
Journal of Engineering Sciences, Assiut University, Vol. 37, No. 3, pp. 691-698 ,May 2009.

691

SCHEDULING REAL-TIME TASKS IN
 MULTIPROCESSOR SYSTEMS USING GENETIC

ALGORITHMS

E. M. Saad1, H. A. Keshk1, M. A. Saleh1, and A.A.Hamam2
1
 Faculty of Engineering Helwan University, Helwan, Egypt

2
 Thebes Academy, Giza, Egypt

(Received March 23, 2009 Accepted May12, 2009)

Multiprocessors have been employed as a powerful computing means for

executing real-time tasks, especially where a uniprocessor system would

not be sufficient to execute all the tasks. This paper investigates dynamic

scheduling algorithm for real-time tasks in a multiprocessor systems to

obtain a feasible solution using genetic algorithms combined with earliest

deadline first (EDF) and shortest computation time first (SCTF). A

comparative study of the results obtained from simulations shows that

genetic algorithm can be used to schedule tasks to meet their deadlines

time , in addition to obtain high processor utilization..

KEYWORDS – Task Graph, Optimization, Real-time system, genetic

algorithms, multiprocessor scheduling

1. INTRODUCTION

Real-time systems are systems in which the time at which the result is produced is as

important as the logical correctness of the result [1-3]. Real-time applications span a

large range of activities which include production automation, nuclear plant

supervision, command and control systems, and robotics and banking transactions [2].

Scheduling is an important aspect in real-time systems to ensure soft/hard

timing constraints. Scheduling tasks involves the allocating of resources to tasks, to

satisfy certain performance needs [1]. In real-time applications, real-time tasks are the

basic executable entities that are scheduled [2]. The tasks may be periodic or a periodic

and may have soft or hard real-time constraints. Scheduling task set consists of

planning the order of execution of task request so that the timing constraints are met.

Multiprocessors have emerged as a powerful computing means for running

real-time applications, especially where a uniprocessor system would not be sufficient

enough to execute all the tasks by their deadlines [4].

Real-time systems make use of scheduling algorithms to maximize the number

of real-time tasks that can be processed without violating timing constraints [5]. A

scheduling algorithm provides a schedule for a task set that assigns tasks to processors

and provides an ordered list of tasks. The schedule is said to be feasible if the timing

constraints of all the tasks are met [2].

In multiprocessor real-time systems static algorithms are used to schedule

periodic tasks whose characteristics are known priori. Scheduling of periodic tasks

whose characteristics are not known a priori requires dynamic scheduling algorithms

[5]. Dynamic scheduling can be either centralized or distributed. In a distributed

E. M. Saad, H. A. Keshk, M. A. Saleh, and A.A.Hamam 692

dynamic scheduling scheme, each processor has its own local scheduler that

determines whether it can satisfy the requirements of the incoming task. In a

centralized dynamic scheduling scheme, there is a central processor called the

scheduler which determines which processor the task should be allocated for execution

[5].

Various heuristics approaches have been widely used for scheduling. The use

of genetic algorithm (GA) for real-time task scheduling is to be studied extensively.

GAs may be seen attractive to real-time application designer as it relieves the designer

from knowing how to assess a given solution.

In this paper, we present a scheduling algorithm using genetic algorithms

combined with traditional scheduling heuristic to generate a feasible schedule based on

the work done by Saad et al., [6]. The paper aims in meeting deadlines and provides a

comparative study of merging heuristics methods such as Earliest Deadline First (EDF)

and Shortest Computation Time First (SCTF) separately with genetic algorithms.

The paper is organized as follows; section 2 reviews the related work in the

area of scheduling real-time tasks. Section 3 describes task and scheduler models.

Section 4 discussed proposes scheduling algorithm. In section 5, simulation results are

presented. Finally in section 6 conclusion and summary are presented.

2- RELATED WORK

The problem of scheduling real-time tasks on multiprocessor systems using genetic

algorithms has been studied extensively and a number of algorithms have been

proposed [7-11].

Wu et al., [7], developed a genetic algorithm (GA) approach for the problem of

task scheduling for multiprocessor systems. Key features of this approach include a

flexible, adaptive problem representation and an incremental fitness function. The

advantages of this algorithm are that it is simple to use, require minimal problem

specific information and is able to effectively adapt in dynamically changing

environment. The primary disadvantage of this algorithm is that it has a long execution

time.

Kamiura et al., [8], developed a parallel genetic algorithm for multi-objective

optimization problems (MOGADES) which can derive widespread Pareto optimal

solutions.

Page et al., [9], developed a scheduling algorithm to schedule heterogeneous

processors in a distributed computing system. This algorithm provides efficiently

schedules and adapts to varying resources availability. Also, it consistently uses

processors more efficiently than the current state-of-the-art GA algorithms for the same

problems. The most important drawback of this algorithm that is not tested under the

real-world condition and the efficiency of the algorithm for time critical applications

have not been studied.

