

EGYPTIAN ACADEMIC JOURNAL OF BIOLOGICAL SCIENCES PHYSIOLOGY & MOLECULARBIOLOGY

ISSN 2090-0767

WWW.EAJBS.EG.NET

Vol. 12 No. 2 (2020)

Citation: Egypt.Acad.J.Biolog.Sci. (C.Physiology and Molecular biology) Vol. 12(2) pp.111-124(2020)

Egypt. Acad. J. Biolog. Sci., 12(2):111-124(2020) Egyptian Academic Journal of Biological Sciences C. Physiology & Molecular Biology ISSN 2090-0767 <u>www.eajbsc.journals.ekb.eg</u>

Study for the DNA Profiling of Mixed Samples of Multiple Contributors and Suggested Procedures to Overcome Mixture Troubleshooting in Forensic Investigation

Sobhy El-Sayed Hassab El-Nabi¹, Eman H. S. Khater², Ahmed E. Abd El-Salam Ahmed³and Mohammed Hussein Awwad²

Faculty of Science, Menoufia University, Shebin El-Koum, Menoufia, P. O. Box 32511
 2- Faculty of Science, Benha University, Benha, Qalyubia, Egypt, P.O. Box. 13518
 3- General Authority of Forensic Evidence, Ministry of Interior, Cairo, P.O. Box. 11517
 E.Mail: ahmedebrahim.aeae@gmail.com

ARTICLE INFO Article History

Received:29/8/2020 Accepted:25/11/2020

Keywords: DNA mixture, STR interpretation, Y-STR, differential STR profiling

ABSTRACT

In modern forensic genetics, the analysis of DNA mixtures is a challenge because of the obstacles found in defining the number of contributors, especially when they exceed two. The goal of the present study was to find the most reliable method of detection for profiling the two-male and female-male mixtures obtained. Bloodstains, saliva, and body tissues from various crime scenes were obtained as samples. All samples for DNA profiling have been subjected to DNA extraction, amplification, separation, and detection. Results revealed that DNA profiling showed two-male and female-male mixtures. Results also showed the presence of a major and a minor male contributor in each genetic locus according to peak heights. Differential extraction provided a reliable method for separating female and male contributors from each other in the case of the female-male mixture. The profiling of the male donor in the female-male mixture was furtherly verified using the Y-STR profiling process. Eventually, we can infer that a good approach to identifying the two-male mixture is autosomal STR interpretation centered on major and minor differentiation. In addition, differential separation and Y-STR profiling proved to be the best processes for profiling mixed samples comprising female-male contributors as only the male profile was identified.

INTRODUCTION

Samples recovered for DNA analysis in a forensic crime scene often consist of mixtures of cells that may belong to the suspect, victim, and an infinite number of additional persons. In modern forensic genetics, the analysis of complex DNA mixtures, especially when the number of contributors exceeds two, poses a challenge. As a result, laboratory methods, mathematical models, and software have recently been developed to enhance these studies (Kumar *et al.*, 2013; Hu *et al.*, 2014; Bieber *et al.*, 2016 and Butler and Willis, 2020). Biological evidence that could be acquired from two or more granters is attributed to DNA mixtures and is established after a DNA profile is formed. Mixtures can be collected in a crime scene either from the evidence of sexual assault, fingernail cuttings taken by police or at autopsy, from conception items, and other related materials (Bieber *et al.*, 2016). Two contributors are typically included in the mixtures obtained; one of them is predominantly identified and the remaining part of the DNA mixture profile is intended to belong to a second person (i.e. a potential person of interest or a foreign contributor).

Citation: Egypt.Acad.J.Biolog.Sci. (C.Physiology and Molecular biology) Vol. 12(2) pp.111-124(2020)

