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Abstract 

   Extreme value theory (EVT) has two main approaches for dealing with extremes; the 

block maxima (BM) and the peaks over threshold approach (POT). This paper focuses 

on the POT approach where the generalized Pareto distribution (GPD) is the limiting 

distribution for exceedances.  The GPD has many estimators for the scale and shape 

parameters. A simulation study for comparing the performance of three new estimators, 

nonlinear least square (NLS), POT nonlinear least square (POT-NLS) and weighted 

nonlinear least square (WNLS), of the GPD under the peaks over threshold (POT) 

approach was conducted. Different distributions which belong to the maximum domain 

of attraction of the GPD were considered for generating the data to study the effect of 

the deviation from the GPD and the effect of different sample sizes, threshold values (u) 

and quantile levels. Then those estimates were used to calculate one of the common tail 

risk measures, the value at risk (VaR), for a heavy-tailed dataset. 

 

1. Introduction 

 

    When natural disasters happen, we are interested in studying their occurrence and 

frequency, and whether anything could have been done to prevent them or at least to be 

prepared for them. In some applications we are not interested in estimating population 

central characteristics (e.g., the average temperature, the median income, the mean 

rainfall, etc.) depending on random samples selected from the population, but we are 

interested in estimating the maximum or the minimum, see (E Castillo & Sarabia, 1994). 

For example, in designing a dam, engineers are interested in both the average flood to 

estimate the total amount of water and the maximum flood to be prepared against it. 

These natural disasters could also include, earthquakes, massive snowfalls, massive 

forest fires and floods. Not only natural phenomena, but also many other practical 

situations wherein we are interested in extremes. These include: strength of material as 

a sheet of metal breaks at its weakest point so that a minimum strength determines the 

quality of the entire sheet, corrosion analysis as pitting corrosion can lead to the failure 

of metal structures such as tanks and tubes, telecommunication and insurance as pricing 

a high excess loss layer is connected to extreme losses. Thus, the determination of the 
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distribution of extremes (minima or maxima) of the phenomena at hand is very 

important to obtain a good solutions to the devastating disasters, (Enrique Castillo et al., 

2005). Extreme value theory (EVT) plays a very vital role in extremes. The importance 

of the EVT comes from its role in determining the distribution of extremes (maxima or 

minima).   

    

   There are two approaches for analyzing extreme values under the EVT; the block 

maxima (BM) and the peaks over threshold (POT) approach. The data at hand and the 

purpose of analyzing it recommend which approach to use. Each of those approaches 

depends on a certain limiting distribution. Since in this research we concentrate on the 

POT approach, the limiting distribution of that approach, the generalized Pareto 

distribution (GPD), is of great interest. Hence, estimating the parameters of the GPD 

becomes a very important task in EVT.   Various estimation methods for the parameters 

of the GPD are available such as maximum likelihood estimation (MLE) which was 

discussed in (Grimshaw, 1993), (Davison & Smith, 1990) and (Smith, 1984), Pickands 

estimation method which was proposed by Pickands III (1975), method of moments 

(MOM) and probability weighted moments (PWM) were used by J. R. Hosking and 

Wallis (1987),  method of l-moments was discussed in (J. R. M. Hosking, 1990),  

method of medians (MED) was proposed by He and Fung (1999), the likelihood 

moment estimation method (LME) was proposed by Zhang (2007), the nonlinear least 

square method (NLS) was proposed by Song and Song (2012), then more recently the 

POT nonlinear least square (POT-NLS) and  the weighted nonlinear least square 

(WNLS) methods were proposed by (Park and Kim (2016)). Most of the above 

estimators have been investigated for their asymptotic behavior but the three newest 

estimators; NLS, POT-NLS and WNLS were not investigated for their asymptotic 

behavior. In this paper we concentrate on describing and comparing the asymptotic 

behavior of those estimators through a simulation study. Moreover, in this study 

different distributions which belong to the maximum domain of attraction of the GPD 

were considered for generating data with different sample sizes and threshold values (u) 

and quantile levels. Then those estimates were used to calculate the VaR and studying 

its performance depending on root mean square error (RMSE) and absolute relative bias 

(ARB).  

   After comparing the properties of the newest three estimators of the parameters of the 

GPD, those estimators were applied on one of the famous datasets called the Danish fire 

loss dataset.  This paper is organized as follows. The Peaks over threshold approach of 

the extreme value theory is summarized in section 2. In section 3, the three new 

estimators of the GPD parameter that would be compared under the POT were 

discussed. In section 4, the results of the simulation study of the three estimators were 

presented. Section 5 is devoted for the analysis of the Danish fire loss dataset. Then 

conclusion is presented in section 6. 
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2. Extreme value theory 
 

   There are two classical ways to identify extremes in real data. The first approach 

models the maximum that the variable takes in successive periods. These extreme events 

are sometimes called block maxima. The block maxima of each block is modeled by the 

distributions in the classical extreme type theorems. i.e., the limiting distribution of the 

normalized maximum of the sequence must converge to either a Gumbel, Frechet, or 

Weibull distribution. This is known as the block maxima (BM) approach. 

   An alternative approach considers the process when it exceeds a given threshold u. 

All exceedences of the threshold u constitute extreme events, so u is typically chosen to 

be large. Then exceedances are fitted by the generalized Pareto distribution. This is 

known as the peaks over threshold (POT) approach, see (Reiss et al., 2007), (Coles et 

al., 2001) and (Embrechts et al., 2013) for more details about these two approaches. 

 

2.1 Peaks over threshold (POT)  

 

   Let 𝑋1, 𝑋2, … be a sequence of independent and identically distributed random 

variables, having a probability distribution F. Extreme events are the 𝑋𝑖 that exceed 

some high threshold u. A description of the stochastic behavior of extreme events is 

given by the conditional probability 

 

𝑃{𝑋 − 𝑢 > 𝑥|𝑋 > 𝑢} =
1−𝐹(𝑢+𝑥)

1−𝐹(𝑢)
,     𝑦 > 0                                                             (2.1) 

 

   If the distribution F were known, the distribution of exceedances would also be 

known. But, in real situation, this is not the case, approximations that are applicable for 

high values of the threshold are sought. This parallels the use of the GEV as an 

approximation to the distribution of maxima when the population is unknown. 

