smallest bias if it is compared to CML or 

tsglm.  

 

 

 

 

Figure 3. Simulated biases of the CML, Tukeycorr with tuning constant    , and  

          tsglm in case of twenty additive outliers of fixed large size = 15 and true values  

                and       , sample size n=100, for    (left) and    (right). 
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4-3  Three additive outliers of increasing size 

 

 
 

Figure 4.  Simulated biases of the CML, Tukeycorr with tuning constant    , and  

          tsglm in case of three additive outliers of increasing size and true values  

                and       , sample size n=100, for    (left) and    (right). 

 

 

Here, we compare the biases in the presence of three additive outliers at of 

increasing size                        at adjacent positions            
considering data from an INARCH(1) model with parameters      and 

      . The results are based on 200 data sets of size 100.  

Again the results for the RMSE are dominated by the bias and thus not shown 

here.  

In Figure 4, Tukeycorr M-estimator gives less bias than CML and tsglm for 

both parameters    and   .  
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5. Application on a real data example 

 

Figure 5.  plywood data (solid black line) and data after removal of outliers (dotted red line). 

 

We investigate the reliability of our proposed methods using a real data in the 

industry field. Manufactures laminated plastic plywood (briefly: plywood) data 

is given in Filho and Sant’Anna (2015). For this data, we have 100 

observations for the variable of the number of defects found in produced 

plywoods. we observe that the data contains seven observations with values 

greater than 30, eighteen observations between 10 to 30 and the rest, 75 

observations, less than 10. We consider that data is collected at different time 

points or as a count time series data, see the series of the original data in Figure 

5. 

  

To apply our proposed methods on this data, we follow the following steps:  

 

1. We run the “interv multiple” function in tscount package to detect 

outliers, this function performs an iterative procedure for detection of 

multiple intervention effects of unknown types occuring at unknown 

times. The code of this function in R and its results are as follows:  

  

countfit_interv <- interv_multiple(fit=tsglm(ts=y, model=list(past_obs=1)), tau  

                  s=1:100, deltas=c(0,0.8,1), B=500, signif_level=0.05),    

Here, the “interv multiple” function used to detect outliers at unknown times 

from 1 to 100, where taus = 1:100 is an integer vector of times which are 

considered for the possible intervention, and for deltas = c(0,0.8,1) as a 

numeric vector that determines the types of intervention to be considered 0 for 

spiky outlier, 1 for level shift outlier and 0.8 for transient shift outlier. B is a 

positive integer value giving the number of bootstrap samples for estimation of 

the p-value and “signif level” is a numeric value between 0 and one giving a 

significance level for the procedure.   
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 Detected intervention(s): 

 

Table 1.   The results of “interv multiple” function 

 

tau delta size test_statistic p_value 

52 1 1.340066e-09 150.97785 0 

46 0 2.837735e+02 10215.44544 0 

8 1 1.887947e-09 132.05852 0 

71 0 1.086792e+02 1129.79172 0 

93 0 1.068003e+02 1216.88412 0 

51 0 8.004906e+01 792.67633 0 

3 0.8 2.889325e+01 311.51157 0 

48 1 3.234328e-10 33.69842 0 

32 0 2.746446e+01 123.72798 0 

2 1 1.772284e-07 26.81250 0 

67 0 2.355734e+01 97.04179 0 

45 0 2.078209e+01 77.85561 0 

18 0 1.886202e+01 68.93868 0 

14 0 1.611020e+01 51.05992 0 

70 0 1.493166e+01 47.48654 0 

35 0 1.338651e+01 39.97027 0 

26 0 1.250249e+01 33.64359 0 

34 0 1.161703e+01 30.03328 0 

62 0 1.072314e+01 26.42178 0 

84 0 1.081630e+01 27.67084 0 

95 0 1.096644e+01 28.77609 0 

29 0 9.057932e+00 20.23066 0 

46 0 9.138280e+00 21.06398 0 

17 0 8.148362e+00 17.42712 0 

    

According to the results of “interv multiple” function in Table 1, we detect 24 

outliers (four level shifts, one transient and 19 additives), see the series of the 

clean data in Figure 5  

 

2. We fit an INARCH(1) model to observed plywoods data using 

conditional maximum likelihood (CML) as a non robust method, Tukey 

M-estimation with bias correction and tsglm as a robust estimates of the 

model parameters, see Table 2 (left)  

 

3. We fit again an INARCH(1) model using the same functions, but after 

having cleaned the data from outliers using step 1, see Table 2 (right)  
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Table 2. Parameter estimates for the campy data (left) and for the cleaned campy data 

(right) 

 

Estimators  

estimates  

observed cleaned  

                    

CML  13.3591  0.06131  2.9496  2.512065e-08   

Tukeycorr  2.6518  1.877702e-10  2.7711  2.211659e-11  

tsglm  14.280  2.685770e-11  2.95  8.559052e-12  

 

 

From Table 2, there are small differences between CML, Tukeycorr and tsglm 

for both    and    after having cleaned the data set from outliers. Tukeycorr 

for the original data are closer to the estimates for the cleaned data than the 

CLM and tsglm estimates.   

Generally, Tukey M-estimator shows better results in the presence of outliers, 

since the robust estimates are closer to the estimates for the cleaned data than 

the non-robust estimates. Also it gives better results than tsglm, since here we 

have nearly 25% outliers in the data with large sizes. This results as the same 

results in our simulation above,  see again subsection 4.2.   

There is almost no serial for the estimator of the dependence parameter   . An 

explanation of this problem is that the presence of four level shifts can be 

interpreted as a long sequence of outliers, i.e. a high level of contamination.  

 

6. Conclusions 

We have suggested robust INARCH(1) model as a promise model to fit the 

defects count data when the data contains outliers. Our simulation results 

indicate that in case of the INARCH(1) model, the corrected-bias Tukey M-

estimator is more robust when the data contains high percent of outliers of 

fixed large size or when there is small number of outliers of increasing size. 

But in case of high percent of outliers of fixed small size tsglm works better. 

The application results on a real data example give similar results as our 

simulation, but the problem of the dependence parameter remains an open 

problem need to search.  
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