Therefore, as the amount of DNA is abundant, the analysis of such evidence is relatively uncomplicated and as a result, the attribution of each individual in the collected sample can be easily determined and the allelic contributions to the DNA evidence of the known individual can be easily extracted from the profile of the DNA mixture (Bieber et al., 2016 and Semaan et al., 2020). In addition, the presence of three or more allelic peaks that are greater than a given heterozygote peak height ratio at two or more genetic loci or peak height differences indications that multiple donors are contributed to the particular DNA sample examined. A complex DNA mixture may contain more than two donors, a low amount of DNA template may have been contributed by one or more donors, or the sample may be somewhat degraded. During DNA amplification, low levels of input DNA can have stochastic effects on STR test results, which in turn can lead to failure to detect any or all of a true donor's alleles (i.e., drop-out of the allele) (Benschop et al., 2011; Bieber et al., 2016 and Semaan et al., 2020). Although the interpretation of a mixture prior to the statistical measurement involves the direct use of peak heights, such consideration is not needed for the assumed number of contributors, the genotype of identified contributors, or the genotype of persons of interest (Bieber et al., 2016). However, no unifying procedure for the application to test forensic DNA mixtures has been published so far, leading to ambiguity among forensic practitioners about the proper DNA mixture analysis methodology. In addition, samples are often enriched with imbalanced mixtures of epithelial cells and sperm in sexual assault cases, with an excess of the victim's content, resulting in an unfavorable male to female DNA ratio. According to several studies, it is not possible to detect the male autosomal DNA portion of the mixture beyond the 1:10 to 1:20 ratio of male: female DNA (Vuichard et al., 2011). This is basically due to rivalry during PCR amplification for the primers,

which contributes to the main component of the mixture being preferentially amplified. In such cases, the use of Y-chromosome genetic markers, such as short tandem repeats (STRs), may allow small amounts of male DNA to be amplified independently of the DNA background of the victim (Vuichard et al., 2011 and Roewer, 2019). A Y-STR profile, however, is not as insightful as an autosomal STR profile. For complex mixtures for which the contributor profiles could not be deconvoluted and for mixtures for which an anticipated male component was not detected by autosomal analysis, Y-STR analysis was particularly useful (Purps et al., 2015 and Ramos González et al., 2020). Differential DNA extraction, which relies on differential tolerance of spermatozoa and epithelial cells to chemicals, is a solution to this issue (Gill et al., 1985 and Yoshida et al., 1995). Differential DNA extraction, which does not require expensive equipment and is quickly achieved, is used by most forensic laboratories. In brief, this method involves a mild step of cell lysis that allows an epithelial cell fraction enriched with DNA from the epithelial cells and leukocytes of the female to be recovered. To break the spermatozoa membrane and recover their DNA in the sperm fraction, stronger cell lysis is then used (Gill et al., 1985).

The purpose of this study is therefore to distinguish between samples collected from crime scenes whether they contain a mixture of DNA profiles and to study the contents of this genetic mixture and how genetic information can be extracted from it by separating profiles.

MATERAILS AND METHODS Sample Collection:

From various crime scenes (sexual assault, murder, robbery), 44 saliva swabs, and 26 swabs of different body tissues were collected using a buccal swab (Silver Crest Mines Inc). Depending on color change, only samples collected from sexual assault crim scene were subjected to a presumptive and confirmatory semen test (Greenfield and

Sloan, 2002). In case of positive results, specimens underwent a differential extraction method according to McKiernan and Danielson, (2017) to separate the male sperm cells from the sample.

Sample Processing:

1-Differential Extraction of DNA:

Additional cell separation methods were used to differentiate sperm and female epithelial cells from each other in samples that showed positive semen tests (Yoshida et al., 1995 and Chen et al., 1998). 190 µl of Buffer G2 and 10 µl of Proteinase K were added to the samples. Samples were thoroughly vortexed for 10 s (MIX, FALC Instruments, Italy) and incubated with a thermomixer for 1-2 hours at 56 °C. The samples were centrifuged at 15,000 x g for 5 min after incubation (CF-10, DAIHAN Scientific Co., Ltd., Korea). The precipitated sperm cells were washed away in 500 µl Buffer G2 by resuspending the pellet. The tube was centrifuged for 5 min at 15,000 x g and the supernatant was discarded. This step has been repeated on two or three occasions. 160 µl of Buffer G2, 10 µl of Proteinase 11, then. K and 40 µl 1 M DTT were added to the pellet, vortexed for 10 s, and the pellet was resuspended. The samples were recently incubated in a thermomixer at 70 °C for 10 min at 850 rpm. Samples were vigorously vortexed for 10s following incubation. The specimens were finally centrifuged, and they were ready for further analysis.

2-DNA Extraction:

According to Montpetit *et al.* (2005), genomic DNA was obtained using the Biorobot EZ1 and Qiagen Kits EZ1 DNA Investigator Kit (cat. no. 952034). The extraction step was carried out using the Biorobot EZ1 equipment and the Qiagen EZ1 DNA Investigator Kit (cat. no. 952034) to obtain highly purified genomic DNA in accordance with the Biorobot EZ1 technical manual.