For a random variable X with cumulative distribution function F, we are interested in 

estimating the distribution function Fu of excesses above the threshold u. The 

distribution function Fu is called the conditional excess distribution function and is 

represented by 

 

𝐹𝑢(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢),                                  0 ≤ 𝑥 ≤ 𝑥𝐹 − 𝑢                        (2.2) 

 

Where 𝑥𝐹 ≤ ∞ is the right endpoint of F: 𝑥𝐹 = inf{𝑥: 𝐹(𝑥) = 1}. Pickands III (1975) 

showed that for a large class of underlying distribution functions F, the conditional 

excess distribution function Fu, for large u, is well approximated by 

 

𝐹𝑢(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢) ≈ 𝐹𝑘,𝛽(𝑥)                                                               (2.3) 
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where 𝐹𝑘,𝛽(𝑥) is the generalized Pareto distribution with a scale parameter 𝛽 and a shape 

parameter k. 

 

 

2.2 Generalized Pareto distribution (GPD) 

 

   Fisher and Tippett (1928) stated the extreme types theorem as follows: Suppose that 

𝑋1, … , 𝑋𝑛  are i.i.d., 𝑀𝑛 = max {𝑋1, … , 𝑋𝑛}  and 𝑎𝑛, 𝑏𝑛 are sequences of constants. If G 

is a non-degenerate limit distribution of  
𝑀𝑛−𝑏𝑛

𝑎𝑛
, i.e. 

lim
𝑛→∞

𝑃 (
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥) = 𝐺(𝑥)                                                                                     (2.4)  

 

, then G is of one of the following types: 

 

   Type I (Gumbel): 

 

𝐺(𝑥) = exp [− 𝑒𝑥𝑝 (−
𝑥−𝜇

𝛽
)] , 𝑓𝑜𝑟 𝑥 𝜖 𝑅                                             (2.5) 

where 𝛽 > 0 . Here, 𝜇 is a location parameter and 𝛽 is a scale parameter. 

 

   Type II (Frechet): 

𝐺(𝑥) = exp [− (
𝑥−𝜇

𝛽
)

−𝛼
]                                                                         (2.6) 

Where 𝑥 ≥ 𝜇;  𝛼, 𝛽 > 0. 

 

   Type III (Weibull): 

                     𝐺(𝑥) = exp [− (−
𝑥−𝜇

𝛽
)

−𝛼
]                                                                 (2.7) 

where 𝑥 ≥ 𝜇;  𝛼, 𝛽 > 0. 
 

 

   Pickands III (1975) stated that if F satisfies the theorem of Fisher and Tippett (1928), 

so that for large n 

 

𝑃𝑟{𝑀𝑛 ≤ 𝑥} ≈ 𝐺(𝑥) 

where 

𝐺(𝑥) = exp {−[1 + 𝑘(
𝑥−𝜇

𝛽
)]−1/𝑘}                                                       (2.8) 

for some 𝜇, 𝛽 > 0 and k ≠ 0, where 𝐺(𝑥) is the generalized extreme value (GEV) 

distribution. Then, for large enough u, the distribution function of (X-u), conditional on 

X > u, is approximately 
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𝐹𝑘,𝛽(𝑥) = 1 − (1 +
𝑘𝑥

�̃�
)

−
1

𝑘
                                                     (2.9) 

 where �̃� = 𝛽 + 𝑘(𝑢 − 𝜇) and 𝐹𝑘,𝛽(𝑥) is the GPD. 

 

   Pickands III (1975) theorem implies that, if block maxima have approximating 

distribution G, then threshold excesses have a corresponding approximate distribution 

within the generalized Pareto family. Moreover, the parameters of the generalized 

Pareto distribution of threshold excesses are uniquely determined by those of the 

associated generalized extreme value (GEV) distribution of block maxima. In particular, 

the parameter k in 𝐹𝑘,𝛽(𝑥) is equal to that of the corresponding GEV distribution. 

 

2.3 Tail risk measures 

 

      Risk measures are methods used to summarize the level of risk associated with some 

loss distributions. For example, a risk measure that is used for specifying capital 

requirements can be thought of as the amount of cash (capital) that must be added to a 

position to make its risk acceptable to regulators. 

 
2.3.1 The value at risk measure (VaR) 
 

   VaR is a widely accepted standard risk measure used in risk analysis. Where it 

measures the maximum expected loss over a given time period at a given confidence 

level. It is defined as the q-quantile of the loss distribution, (Reiss et al., 2007). Suppose 

that a random variable X with continuous distribution function F models losses, then 

VaRp at the 100p% quantile is the100pth quantile of the distribution F. 

𝑉𝑎𝑅𝑝(𝑋)  = 𝐹−1(𝑝)                                                      (2.10) 

   For example; if a portfolio of stocks has a 10-day 95% VaR of $1 million, that means 

that there is a 0.05 probability that the portfolio will fall in value by more than $1 million 

over a 10-day period, 𝑃𝑟(𝑋 > 𝑉𝑎𝑅𝑝) ≤ 1 − 𝑝, 𝑃𝑟(𝑋 > 1) ≤ 1 − 0.95 ≤ 0.05. 

 

   (Park & Kim, 2016) showed that when the POT approach is employed, the underlying 

loss distribution can be written as a combination of the body and tail parts with the latter 

modeled by the GPD. 