Zomaya, et al., [10], presented a scheduling algorithm based on genetic

algorithms, to efficiently solve the scheduling problem without the need to apply any

restricted assumptions that are problem-specific such is the case when using heuristics.

Tripathi, et al., [11], developed a method based on genetic algorithms to

allocating multiple tasks on heterogeneous distributed computing system taking into

account the execution and communication costs.

SCHEDULING REAL-TIME TASKS IN MULTIPROCESSOR 693

Golub, et al., [12], developed an efficient genetic algorithm for scheduling

precedence constrained task graphs without taking into account the communication

cost. This algorithm based on the task priorities; it select the task with highest priority

first. If more than one task has the same priority the task is selected randomly.

3. TASK AND SCHEDULER MODELS

The real-time system is assumed to consist of m, identical processors for the execution

of time it scheduled tasks where m>1. They are assumed to be connected through a

fully connected network. The scheduler may assign a task to any one of the processors.

Each task Ti in the task set is considered to be aperiodic, independent and non-

preemptive. Each task is characterized by Ai: arrival time, Ci : computation time, Di :

deadline [6].

The scheduler determines the scheduled start time st(Ti) and the finish time

ft(Ti) of a task. The task Ti meets its deadline if Ai < st(Ti) < Di – Ci and Ai + Ci

ft(Ti) < Di . That is , the tasks are scheduled to start after they arrive and finish

execution before their deadlines [6].

We considered the incoming tasks are held in the task queue and passed on to

the scheduler for scheduling of tasks. The central scheduler allocates the incoming

tasks to the other processors in the system. The processor executes tasks in the order

they arrive in the dispatch queue. The scheduler works in parallel with the processors.

The scheduler deals with the newly arriving tasks and updates the queue while the

processors execute the tasks assigned to them. A feasible schedule is determined by the

scheduler based on the computation time of tasks satisfying their timing constraints.

The scheduler model showing the parallel execution of the scheduler and

processors is shown in the following figure.

Figure (1): The scheduler model

4. PROPOSED SCHEDULING ALGORITHM

Before presenting our scheduling algorithm, we discuss genetic operators and

chromosome syntax used for representation a task scheduling problem.

Scheduler

P1

P2

Task queue

Pn

▪

▪

E. M. Saad, H. A. Keshk, M. A. Saleh, and A.A.Hamam 694

4.1. Chromosome Syntax

We have three basic elements to choose among them for chromosome representation

for a task scheduling problem. The first is the list of tasks to be scheduled, the second

is the order in which these tasks should be executed on a given set of processors and

the third is the list of processors which tasks should be assigned to. So, the

chromosomes representation for a task scheduling problem is one in which gene is a

pair of decimal values (Ti, Pj) indicates that the task Ti is assigned to processor Pj . The

position of genes in a chromosome specifies the order in which tasks should be

executed.

ILL USTRATIVE EXAMPLE

The following chromosome syntax shows that the task 1 and task 3 should be executed

on processor 1 and task 2 on processor 3. It also indicates that task 3 should be

executed first, followed by task 2, and task one.

4.2. Genetic Operators

The crossover operator randomly selects two chromosomes from the population and

swaps second part of each gene after a randomly selected point. This is equivalent to

assigning a subset of tasks to different processors.

In mutation operator we use the operation called inversion in which we

randomly select two points in chromosome and reverse the order of the genes between

these two points. This operation is followed by another operation which randomly

selects a chromosome and changes a randomly selected gene (Ti, Pi) to (Ti, Pj) over all

processors. This makes use of the heuristic that a task should be assigned to a processor

where it has earliest start time.

4.3 Fitness Function

For task scheduling problem we used a simple evaluation function in which the fitness

value of a chromosome is determined by the number of tasks that meet their deadlines

in a chromosome.

4.4. Proposed GA Algorithm

Initially a task queue is generated with tasks having the flowing characteristics namely,

arrival time, computation time and deadline time. The tasks are ordered so that the task

with earliest deadline can be considered first for scheduling. The algorithm considers a

set of tasks from the sorted list to generate an initial population. Each chromosome in

the initial population is generated by assigning each task in the task set to a randomly

(3,1) (2,3) (1,1)

 1 2 3

SCHEDULING REAL-TIME TASKS IN MULTIPROCESSOR 695

selected processor and the pair (Task, processor) is inserted in a randomly selected

unoccupied locus of the chromosome. The size of chromosome depends on the number

of tasks selected from the sorted list. The tasks in each chromosome are then sorted

based on their deadline. This is done because the chromosome representation also

gives the order in which the tasks are executed. The fitness evaluation of the

chromosome in the population is then performed to determine the number of tasks in

each chromosome that meet their deadlines. The chromosomes are then sorted based

on the fitness value in a descending order.