3-Amplification via PCR:

GlobalFilerTM and YfilerTM Plus kits (Thermo Fisher Scientific) were used for autosomal STR and Y-STR amplification using the Gene Amp PCR System 9700 thermal cycler (AB/LT/Thermo) as per the GlobalFilerTM and YfilerTM Plus user guide Standard condition amplification kits. reactions were 25 µl in total volume, consisting of 7.5 µl of Master Mix, 2.5 µl of Primer Set, and 15 µl of sample input. Using the Applied Biosystems GeneAmpTM PCR system 9700 (Thermo Fisher Scientific), samples were amplified. The standard parameters for thermal cycling were as follows: enzyme activation at 95 °C for 1 min; 29 denaturation cycles at 94 °C for 10 s and annealing/extension cycles at 59 °C for 90 s; followed by the final extension stage for 10 min at 60 C.

4-Sample Electrophoresis and Data Analysis:

Applied Biosystems ABI 3500 (Applied Biosystems, USA) and the appropriate software (GeneMapperTMID-X, version 1.4; Thermo Fisher Scientific, USA) were analyzed with capillary electrophoresis (CE) of amplification products using standard procedures. All peaks with a height exceeding 50 relative fluorescence units (RFU) on the electropherogram have been considered for interpretation.

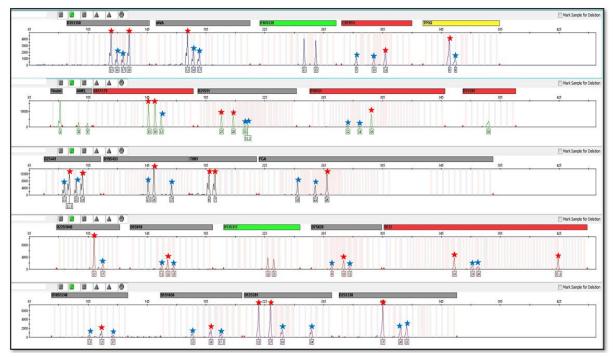
Ethical Approval and Consent to Participate:

All sampling procedures were in compliance with the Ethics Regulations provided by Resolution No 238/2003 of the Egyptian Minister of Health, Articles 52-61 and Recommendations of the 4th session of the EC International Bioethics Dialogue (European Ethics Committee on Science and Emerging Technologies to the European Commission, Copenhagen, Denmark, 19 June 2012).

RESULTS AND DISCUSSION Interpretation of Two-Males Mixture:

In most of the genetic loci, the DNA profiling of certain samples obtained expressed more than two peaks, confirming the existence in each sample of two contributors. Some collected samples of autosomal STR analysis revealed that the contributors were two males. DNA profiling of the case studied as autosomal STR profiling and peak heights were identified as

1st male, mixture, and 2nd male in Table (1). As a matter of fact, in DNA profiling of one contributor, autosomal STR genetic loci often showed two alleles in any genetic loci. A sign of blending is the identification of more than two alleles. Consequently, as the amount of DNA is abundant, the analysis of such evidence is relatively uncomplicated and as a result, the attribution of each individual in the collected sample can be easily determined and the allelic contributions to the DNA evidence of the known individual can be easily extracted from the profile of the DNA mixture (Bieber et al., 2016; Bille et al., 2019; and Semaan


et al., 2020).

Excluding the following genetic loci; Yindel., Amel., and DYS391, results revealed that the 1st male was the major contributor, according to the major and minor method for interpretation, as 16 genetic loci displayed the highest peak heights. However, the 2nd male showed minor peak heights at the same genetic loci (Fig. 1). Owing to the unequal quantity of samples belonging to both authors, the occurrence of major and minor peaks may be due (Ballantyne *et al.*, 2014; Lynch and Cotton, 2018; Tan *et al.*, 2018).

Table 1: DNA profiling of two-males mixtures obtained from collected samples in accordance with major loci (red color) and minor loci (blue color) contributors.