   Let 𝐹(𝑋) be the distribution function of an arbitrary continuous distribution, then the 

exceedance distribution of loss events over u is defined by: 

 

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢) =
𝐹(𝑢+𝑦)−𝐹(𝑢)

1−𝐹(𝑢)
                    (2.11)     
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which is assumed to be GPD (k, 𝛽), then 𝐹(𝑥) can be written as: 

 

        𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = (1 − 𝐹(𝑢))𝐹𝑢(𝑥 − 𝑢) + 𝐹(𝑢) 

= (1 − 𝐹(𝑢))𝐹𝑘,𝛽(𝑥 − 𝑢) + 𝐹(𝑢)                      (2.12)                                                                       

 

    Replacing Fu by the GPD and 𝐹(𝑢) by the estimate 
𝑛−𝑁𝑢

𝑛
 where n is the total number 

of observations and Nu is the number of observations above the threshold (u) 

 

�̂�𝑘,𝛽(𝑥) = 1 −
𝑁𝑢

𝑛
(1 +

�̂�

�̂�
(𝑥 − 𝑢))−1/�̂�                          (2.13)                                                                      

     

    then the VaR can be obtained by inverting the estimated version of the GPD: 

       𝑉𝑎�̂�𝑝(𝑋) = 𝐹
�̂�,�̂�
−1 [1 −

1−𝑝

1−𝐹(𝑢)
] 

   = 𝑢 +
�̂�

�̂�
[(

𝑛

𝑛𝑢
(1 − 𝑝))

−�̂�

− 1]                             (2.14)   

 

 

3. GPD estimation 

 

   The GPD family depend on the scale and shape parameters. In this section, some 

methods for the estimation of those parameters were reviewed: nonlinear least square 

method (NLS), POT-nonlinear least square method (POT-NLS) and weighted nonlinear 

least squares method (WNLS). 

 

 

3.1 The nonlinear least square method (NLS) 

 

   This method is proposed by (Song & Song, 2012)to estimate the parameters of the 

GPD. It minimizes the sum of squared deviations between the empirical distribution 

function (EDF) and the theoretical distribution function of the GPD at observed values. 

The estimators of k and β can be obtained as follows: 

 

1- Pick a threshold value (u) and compute the EDF using observations above u. 

 

2- (First –step) Take the log of (1-EDF) and the log of (1-GPD distribution function), 

which are set as the response and explanatory variables, respectively. Since the GPD 

distribution function is 𝐹𝑘,𝛽(𝑥) = 1 − (1 +
𝑘𝑥

𝛽
)−1/𝑘 for k ≠ 0, 
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 log (1 − 𝐹𝑘,𝛽(𝑥)) = (−
1

𝑘
) log (1 +

𝑘𝑥

𝛽
)  

 

where 𝐹𝑛(𝑥) is the empirical distribution function,  

    log(1 − 𝐹𝑛(𝑥)) = (−
1

𝑘
) log (1 +

𝑘𝑥

𝛽
) + 휀𝑖                                                    (3.1) 

 

     which can be solved in the following way: 

(�̂�1, �̂�1) = 𝑎𝑟𝑔 min
(𝑘,𝛽)

∑ [log(1 − 𝐹𝑛(𝑥𝑖)) − log (1 − 𝐹𝑘,𝛽(𝑥𝑖))]
2

        
𝑛𝑢
𝑖=1            (3.2)           

where          �̂�1 =
𝜕 ∑ [log(1−𝐹𝑛(𝑥𝑖))−log(1−𝐹𝑘,𝛽(𝑥𝑖))]

2𝑛𝑢
𝑖=1

𝜕𝑘
 

and              �̂�1 =
𝜕 ∑ [log(1−𝐹𝑛(𝑥𝑖))−log(1−𝐹𝑘,𝛽(𝑥𝑖))]

2𝑛𝑢
𝑖=1

𝜕𝛽
 

3- (Second step) fit the NLS regression of the original EDF on the original GPD 

function with the initial values of (�̂�1, �̂�1). 

                               (�̂�2, �̂�2) = 𝑎𝑟𝑔 min
(𝑘,𝛽)

∑ [𝐹𝑛(𝑥𝑖) − 𝐹𝑘,𝛽(𝑥𝑖)]
2𝑛𝑢

𝑖=1                                                      (3.3) 

   

    Because the NLS is minimizing the difference between the empirical distribution 

function which starts from the value of the threshold and the theoretical distribution 

function which starts from u=0, hence the difference between them is not measured in 

consistent way and the NLS can only be applicable when u=0, (Park & Kim, 2016). 

 

 

3.2 POT nonlinear least squares method (POT-NLS) 

 

   This method is proposed by (Park & Kim, 2016) to improve the NLS method. The 

idea of this method is to minimize the squared distance between the empirical 

distribution function 𝐹𝑛(𝑥) and the cumulative distribution function 𝐹(𝑥), not the 

distance between 𝐹𝑛(𝑥) and theoretical distribution function 𝐹𝑘,𝛽. 

       𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = (1 − 𝐹(𝑢))𝐹𝑢(𝑥 − 𝑢) + 𝐹(𝑢) 

= (1 − 𝐹(𝑢))𝐹𝑘,𝛽(𝑥 − 𝑢) + 𝐹(𝑢) = (1 − 𝐹(𝑢))𝐹𝑘,𝑢,𝛽(𝑥) + 𝐹(𝑢) 

   So the revised first step in the NLS method becomes: 
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       (�̂�1, �̂�1) = 𝑎𝑟𝑔 min
(𝑘,𝛽)

∑[log(1 − 𝐹𝑛(𝑥𝑖)) − log (1 − 𝐹𝑘,𝛽(𝑥𝑖))]2

𝑛𝑢

𝑖=1

= 𝑎𝑟𝑔 min
(𝑘,𝛽)

∑[log(1 − 𝐹𝑛(𝑥𝑖))

𝑛𝑢

𝑖=1

− log(1 − (1 − 𝐹𝑛(𝑢)) 𝐹𝑘,𝑢,𝛽(𝑥𝑖) − 𝐹𝑛(𝑢))]
2

     

= 𝑎𝑟𝑔 min
(𝑘,𝛽)

∑ [𝑙𝑜𝑔
1 − 𝐹𝑛(𝑥𝑖)

1 − 𝐹𝑛(𝑢)
− log (1 − 𝐹𝑘,𝑢,𝛽(𝑥𝑖))]

2𝑛𝑢

𝑖=1

              (3.4) 

 

and the revised second step becomes: 

      (�̂�2, �̂�2)  = arg min
(𝑘,𝛽)

∑[𝐹𝑛(𝑥𝑖) − 𝐹(𝑥𝑖)]2

𝑛𝑢

𝑖=1

= arg min
(𝑘,𝛽)