GA operators are then applied to population of chromosome until reaching the

fitness value. In each iteration, the tasks in the chromosome are sorted based on their

deadline and the evaluation and sorting of chromosome based on fitness value is

performed. After satisfying the fitness value, the best schedule for the set of tasks is

obtained.

The steps of proposed algorithm are as follows:

1. generate a task queue

2. Sort the task in the increasing order of their deadlines.

3. Select a suitable number of tasks for a fixed chromosome size.

4. Generate chromosomes for the population.

5. Sort the genes in each chromosomes based on deadlines.

6. Determine the fitness value of each chromosome in the population.

7. Sort the chromosome with in the population depending on fitness value.

8. Apply GA operators for a number of iterations:

8.1 Sort the genes in each chromosome based on deadline.

8.2 Determine the fitness value of each chromosome in the population.

8.3 Sort the chromosome within the population depending on the fitness value.

9. Choose the best chromosome. The tasks that are found infeasible are removed

from the chromosome so that they are not reconsidered for scheduling.

5. SIMULATION RESULTS

To study the effectiveness of the proposed task scheduling algorithm, we conducted

extensive simulation studies. The performance of the algorithm is measured by the

number of executed tasks.

The simulation study considers the assigning of a set of tasks to a number of

processors. The tasks are generated and put in the task queues of different length

100,200, and 400 tasks. The computation time for each task has been chosen randomly

between 30 and 60 time units. The value of a deadline of a task is equal to Ai + Ci +

variable value between (60, 70) time units [6]. This ensures that the computation time

is always less than deadline. The arrival time of the tasks has exponential distribution

with arrival rate λ=0.5. The number of processors, m is taken from the optimal

situation reported in [6].

The value of the number of iteration has been assumed 20. The chromosome

size has been assumed equal to the number of tasks considered at a time for scheduling.

The value of chromosome size has been varied between 20 and 40. As mentioned

before the fitness value determines the number of tasks in the chromosome that can

meet their deadlines. Hence, here for chromosome size 20 the maximum fitness value

that can be obtained is 20.

E. M. Saad, H. A. Keshk, M. A. Saleh, and A.A.Hamam 696

The population size for the algorithm has been assumed to be 30. That is to say

those 30 chromosomes have been considered at a time for the application of GA

operators. For an initial evaluation, the fitness value was calculated by assigning tasks

based on EDF. For a task queue of 100 tasks, it divided into task sets of 20 each. The

processor was chosen between processor 1 and processor 10.

The fitness value obtained for each task set is shown in Figure (2). The graph

shows that the maximum number of tasks that met their deadline is 15 when

considering 20 tasks for scheduling. The majority of the task sets gave a fitness value

12 (that is, 12 tasks out of 20 met their deadline). Our proposed algorithm was used to

schedule the same task sets. The algorithm is combined with the heuristic EDF. The

graph showing the fitness value of tasks was obtained which has better performance.

Thus it could be seen that the percentage of tasks that are feasible is 95% and above

compared to 75 % for EDF only.

Fig. (2): Task feasibility for EDF and combined GA

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4 4.5 5

Task set

F
it

n
e
s
s
 v

a
lu

e

EDF

GA +

EDF

Also, the comparative study for the different task queues length 100, 200 and

400 for two different chromosome sizes 20 and 40 are examined. The results were

recorded for two cases that is, using proposed algorithm combined with two heuristics

SCTF and EDF. Figure (3) shows that for all the cases the number of tasks that were

feasible was 90% and above for both EDF and SCTF. Also, it could be seen that the

use of SCTF gave better fitness values compared to EDF. This shows that the heuristic

SCTF is a better option for combining with GA.

Fig. (3) Fitness values for chromosome sizes 20 and 40

0

5

10

15

20

25

30

Chromosome

size 20

Chromosome

size 40

Fitness value
No. of

Tasks
100

200

400

SCHEDULING REAL-TIME TASKS IN MULTIPROCESSOR 697

Table (1) shows the total time units taken to get the optimal solution by using

our proposed algorithm and the algorithm in [12] for the different task queues length

when chromosome size equal to 20. It is clear that the use of GA combining with

SCTF and EDF give better results than [12].

Table (1); Total time units to get optimal solution

Task queue GA + priorities GA + SCTF GA+ EDF

100 120 118 119

200 243 240 242

300 365 361 362

400 486 479 481

From the above results it could be said that traditional scheduling heuristics

methods could be combined with GA to scheduled real-time tasks if scheduling time

used by GA is reduced by some efficient methods.

6. CONCLUSION

Scheduling is an important topic that is applicable in a wide variety of domains.