Constia	Genetic Studied cases														
			Aut	tosomal	ISTR			Peak height							
Loci	1 st I	nale	Mixture		re	2 nd male		1 st male		Mixture			2 nd male		
D3S1358	15	18	15	16	17 18	16	17	4000	3500	6000	2500	2500	6000	6000	5000
vWA	15	15	15	16	17	16	17	6000	5500	6000	25	00	2500	8000	7000
D16S539	11	13	11		13	11	13	6000	5750	500	0	5	000	7000	6000
CSF1PO	12	12	7	10	12	7	10	5000	5000	1500	15	00	4000	5000	4000
TPOX	8	8	8		9	9	9	6000	6000	400	0	1	500	5000	5000
Yindel		2 2			2		150	15000 21		210	000		25000		
Amel.	Х	Y	Х		Y	Х	Y	5000	5000	500	0	5	000	5000	5000
D8S1179	15	15	13	14	15	13	14	20000	19000	15000	150	000	7000	27000	25000
D21S11	27	29	27	29	31 31.2	31	31.2	10000	10000	9000	9000	2500	2500	10000	10000
D18S51	16	16	12	14	16	12	14	5000	5000	1500	15	00	6000	5000	5000
DYS391	1	.0	10			10		50	5000 50		50	000		10000	
D2S441	11.3	14	11	11.3	13 14	11	13	15000	14000	8000	12000	8000	12000	15000	15000
D19S433	13	14	13	14	17	14	17	18000	17000	8000	140	000	6000	20000	16000
TH01	6	7	6		7	6	7	15000	15000	120	00	12	2000	20000	20000
FGA	19	22	19	22	24	24	24	20000	18000	9000	90	00	12000	30000	30000
D22S1045	15	15	15		17	17	17	6000	5500	110	00	4	000	16000	16000
D5S818	12	12	11	12	13	11	13	3000	3000	1500	30	00	1500	8000	8000
D13S317	12	13	12		13	12	13	5000	5000	400	0	4	000	6000	5500
D7S820	10	10	8	10	11	8	11	10000	10000	2000	40	00	2000	5500	5500
SE33	16	33.2	16	19	20 33.2	19	20	5000	4000	3000	1000	1000	3000	4000	4000
D10S1248	15	15	13	15	17	13	17	1000	1000	500	10	00	500	2000	2000
D1S1656	16	16	13	16	17.3	13	17.3	4000	4000	1000	20	00	1000	3000	2500
D12S391	15	17	15	17	19 24	19	24	2000	2000	9000	9000	3000	3000	3000	2500
D2S1338	17	17	17	20	21	20	21	6000	6000	9000	40	00	4000	9000	8000

Major loci (red). Minor loci (blue)

Fig. 1: Electropherogram showing the DNA profiling of all genetic loci from two-males mixture samples showing the major loci (red stars) and minor loci (blue stars).

Interpretation of Female-Male Mixture: 1-Interpretation According To Major And Minor Contributors:

Autosomal STR analysis of collected samples revealed that when more than two alleles were illustrated, there were two contributors. DNA profiling of the examined samples showed that as detected from Amel., Yindel., and DYS391 genetic loci, the mixtures belonged to female and male contributors. DNA profiling of the studied case as autosomal STR profiling and peak heights were mentioned in Table (2) as female, mixture, and male. By excluding Yindel, Amel., and DYS391 genetic loci, obtained results revealed that the female was the main contributor as 16 genetic loci displayed high peak heights, while the male contributor was the minor contributor at the

same genetic loci. In addition, results revealed that both female and male contributors have three genetic loci in common; they were D19S433, D7S820, and D12S391). Moreover, the male contributor show majority in two genetic loci; CSFIPO and D10S1248, but the female was minor at the same genetic loci (Fig. 2). Using this method, the complete male profiling of the mixture proves its suitability for the identification of male donors apart from female contributors. As the collected samples contain only epithelial cells. autosomal STR is a potential procedure for male detection. However, if the detected common genetic loci are the majority of male and female contributors, other procedures such as Y-STR profiling should be considered (Berger et al., 2003 and Penn, 2019).