∑[𝐹𝑛(𝑥𝑖) − (1 − 𝐹𝑛(𝑢))𝐹𝑘,𝑢,𝛽(𝑥𝑖) − 𝐹𝑛(𝑢)]
2

𝑛𝑢

𝑖=1

= arg min
(𝑘,𝛽)

∑(1 − 𝐹𝑛(𝑢))
2

𝑛𝑢

𝑖=1

[
𝐹𝑛(𝑥𝑖) − 𝐹𝑛(𝑢)

1 − 𝐹𝑛(𝑢)
− 𝐹𝑘,𝑢,𝛽(𝑥𝑖)]

2

= arg min
(𝑘,𝛽)

∑ [
𝐹𝑛(𝑥𝑖) − 𝐹𝑛(𝑢)

1 − 𝐹𝑛(𝑢)
− 𝐹𝑘,𝑢,𝛽(𝑥𝑖)]

2𝑛𝑢

𝑖=1

                             (3.5) 

 

   Park and Kim (2016) called this revised second step "POT-NLS" which they claim to 

fit the tail part in a more appropriate way than the NLS, by using the truncated 

distribution. As Park and Kim (2016) criticized the NLS estimators proposed by Song 

and Song (2012) because the NLS is minimizing the difference between the empirical 

distribution function which starts from the value of the threshold and the theoretical 

distribution function which starts from u=0, hence the difference between them is not 

measured in consistent way and the NLS can only be applicable when u=0. In other 

words, since 𝐹𝑘,𝑢,𝛽 is the conditional distribution of X|X > u whereas the EDF 𝐹𝑛(𝑥) is 

the distribution of the entire X. And the summation in the second step of NLS is carried 

out for only the observations exceeding the threshold, the EDF conditional on X > u 

cannot be created by just restricting the range of the observations but this should be 

done using truncation. 
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3.3 The weighted nonlinear least squares method (WNLS) 

  
   This method is proposed also by (Park & Kim, 2016) after proposing the POT-NLS 

to improve the NLS method. This method proposed adding suitably chosen weights for 

each squared deviance term. To determine the suitable weight for each squared error; 

the first line of the revised second step is equivalent to applying the least squares method 

to the following regression setup: 

 

            𝐹(𝑥𝑖) = 𝐹𝑛(𝑥𝑖) + 휀𝑖 ,      𝑖 = 1, … , 𝑛                                                                  (3.6)    

 

Where 휀𝑖 is the error term with E(휀𝑖)=0, that is from the fact that the EDF is an un biased 

estimate of 𝐹(𝑥) for all 𝑥. 

Noting that 𝐹(𝑥) is a uniform distributed random variable for any 𝑥, Park and Kim 

(2016) proposed the weight for each response variable 𝐹(𝑥𝑖) to be determined as the 

reciprocal of its variance. Assuming that X1>…>Xn, the distribution of 𝐹(𝑥𝑖) is that of 

𝑈𝑛−𝑖+1:𝑛, and where the (𝑛 − 𝑖 + 1)th order statistic of the uniform random variable has 

a Beta distribution with 𝐵(𝑛 − 𝑖 + 1, 𝑖) from the standard distribution theory, 

(Krishnamoorthy, 2006). Where the first two moments of 𝐵(𝑛 − 𝑖 + 1, 𝑖)  are:  

     𝐸(𝑈𝑛−𝑖+1:𝑛) =
𝑛−𝑖+1

𝑛+1
,                                                                                                (3.7) 

 𝑉𝑎𝑟(𝑈𝑛−𝑖+1:𝑛) =
𝑖(𝑛−𝑖+1)

(𝑛+1)2(𝑛+2)
                                                                                      (3.8) 

 

, hence the weight for 𝐹(𝑥𝑖) is (Var (𝑈𝑛−𝑖+1:𝑛))-1 

    

   Consequently the WNLS becomes: 

(�̂�3, �̂�3) = arg min
(𝑘,𝛽)

∑[𝑉𝑎𝑟(𝑈𝑛−𝑖+1:𝑛)]−1[𝐹𝑛(𝑥𝑖) − 𝐹(𝑥𝑖)]2

𝑛𝑢

𝑖=1

= arg min
(𝑘,𝛽)

∑ [
𝑖(𝑛 − 𝑖 + 1)

(𝑛 + 1)2(𝑛 + 2)
]

−1

[
𝐹𝑛(𝑥𝑖) − 𝐹𝑛(𝑢)

1 − 𝐹𝑛(𝑢)
− 𝐹𝑘,𝑢,𝛽(𝑥𝑖)]

2𝑛𝑢

𝑖=1

         (3.9) 

   

    One advantage of the WNLS over the NLS is that it estimates the extreme quantiles 

in a more stable manner as larger weights are given for 𝐹(𝑥𝑖) values as 𝑥𝑖  moves 

towards the tail side. 

 

   All these estimators were not investigated for asymptotic behavior by their authors. In 

this paper a simulation study was conducted for studying the asymptotic behavior of the 

three newest estimators and also permit the study of the behavior of those estimators for 

small sample sizes and for different distributions of the tail. 
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4. Simulation study 

 

   The performance of the three estimation methods of scale and shape parameters was 

compared using the Monte Carlo simulation. Simulation has been performed using 

statistical programming R. VaR as a Tail risk measure was estimated using the different 

estimators from different heavy-tailed distributions including (GPD, log-gamma, Pareto 

and Cauchy).  The GPD is fitted to the sample exceedances above a high threshold to 

estimate the VaR. Different VaR levels including VaR 95%, 99%, 99.9% and 99.99% 

were computed.  