Generally, scheduling problems are NP-hard and there are no general algorithms that

can guarantee an optimal solution. This is the same as in the case of scheduling real-

time tasks as well. This paper has discussed that GA combining with traditional

heuristics could be used to obtain feasible solutions. It is noted that GA combining

with SCTF gave better performance as compared to the EDF. Also, the algorithm is

successful in obtaining feasible solutions however; the implementation of the GA

algorithm is quite costly.

REFERENCES

[1] K. Ramamritham, and J.A. Stankovic, "Scheduling algorithms and operating

systems support for real-time systems", Proceedings of IEEE, Vol. 82, No. 1, PP.

55-67, 1994.

[2] A. Mohammadi and S.G. Akl, "Scheduling algorithms for real-time systems",

School of Computing, Queen's University, Kingston, Ontario Canada, july 15,

2005.

 [3] L. Sha, T. Abd El Zaher, A. Karl- Erik, A. Cervin, T. Baker, A. Burns, G.

Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, "Real-time scheduling

theory : A historical perspective", real-time systems, 28, 101-155, 2004.

 [4] K. Ramamritham, J. A. Stankovic and S, Perng-Pei, "Efficient scheduling

algorithms for real-time multiprocessor system", IEEE Transactions on Parallel

and distributed Systems, Vol. 1, No. 2, April 1990.

 [5] G. Manimaran, C. Sivaram Murthy, "An efficient dynamic scheduling algorithm

for multiprocessor real-time systems", IEEE Transactions on Parallel and

Distributed Systems, Vol. 9, No. 3, PP. 312-319, 1998.

E. M. Saad, H. A. Keshk, M. A. Saleh, and A.A.Hamam 698

 [6] E. M. Saad, H. A. Heshk, M. A. Saleh, and A. A. Hamam, "Scheduling hard

real-time tasks with precedence constraints on multiprocessor systems", JES,

Assiut University, Vol. 35, No. 6, PP. 1443-1453, November 2007.

[7] A. S. Wu, H. Yu, S. Jin, K. C. Lin, and G. Schiavene, "An incremental genetic

algorithm approach to multiprocessor scheduling", IEEE Transactions on Parallel

and Distributed Systems, Vol. 15, No. 9, Sept. 2004, PP. 824-834.

[8] J. Kamiura, T. Hiroyasu, M. Miki, and S. Watanabe, "MOGADES: Multi-

Objective genetic algorithm with distributed environment scheme",

Computational Intelligence and Applications, Proceedings of the 2
nd

International Workshop on Intelligent System Design and Applications: ISDA-

02, PP. 143 – 148, 2002.

[9] A. J. Page, and T. J. Naughton, "Dynamic task scheduling using genetic

algorithms for heterogeneous distributed computing", The proceedings of the

19
th
 International parallel & Distributed processing Symposium, Denver, USA,

IEEE Computer Society, 2005.

 [10] A.Y Zomaya, C. Waad, and B. Macey, "genetic scheduling for parallel

processing systems: Comperative studies and performance issues", IEEE

Transactions on Parallel and Distributed Systems, vol. 10, No.8, PP. 799 – 812,

Aug. 1999.

[11] A. K. Tripathi, B.k. Kumer and N. Kumar,"A GA based multiple task allocation

considering load", International Journal of High Speed Computing, Vol. 11, No.

4, PP. 209 – 214, 2000.

[12] M. Golub, and S. Kasapovic, "Scheduling multiprocessor tasks with genetic

algorithms", proceedings of the 23
rd

 International Conference ITI 2001, Puls,

2001.

 جدولة المهام للنظم متعددة المعالجات في الزمن الفعلي باستخدام الخوارزميات الجينية

جرر المعاتعرروويلة ررية ل ةيرر لةلنع عرر لعتم يررالمعا رر علنررالمعرر اللمع عةررال رر ل للمعررم علة يررويلتعتبررالمعاع ع
معجيمير لعجوةعر للمعاع عجلتكةللغيرالك نير لعت يرالكرملمعا ر عهلنرالبراملمعب رخلترعلم رت علترتير لمع ةما اير ا

معا علعةم علاتعوويلمعاع عج النالمع اللمع عةالاواج لاعلمعطاقلمعترةيوي لاثملمعة المعابكالمعرا لببرول
 لاملعةي لالل للتمت النيهلمعا ا ل ةبلةلم ملة التم يال ةبهلوام لمعار ام لعةمت ئجللمعتالتعلمع ةمل

معجيميرررر لعجوةعرررر لمعا رررر عللب بةرررر ن ليعررررالمعك رررر لمعع عيرررر لمعوام رررر لمعتجايبيرررر لتةةررررولن عةيرررر لمع ةما ايرررر ال
لعةاع عج اهل

	جدولة المهام للنظم متعددة المعالجات في الزمن الفعلي باستخدام الخوارزميات الجينية