Gundin	Studied cases															
Genetic	Autosomal STR								Peak height							
Loci	T Female		Mixture			M	Male Female		Mixture				Male			
D3S1358	15	15	15	17	18	17	18	9800	6200	16000	40	4000 4000		15000	15000	
vWA	16	17	16	17	19	19	19	13000	10500	12000	120	000	4000	14000	12000	
D16S539	12	12	10	12	13	10	13	13500	10000	4000	80	00	4000	10000	9500	
CSF1PO	10	12	10	11	12	11	11	4000	3800	3000	60	00	3000	9000	9000	
TPOX	8	8	8	9	11	9	11	6200	6000	6000	45	00	4500	15000	15000	
Yindel		2				2			25000				25000			
Amel.	Х	Х	Х		Y	Х	Y	30000	30000	23000 10000		15000	13000			
D8S1179	12	13	10	12 1	3 14	10	14	23000	25000	8000 1	2000	12000	8000	27000	25000	
D21S11	29	29	29	30	31.2	30	31.2	20000	17000	11000	60	00	6000	16000	15000	
D18S51	15	15	15		17	17	17	4200	4000	9000 2000		7000	7000			
DYS391			10		1	10			4000			4000	4000			
D2S441	12	14	11	12 1	4 16	11	16	20000	12000	6000	8000	8000	6000	12000	12000	
D19S433	13	14	13		14	13	14	15000	15200	1200	00	12	2000	20000	17000	
TH01	7	10	7	9	10	9	9	17000	18000	13000	50	00	13000	14000	12000	
FGA	21	23	20	21 2	2 23	20	22	12000	10000	6000 1	2000	6000	12000	11000	10000	
D22S1045	14	14	11	14	16	11	16	25000	19000	8000	120	000	8000	16000	14000	
D5S818	9	11	9	11 1	2 13	12	13	12000	13000	6000	6000	2500	2500	12000	11000	
D13S317	9	9	9	12	13	12	13	8000	7000	10000	35	00	3500	18000	18000	
D7S820	10	11	10		11	10	11	6500	6000	8000	0	8	000	12000	12000	
SE33	17	17	14	17	18	14	18	8000	8000	4000	60	00	4000	4000	3700	
D10S1248	13	14	13	14	15	15	15	6200	6000	4000	40	00	12000	12000	12000	
D1S1656	11	11	11	16	17.3	16	17.3	8000	8300	14000	40	00	4000	18000	18000	
D12S391	15	18	15	18 2	0 22	20	22	5000	4000	2000 2	2000	2000	2000	3000	3000	
D2S1338	18	18	18	19	23	19	23	8000	9000	10000	50	00	5000	8000	7500	

Table 2: DNA profiling of female-male mixtures obtained from collected samples in accordance with major loci (red color) and minor loci (blue color) contributors.

Major (red). Minor (blue)

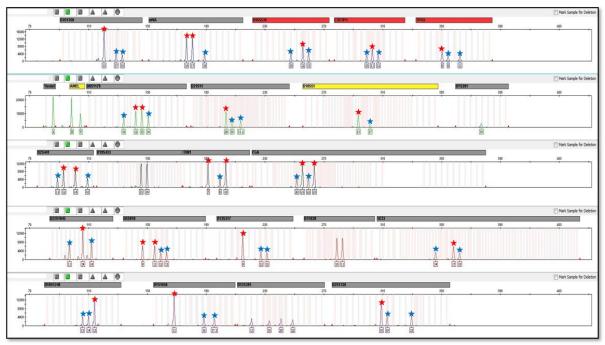
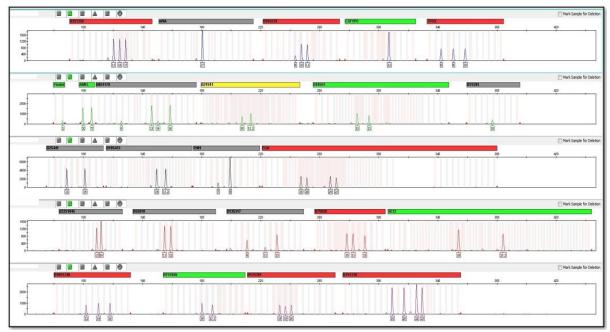


Fig. 2: Electropherogram showing the DNA profiling of all genetic loci from female-male mixture sample showing the major loci (red stars) and minor loci (blue stars).

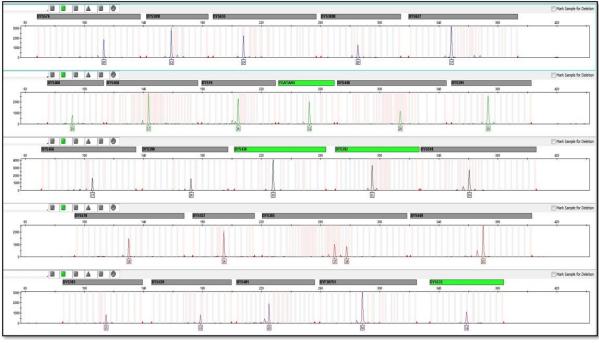
2-Interpretation according to Y-STR:

Female-male mixture autosomal STR profiling obtained from collected samples shows high peak heights were displayed by both female and male contributors as shown in table (3) and figure (3). As a result, the individualization of the male profile was


employed by Y-STR DNA profiling as shown in table (4) and figure (4).