   The simulated samples were generated from different heavy tailed distributions: GPD, 

Pareto, Cauchy and Log-gamma. It should be noted that if X is a random variable that 

has a Pareto distribution with a shape parameter α > 0 and a scale parameter θ > 0, then 

its cdf is given by: 

𝐹(𝑥) = 1 − ( 
𝑥

θ
 )

−α
              , 𝑥 ≥ 𝜃                                                                              (4.1) 

 

, if X is a Cauchy random variable with parameter (α, θ), then X has a cdf: 

𝐹(𝑥) =
1

𝜋
𝑎𝑟𝑡𝑐𝑎𝑛 (

𝑥 − 𝛼

𝜃
) +

1

2
                                , −∞ < 𝑥 < ∞                               (4.2) 

 

and if X is a gamma random variable with parameter (α, θ), then 𝑌 = exp (𝑥) is a log-

gamma with pdf:  

𝑓(𝑦) =
(log 𝑦)𝛼−1

𝑦𝜃𝛼𝛤(𝛼)
exp (−𝑙𝑜𝑔

𝑦

𝜃
)                   ,    𝑦 > 1, 𝜃 > 0, 𝛼 > 0                          (4.3) 

 

  

 A random sample of size 10000 is generated from the given distribution, then a 

threshold u (the 100pth sample quantile) is picked, then the GPD is fitted with the 

observations above u using different estimators to estimate k and 𝛽, and these estimates 

are substituted for in the formula of  VaR in (2.14) . To compare the estimating 

techniques the performances are evaluated by the absolute relative bias (ARB). In 

addition to the ARB, in the GPD model the root mean square error (RMSE) is also used 

as a method for comparing the estimating methods. The RMSE and ARB are defined as 

 

𝐴𝑅𝐵 =
|𝜃𝑒𝑠𝑡 − 𝜃𝑡𝑟𝑢𝑒|

𝜃𝑡𝑟𝑢𝑒
                                                                                                          (4.4) 

  

𝑅𝑀𝑆𝐸 = √(𝜃𝑒𝑠𝑡 − 𝜃𝑡𝑟𝑢𝑒)2                                                                                                 (4.5) 
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where 𝜃𝑒𝑠𝑡 , 𝜃𝑡𝑟𝑢𝑒 are the estimated and true values of the quantiles of the GPD, 

respectively. 
 

4.1 GPD (k, 𝛽) 
 

   Trials have been made with n =1000, k = -0.5, -0.4, …, 0,…, 0.4, 0.5, 𝛽 = 1, 10 and 

100 and VaR =0.95, 0.99, 0.999 and 0.9999. 

 

 

 

Table 1 

 

Estimating VaR 95, 99, 99.9 and 99.99% of the GPD for n = 1000 and β = 1: RMSE and ARB. 

shape -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

VaR 95% 

NLS 
RMSE 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.07 0.09 0.13 0.16 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

POT-
NLS 

RMSE 0.01 0.01 0.02 0.02 0.03 0.04 0.06 0.07 0.1 0.14 0.17 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

WNLS 
RMSE 0.01 0.01 0.02 0.02 0.03 0.04 0.06 0.07 0.1 0.14 0.17 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

VaR 99% 

NLS 
RMSE 0.01 0.02 0.2 0.04 0.07 0.1 0.16 0.25 0.38 0.62 0.94 

ARB 0 0.01 0.08 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 

POT-
NLS 

RMSE 0.01 0.01 0.02 0.04 0.06 0.1 0.16 0.26 0.4 0.66 1.04 

ARB 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.05 

WNLS 
RMSE 0.01 0.01 0.02 0.03 0.05 0.09 0.14 0.21 0.33 0.56 0.86 

ARB 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 

VaR 99.9% 

NLS 
RMSE 0.02 0.03 0.05 0.09 0.17 0.3 0.56 1.03 1.84 3.65 6.82 

ARB 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.06 0.06 0.08 0.09 

POT-
NLS 

RMSE 0.02 0.03 0.07 0.14 0.25 0.47 0.86 1.64 3.07 5.8 11.23 

ARB 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.1 0.12 0.14 

WNLS 
RMSE 0.01 0.02 0.04 0.08 0.15 0.31 0.56 1.14 2.15 4.19 7.98 

ARB 0 0.01 0.01 0.02 0.02 0.04 0.05 0.06 0.07 0.09 0.1 

VaR 99.99% 

NLS 
RMSE 0.02 0.03 0.07 0.14 0.29 0.6 1.32 2.96 6.37 15.48 35.43 

ARB 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.1 0.13 0.14 

POT-
NLS 

RMSE 0.03 0.06 0.12 0.27 0.56 1.19 2.59 5.81 13.38 30.41 71.95 

ARB 0.01 0.02 0.03 0.05 0.07 0.1 0.13 0.17 0.2 0.23 0.27 

WNLS 
RMSE 0.01 0.03 0.07 0.16 0.33 0.74 1.62 3.88 8.83 20.54 47.93 

ARB 0.01 0.01 0.02 0.03 0.04 0.06 0.09 0.12 0.14 0.16 0.19 
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Table 2 

 
Estimating VaR 95, 99, 99.9 and 99.99% of the GPD for n = 1000 and β = 10: RMSE and ARB. 

shape -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

VaR 95% 

NLS 
RMSE 0.08 0.12 0.15 0.2 0.29 0.37 0.53 0.69 0.95 1.27 1.73 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

POT-NLS 
RMSE 0.09 0.12 0.17 0.21 0.31 0.39 0.57 0.74 1.02 1.4 1.85 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

WNLS 
RMSE 0.09 0.12 0.16 0.21 0.31 0.39 0.56 0.74 1.01 1.38 1.84 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