The autosomal STR profiling of the female-male mixture showed that both contributors have the same high peak heights at about (17) genetic loci (Fig. 3). Therefore, using the Y-STR process can solve this

problem. When detecting small quantities of male DNA in a female/male mixture, Y-STRs are useful because Y-STRs are only present on the Y chromosome, so it does not matter how much female DNA is present in the sample. (Malsom *et al.*, 2009; Kamodyová *et al.*, 2013; Isir *et al.*, 2015; and Penn, 2019). If the males are not from the same lineage, they can also distinguish between multiple male donors. The Y-chromosome is passed down from generation to generation, so all males in that lineage will have the same Y-STR profiles, with the possible exception of rapidly mutating Y-STRs that have been recently reported. (Prinz *et al.*, 2001; and Purps *et al.*, 2015). While Y-STRs cannot provide the same level of discrimination as autosomal STRs, Y-STRs should be used in those instances where it is not possible to recover an autosomal STR profile, as they can still identify the male contributor (Prinz *et al.*, 2001; Cerri *et al.*, 2003; and Penn, 2019).


Table 3: Autosomal STR profiling of female-male mixtures obtained from collected samples showing no distinguished major and minor peak heights at most genetic loci.

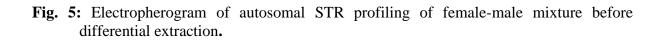
Genetic loci	Peak heights										
Genetic loci	Pe	ak height	s Of Mi	xture	Auto	Autosomal STR Of Mixture					
D3S1358	1900	19	000	1800	15		16	17			
vWA		24	400			17					
D16S539	500		100	1200	9		10	11			
CSF1PO		37	700			12					
TPOX	700	8	00	800	6		8	10			
Yindel		2	00				2				
Amel.	36	500		3600	2	X		Y			
D8S1179	200	2300	200	2200	9	13	14	16			
D21S11	15	00		1700	3	0	31.2				
D18S51	1600		1500		13			15			
DYS391		6	00			10					
D2S441	35	00		3500	1	1		14			
D19S433	46	500	4500		1	14		15.2			
TH01	14	00		7900		7		9			
FGA	3800	3600	3700	3600	19 20		24	24 25			
D22S1045	18	00	2100		1	15		16			
D5S818	2200		2100		1	1	12				
D13S317	800		00	1400	8		11	13			
D7S820	1800	18	300	1700	10		11	13			
SE33	2400		2100		16		23.2				
D10S1248	1600		700	1700	12		14	16			
D1S1656	1900		1600		1	4	15.3				
D12S391	1100	10	000	1100	18	18		20			
D2S1338	3600	3600	3700	3600	18	20	22	23			

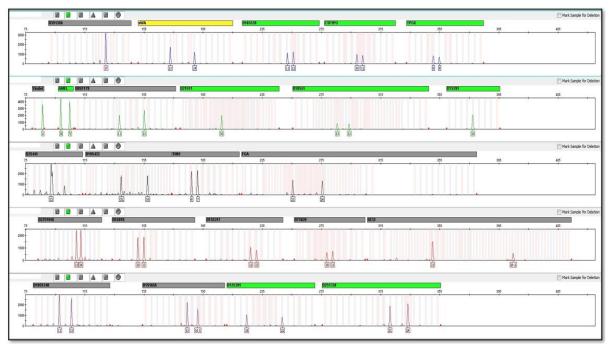
- **Fig. 3:** Electropherogram of autosomal STR profiling of female-male mixture obtained from collected samples showing no distinguished major and minor peak heights at most genetic loci.
- **Table 4:** Y-STR profiling of female-male mixtures obtained from collected samples in accordance with obtained alleles.

Y-STR loci	Alleles
DYS576	20
DYS3891	12
DYS635	19
DYS38911	29
DYS627	17
DYS460	10
DYS458	17
DYS19	14
YGATA H4	12
DYS448	20
DYS391	10
DYS456	17
DYS390	24
DYS438	10
DYS392	11
DYS518	39
DYS570	18
DYS437	14
DYS385a	17
DYS385b	19
DYS449	33
DYS393	13
DYS439	13
DYS481	23
DYS387S1a	36
DYS387S1b	36
DYS533	12

Fig. 4: Electropherogram of Y-STR profiling of female-male mixture obtained from collected samples showing that only the male Y-STR profile can be detected

3-Interpretation According To Differential Extraction:


The autosomal STR profiling of the female-male mixture before and after differential extraction was performed on the collected samples was shown bv electropherograms in figures (5 and 6) and table (5). The results revealed that only the male profile was observed by applying differential extraction to mixed samples. The sperm and epithelial cell DNA are selectively lysed and isolated from a female-male mixture the differential during extraction. By increasing the probability of obtaining a clear male DNA profile from the sperm fraction, this extraction method can simplify the interpretation of DNA profiling results (Hudlow and Buoncristiani, 2012; McKiernan and Danielson, 2017; Schwerdtner et al., 2017 and Goldstein et al., 2020).


For male detection, autosomal STR is a potential technique as the amount of sperm is higher than the female epithelial cells (Berger *et al.*, 2003; and Penn, 2019). However, in some cases, the quantity of the female's cells is larger than the male's cells. This represents an obstacle to the detection and isolation of male's cells especially when both cells are mixed together (Penn, 2019).

Eventually, we can conclude that autosomal STR interpretation for mixed samples depending on major and minor differentiation represents a good approach to define the two-males mixture. Furthermore, differential separation and Y-STR profiling proved to be the best procedures for profiling mixed samples contain female-male contributors as only the male profile was detected.

	Mix	ture befo	re diffe	rential	Mixture after differential					
Genetic loci			action			ction				
D3S1358	16	1	7 18		17	17				
vWA	15 17		18 19		15	19				
D16S539	11	1		12	11	12				
CSF1PO	10			11	10	11				
TPOX	8		9 11		8	9				
Yindel			2		2	2				
Amel.	X	ζ		Y	Х	Y				
D8S1179	11	1	3	15	11	15				
D21S11	29	9		30	30	30				
D18S51	13	3		18	13	15				
DYS391		1	0		1	0				
D2S441	11	1		12	12	12				
D19S433	11	13	15	16	11	16				
TH01	6	7	8	9	6	7				
FGA	21	2	23	26	21	26				
D22S1045	15	5	16		15	16				
D5S818	11	1	2 13		10	11				
D13S317	10	0	12		12	13				
D7S820	10	1	1 12		10	11				
SE33	14	4		24.2	15	28.2				
D10S1248	14	4		16	11	13				
D1S1656	14	15	16.3	17.3	15	16.3				
D12S391	18	2	22	23	16	22				
D2S1338	17	21	24	25	21	24				
20 110 110	B (0) (WVA	190	0165539 230	270	310 250	Mark Sample for Delets				
Yindel AMEL DES1175	0	021511	_	018551	095391	Mark Sample for Delet				
		150	220	270						
	150 State	110	FGA 220	270	. 310 . 550	Mark Sample for Dele				

Table 5: Autosomal STR profiling of female-male mixture obtained from collected samples before and after differential extraction

Fig. 6: Electropherogram of autosomal STR profiling of female-male mixture showing the male profiling involved in the mixture after separation by differential extraction

REFERENCES

- Ballantyne, K. N., Ralf, A., Aboukhalid, R., Achakzai, N. M., Anjos, M. J., Ayub, Q., Balažic, J., Ballantyne, J., Ballard, D. J., Berger, B., Bobillo, C., Bouabdellah, M., Burri, H., Capal, T., Caratti, S., Cárdenas, J., Cartault, F., Carvalho, E. F., Carvalho, M., ... Kayser, M. (2014). Toward Male Individualization with Rapidly Y-Chromosomal Mutating Short Tandem Repeats. Human Mutation, 1021-1032. https://doi.org/ 35(8). 10.1002/humu.22599
- Benschop, C. C. G., & Sijen, T. (2014). LoCIM-tool: An expert's assistant for inferring the major contributor's alleles in mixed consensus DNA profiles. *Forensic Science International: Genetics*, 11(1), 154– 165. https://doi.org/10.1016/j.fsigen. 2014.03.012
- Benschop, C. C. G., Van Der Beek, C. P., Meiland, H. C., Van Gorp, A. G. M., Westen, A. A., & Sijen, T. (2011).
 Low template STR typing: Effect of replicate number and consensus method on genotyping reliability and DNA database search results. *Forensic*

Science International: Genetics, 5(4), 316–328. https://doi.org/10.1016 /j.fsigen.2010.06.006

- Berger, B., Niederstätter, H., Köchl, S., Steinlechner, M., & Parson, W. (2003). Male/female DNA mixtures: A challenge for Y-STR analysis. *International Congress Series*, 1239(C), 295–299. https://doi.org/ 10.1016/S0531-5131(02)00593-9
- Bieber, F. R., Buckleton, J. S., Budowle, B., Butler, J. M., & Coble, M. D. (2016). Evaluation of forensic DNA mixture evidence: Protocol for evaluation, interpretation. and statistical calculations using combined the inclusion. probability of BMC Genetics, 17(1), 1-15. https://doi.org/ 10.1186/s12863-016-0429-7
- Bille, T., Weitz, S., Buckleton, J. S., & Bright, J. A. (2019). Interpreting a major component from a mixed DNA profile with an unknown number of minor contributors. *Forensic Science International: Genetics*, 40(December 2018), 150–159. https://doi.org/ 10.1016/j.fsigen.2019.02.017
- Butler, J. M., & Willis, S. (2020). Interpol review of forensic biology and

forensic DNA typing 2016-2019. Forensic Science International: Synergy, xxxx. https://doi.org/10.1016 /j.fsisyn.2019.12.002