VaR 99% 

NLS 
RMSE 0.09 0.16 0.26 0.41 0.66 0.99 1.62 2.45 3.84 6.15 9.21 

ARB 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 

POT-NLS 
RMSE 0.09 0.15 0.23 0.39 0.64 0.99 1.61 2.54 4.04 6.28 10.06 

ARB 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 

WNLS 
RMSE 0.08 0.13 0.2 0.32 0.53 0.81 1.32 2.07 3.36 5.29 8.41 

ARB 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 

VaR 99.9% 

NLS 
RMSE 0.15 0.29 0.51 0.92 1.65 2.91 5.51 9.9 18.61 36.78 64.21 

ARB 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.06 0.08 0.08 

POT-NLS 
RMSE 0.2 0.37 0.71 1.34 2.52 4.66 8.49 16.34 30.97 58.5 109.13 

ARB 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.1 0.12 0.14 

WNLS 
RMSE 0.1 0.19 0.39 0.79 1.51 2.94 5.51 11.09 21.33 39.92 77.82 

ARB 0 0.01 0.01 0.02 0.02 0.03 0.04 0.06 0.07 0.09 0.1 

VaR 99.99% 

NLS 
RMSE 0.18 0.37 0.72 1.43 2.9 5.94 13.11 28.08 64 158.97 333.42 

ARB 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.08 0.1 0.13 0.13 

POT-NLS 
RMSE 0.3 0.59 1.27 2.61 5.65 12.33 25.52 59.29 135.42 317.7 703.76 

ARB 0.01 0.02 0.03 0.05 0.07 0.1 0.13 0.17 0.2 0.24 0.27 

WNLS 
RMSE 0.13 0.3 0.67 1.48 3.21 7.29 15.84 38.25 88.21 200.08 468.18 

ARB 0.01 0.01 0.02 0.03 0.04 0.06 0.08 0.11 0.14 0.16 0.19 
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Table 3 

 
Estimating VaR 95, 99, 99.9 and 99.99% of the GPD for n = 1000 and β = 100: RMSE and ARB. 

shape -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

VaR 95% 

NLS 
RMSE 0.86 1.17 1.56 2.1 2.83 3.89 5.15 6.8 9.3 13.46 16.67 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

POT-NLS 
RMSE 0.91 1.2 1.66 2.31 2.92 4.15 5.74 7.88 9.9 13.9 17.75 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 

WNLS 
RMSE 0.89 1.16 1.63 2.29 2.87 4.09 5.68 7.82 9.83 13.71 17.66 

ARB 0 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 

VaR 99% 

NLS 
RMSE 0.97 1.66 2.63 5.33 6.62 10.44 16 25.38 38.67 59.48 93.62 

ARB 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 

POT-NLS 
RMSE 0.93 1.4 2.43 4.04 6.43 10.25 16.15 25.55 40.94 64.41 101.23 

ARB 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 

WNLS 
RMSE 0.81 1.23 2.05 3.38 5.26 8.51 13.49 21.12 33.77 55.24 84.25 

ARB 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 

VaR 99.9% 

NLS 
RMSE 1.51 2.89 5.19 14.28 16.58 30.68 55.16 101.27 188.41 355.99 6053.5 

ARB 0.01 0.01 0.01 0.02 0.03 0.04 0.04 0.05 0.06 0.08 1 

POT-NLS 
RMSE 1.95 3.5 6.94 13.22 25.8 46.64 84.64 160.38 305.76 558.09 1103.4 

ARB 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.08 0.1 0.12 0.14 

WNLS 
RMSE 0.93 1.99 3.91 8.07 15.53 29.27 56.36 106.91 208.12 408.55 786.05 

ARB 0 0.01 0.01 0.02 0.03 0.03 0.04 0.06 0.07 0.09 0.1 

VaR 99.99% 

NLS 
RMSE 1.83 3.73 7.3 26.9 28.97 62.24 131.6 286.29 657.05 1501 3533 

ARB 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.1 0.12 0.14 

POT-NLS 
RMSE 2.88 5.71 12.21 25.7 57.87 120.32 254.39 579.73 1323.9 2856.2 7227.3 

ARB 0.01 0.02 0.03 0.05 0.07 0.1 0.13 0.17 0.2 0.23 0.26 

WNLS 
RMSE 1.3 3.09 6.56 15.39 32.99 72.1 162.74 362.63 836.99 1983.53 4743.23 

ARB 0.01 0.01 0.02 0.03 0.04 0.06 0.08 0.11 0.14 0.16 0.19 

 

 

 

   From tables 1, 2 and 3 it is found that as the level of VaR increases, both the RMSE 

and ARB of the three estimators increase. Also as the value of the shape parameter (k) 

increases, both the RMSE and ARB of the three estimators increase. Whereas, when the 

value of the scale parameter (β) increases, only the RMSE of the three estimators 

increases while the ARB remains almost the same. In general, POT-NLS have generally 

the highest RMSE and ARB. While for u = 0.99, WNLS has the best performance. For 

u = 0.999, WNLS is better for -0.5 < k < 0 and NLS is better for 0 < k < 0.5. While for 

u = 0.9999, WNLS is better for -0.5 < k < -0.30 and NLS is better for -0.2 < k < -0.5. 
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4.2 Log-gamma (2, 3) 

 

   Trials have been made with n = 100, 200, shape = 2, scale = 3 and VaR = 0.99, 0.999 

and 0.9999. 

 

Table 4 

Estimating VaR 99, 99.9 and 99.99% of log-gamma (2, 3) for n = 100 and 200: ARB. 

n u 

VaR 99% VaR 99.9% VaR 99.99% 

NLS POT-NLS WNLS NLS POT-NLS WNLS NLS POT-NLS WNLS 

ARB ARB ARB ARB ARB ARB ARB ARB ARB 

100 0.99   1.58 1 1 6.62 1 1 

200 0.98 0.33 0.87 0.87 1.52 1.04 0.98 5.32 2.05 1.24 

 

 

   From table 4 it is clear that WNLS has the best performance in general. Also, POT 

has a good performance in the case of VaR99% and u = 0.98, VaR 99.9% and  u = 0.98, 

VaR99.9% and u = 0.99 and VaR99.99% and u = 0.99. While, NLS has the worst 

performance for u = 0.98 and u = 0.99. 

 

 

4.3 Pareto (2, 0.5) 

 

   Trials have been made with n = 100, 200, 300, shape = 2, scale = 0.5 and VaR = 0.99, 

0.999 and 0.9999. 

 

Table 5 

Estimating VaR 99, 99.9 and 99.99% of Pareto (2, 0.5) for n = 100, 200 and 300: ARB. 

n u 

VaR 99% VaR 99.9% VaR 99.99% 

NLS POT-NLS WNLS NLS POT-NLS WNLS NLS POT-NLS WNLS 

ARB ARB ARB ARB ARB ARB ARB ARB ARB 

100 0.99   0.28 0.52 0.42 0.43 2.08 1.11 

200 0.98 0.14 0.15 0.15 0.27 0.51 0.42 0.48 1.54 1.01 

300 0.97 0.15 0.14 0.14 0.29 0.49 0.4 0.47 1.07 0.78 

 

 

 From table 5, it is found that NLS has the best performance, while, POT has the worst 

performance. It is also noticed that for high levels of VaR (99.99%), as the sample size 

(n) increases, the ARB decreases except for the NLS estimator. 
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4.4 Cauchy (0, 1) 

 

   Trials have been made with n = 100, 200, 300, shape = 0, scale = 1 and VaR = 0.99, 

0.999 and 0.9999. 

 

 

 

Table 6 

Estimating VaR 99, 99.9 and 99.99% of Cauchy (0,1) for n = 100, 200, 300 and 1000: ARB. 

n u 

VaR 99% VaR 99.9% VaR 99.99% 

NLS POT-NLS WNLS NLS POT-NLS WNLS NLS POT-NLS WNLS 

ARB ARB ARB ARB ARB ARB ARB ARB ARB 

100 0.99   0.22 0.26 0.22 0.44 0.87 0.55 

200 0.98 0.07 0.08 0.08 0.2 0.26 0.21 0.35 0.35 0.45 

300 0.97 0.07 0.07 0.07 0.15 0.26 0.21 0.23 0.31 0.42 

 

 

   From table 6, it is concluded that NLS has the best performance except for VaR99% 

and u = 0.9 and for VaR99.9% and u = 0.99, where WNLS is the best. While POT-NLS 

has the worst performance except for VaR 99% and u = 0.9 and VaR 99% and u = 0.98. 

Also, for VaR99.9% and u = 0.99, WNLS has the worst performance. Asp, it is noticed 

that as the sample size (n) increases, the ARB decreases especially in the case of high 

VaR levels (VaR 99.99%). 

 

5. Application 

 

   Insurance is one of the fields where EVT is extensively used. Insurance companies 

can use the POT approach to determine the price of the insurance layer and also to 

determine the limits of each layer.  

  

5.1 Description of the dataset 

   The full Danish data comprise 2492 losses and can be considered as being essentially 

all Danish fire losses over one million Danish Krone (DKK) from 1980 to 1990 plus a 

number of smaller losses below one million DKK. The data represent historical data on 

insurance losses which exceed a certain amount known as a displacement, it is 

practically impossible to collect data on all losses and data on small losses are of less 

importance.
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   So, Insurance is generally provided against significant losses and insured parties deal 

with small losses themselves and may not report them. Thus, the data should be thought 

of as being realizations of random variables truncated at a displacement δ where δ is 

much less than r (δ << r). We restrict our attention to the 2156 losses exceeding one 

million so that the effective displacement δ is one. The loss figure is a total loss figure 

for the event concerned and includes damage to building, damage to furniture, and 

personal property as well as loss of profit. For details, one may look at (McNeil, 1997).  

    

   Suppose we are interested in a high excess loss layer with lower and upper attachment 

points r and R, respectively, where r is large and R > r. 

 

   This means the payout Yi on a loss Xi is given by: 

𝑌𝑖 = {

𝑜          𝑖𝑓 0 < 𝑋𝑖 < 𝑟
𝑋𝑖 − 𝑟    𝑖𝑓 𝑟 ≤ 𝑋𝑖 < 𝑅
𝑅 − 𝑟     𝑖𝑓 𝑅 ≤ 𝑋𝑖 < ∞

                                                                                (5.1) 

  

The following two questions need to be answered: 

 

1. The pricing problem given r and R. what should this insurance layer cost a 

customer?  

 

 For a general layer (r, R), price is given by 

       𝑝𝑟𝑖𝑐𝑒 = ∫ (𝑥 − 𝑟)𝑓𝑋𝛿(𝑥)𝑑𝑥
𝑅

𝑟
+ (𝑅 − 𝑟) (1 − 𝐹𝑋𝛿(𝑅))                                       (5.2) 

Where 𝑓𝑋𝛿 =
𝑑𝐹

𝑋𝛿(𝑥)

𝑑𝑥
   denotes the density function for the losses truncated at 𝛿. 

Picking a high threshold u (< r) and fitting a GPD model to the excesses, 𝐹𝑋𝛿(𝑥)  

for x > u can be estimated using the tail estimation procedure  

     �̂�𝑋𝛿(𝑥) = (1 − 𝐹𝑛(𝑢))𝐹�̂�,𝑢,�̂�(𝑥) + 𝐹𝑛(𝑢)                                                                   (5.3) 

where �̂� and �̂� are parameter estimates and 𝐹𝑛(𝑢) is an estimate of P{ X𝛿   ≤ u} 

based on the empirical distribution function of the data. 

 

2. The optimal attachment point (r) problem. If we want payouts greater than a 

specified amount to occur with at most a specified frequency. How low can 

we set r? 

 

   Fire Danish loss data is used to answer two questions; first: the price of high 

excess layer, second: how to determine high excess layer. It is clear that we are 

interested in extreme losses and specifically a certain high loss value (threshold) 
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that it is expected to exceed with certain low probability. The available data is on 

daily basis. Also, data are independent of time as there is no relation between the 

occurrence of a loss and the time of occurrence. All these reasons suggest the use 

of the POT approach as both time series and block maxima approaches will not 

answer the required questions. 

 

5.2 Statistical analysis 

 
Figure 5.1.1 The time series plot of fire loss data 

    

   It can be seen from figure 5.5.1 that there is no trend or cycles in the data. Also 

the data takes a random look which means that the data are independent from 

time.  

 

 
Figure 5.1.2 Q-Q plot of fire loss data. 
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   The QQ plot in figure 5.1.2 examines visually the hypothesis that the losses come 

from an exponential distribution with a medium sized tail. If the points lie approximately 

along a straight line, the data are an i.i.d sample from an exponential distribution. A 

concave departure from ideal shape, as in this example, indicates a heavier tail. A 

convexity indicates a shorter tailed distribution. 

 

 

   5.2.1 Threshold selection 

 

  To select an appropriate threshold, three tools were used including the sample mean 

excess plot, the parameter plot and the goodness of fit test. 

 

a) Sample mean excess function plot 

        

   Assuming that the data could be fitted by the GPD, then it is known that the theoretical 

mean excess function of the GPD which is known to be linear is given by: 

𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢) =
𝛽+𝑘𝑢

1−𝑘
,                   𝛽 + 𝑘𝑢 > 0                                             (5.4) 

 

 
Figure 5.1.3 mean excess plot of fire loss data. 

 

   The empirical plot seems to follow a reasonably straight line with positive gradient 

above a certain value u, then this is an indication that the data follow a GPD with 

positive shape parameter in the tail area above u. There is evidence of a straightening 

out of the plot above a threshold of 10 or perhaps again above a threshold of 20. 
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b) The parameter plot 

 

   Using the MLE to estimate the parameters of the GPD, it can be seen that there is 

stability in the estimates of the shape and scale parameters before u=4 and again before 

u=10, figure 5.1.4. 

 
Figure 5.1.4 the parameter plot of the loss data. 

 

c) Goodness of fit test 

 

   Also goodness of fit test can be used to select the appropriate threshold. The method 

of choosing the threshold by using as many exceedances as possible subject to passing 

a test for GPD can be investigated for power as follows: The data analyst wishes to fit 

a GPD to the exceedances far enough in the tail. Therefore start with as many as possible 

exceedances, say 100, and tests; if the test fails, omit the smallest values one by one and 

test again until the test yields acceptance for the GPD, See (Choulakian & Stephens, 

2001). Using the Anderson Darling test recommends the use of u=10 as seen in table 

5.1.1.  
Table 5.1.1 Anderson-Darling test for goodness of fit. 

Threshold p.value Est.shape Est.scale 

3 0.21 0.67 2.18  

4 0.04 0.72 2.62  

5 0.01 0.63 3.81  

10 0.51 0.5 6.95  

15 0.32 0.58 8.09  

20 0.26 0.69 9.5  



20 
 

   Thus the choice of threshold depend on the question we want to answer,  If we are 

trying to determine the optimal attachment point or to price a high layer, we may choose 

to fit the GPD model with the threshold of 4 rather than 10, because this will be more 

conservative leading to higher estimates of r and price. Although the GPD model may 

not fit the data quite well above this lower threshold as it does above the high threshold 

of 10 but it might be safer to use the low threshold to make calculations. On the other 

hand, there may be business reasons for trying to keep the attachment point or premium 

low, there may be a competition to sell high excess policies and this may mean that 

basing calculations only on the highest observed losses is favored since this will lead to 

more attractive products. 

 

5.2.2 Fitting the GPD to Danish loss data  

 

   After the graphical investigation of the data, it is clear that the data is coming from a 

heavy tailed distribution, and that the GPD could be appropriate for modelling the data. 

Then, the scale and shape parameters have been determined for the three estimation 

method; NLS, POT-NLS and WNLS. 

 The following table 5.1.2 includes the estimates of the scale and shape parameters of 

the GPD at a threshold =10 using different estimation methods. 

 
Table 5.1.2: Estimates of the scale and shape parameters of the GPD 

Estimation method Estimate of scale  Estimate of shape 

NLS 0.9919578 0.5105 

POT-NLS 7.9008673 0.2853565 

WNLS 7.7000671 0.3238651 

 

   Considering the values of the estimated shape and scale parameters in the Anderson 

Darling goodness of fit in table 5.1.1, and the results of the simulation studies, we could 

find that WNLS gives the more accurate estimates. 

   

5.3 VaR estimation 

 

   Table 5.1.3 shows the different levels of VaR estimates of the insurance dataset.   If 

we take VaR 99.9% for example, it means that there is a 0.001 probability that the losses 

exceed $70.68 million and if this happened the expected value of losses will be $111.19 

million. In other words if we set the lower attachment point r = 10, then there is a 

probability 0.001 that the loss exceeds $70.68 million.  
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Table 5.1.3: Estimates of VaR of the insurance dataset. 

Estimation 

method 

VaR 

0.95 

VaR 

0.99 

VaR 

0.999 

VaR 

0.9999 

Price 

WNLS 9.94 26.23 70.68 164.38 0.1490 

 

 

5.4 Model checking 

 

   Diagnostic plots in figure 5.1.5 show that that the GPD fit the Danish fire loss data in 

a reasonable way. As the probability and quantile plots are approximately linear and 

also the density plot shows how the pdf of the GPD fit the empirical data well. The 

return level plot is concave recommending a shape parameter k to be greater than 0 as  

estimates of extreme quantile 𝐹−1(𝑝) is known as the return level associated with the 

return period 1/p, defining 𝑥𝑝 = (1 − 𝑝), then 

𝐹𝑘,𝛽
−1(𝑝) = {

𝛽

𝑘
[𝑥𝑝

−𝑘 − 1],     𝑘 ≠ 0

𝛽[− ln(𝑥𝑝)],        𝑘 = 0
                                                                        (5.5) 

   So, if  𝐹𝑘,𝛽
−1(𝑝) is plotted against 𝑥𝑝on a logarithmic scale, the plot is linear if k = 

0, convex if k < 0 and concave with no finite bound if k > 0. This graph is a return 

level plot. 

 

 
 

Figure 5.1.5 Diagnostic plots of Danish fire loss data. 
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6. Summary and Concluding remarks 

 

   Throughout this paper, the POT approach was focused on. Three estimation methods 

for the parameters of the GPD and extreme quantiles were compared: NLS, POT-NLS 

and WNLS. Different levels of VaR as a tail risk measure were estimated. The aim of 

this paper is to find out which estimation method performs well on which condition 

through a simulation study. Then an application of heavy-tailed data was investigated 

using the POT approach.          

 The simulation results showed that for estimating the VaR, POT-NLS has almost a bad 

performance except for small samples generated from the Log-gamma distribution 

where NLS is the worst while, WNLS and NLS has a better performance in most of the 

cases. 
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