- Cerri, N., Ricci, U., Sani, I., Verzeletti, A., & De Ferrari, F. (2003). Mixed stains from sexual assault cases: autosomal or Y-chromosome short tandem repeats? *Croatian Medical Journal*, 44(3), 289–292.
- Chen, J., Kobilinsky, L., Wolosin, D., Shaler, R., & Baum, H. (1998). A Physical Method for Separating Spermatozoa from Epithelial Cells in Sexual Assault Evidence. *Journal of Forensic Sciences*, 43(1), 16097J. https:// doi.org/10.1520/jfs16097j
- Gill, P., Jeffreys, A. J., & Werrett, D. J. (1985). Forensic application of DNA "fingerprints." *Nature*, 318(6046), 577–579. https://doi.org/10.1038/ 318577a0
- Goldstein, M. C., Cox, J. O., Seman, L. B., & Cruz, T. D. (2020). Improved resolution of mixed STR profiles using a fully automated differential cell lysis/DNA extraction method. *Forensic Sciences Research*, 5(2), 106–112. https://doi.org/10.1080/ 20961790.2019.1646479
- Greenfield, A. and Sloan, M. A. (2002). Identification of biological fluids and stains. In S. H. and N. J. J. James (Ed.), *Forensic Science: an Introduction to Scientific and Investigative Techniques* (pp. 203–220). CRC press. https://doi.org/https://doi.org/10.4324 /9781482274103
- Hu, N. A., Cong, B., Gao, T., Hu, R., Chen, Y. I., Tang, H., Xue, L., Li, S., & Ma, C. (2014). Evaluation of parameters in mixed male DNA profiles for the Identifiler® multiplex system. *International Journal of Molecular Medicine*, 34(1), 43–52. https:// doi.org/10.3892/ijmm.2014.1779
- Hudlow, W. R., & Buoncristiani, M. R. (2012). Development of a rapid, 96well alkaline based differential DNA extraction method for sexual assault

evidence. Forensic Science International: Genetics, 6(1), 1–16. https://doi.org/10.1016/j.fsigen.2010. 12.015

- Isir, A. B., Ozkorkmaz, A., Baransel, C., Ozkorkmaz, E. G., & Pehlivan, S. (2015). Male individualization based on Y-chromosomal short tandem repeats: A comparative information theoretical analysis of 16 Y-STR loci in central anatolia and Iraqi populations. *International Journal of Human Genetics*, 15(4), 157–171. https://doi.org/10.1080/09723757.201 5.11886264
- Kamodyová, N., Durdiaková, J., Celec, P., Sedláčková, T., Repiská, G., Sviežená, B., & Minárik, G. (2013). Prevalence and persistence of male DNA identified in mixed saliva samples after intense kissing. *Forensic Science International: Genetics*, 7(1), 124– 128. https://doi.org/10.1016/j.fsigen. 2012.07.007
- Kumar, A., Awadhanam, S., & Kashyap, A. (2013). Investigating contributors of the mixed DNA samples by forensic bioinformatics; Uncertainty to certainty for crime laboratories. 2013 15th International Conference on Advanced Computing Technologies, ICACT 2013. https://doi.org/10.1109/ ICACT.2013.6710508
- Lynch, P. C., & Cotton, R. W. (2018). Determination of the possible number of genotypes which can contribute to DNA mixtures: Non-computer assisted deconvolution should not be attempted for greater than two person mixtures. *Forensic Science International: Genetics*, 37, 235–240. https://doi.org/10.1016/j.fsigen.2018. 09.002
- Malsom, S., Flanagan, N., McAlister, C., & Dixon, L. (2009). The prevalence of mixed DNA profiles in fingernail samples taken from couples who cohabit using autosomal and Y-STRs. *Forensic Science International: Genetics*, 3(2), 57–62. https://doi.org/

10.1016/j.fsigen.2008.09.007

- McKiernan, H. E., & Danielson, P. B. (2017b). Molecular Diagnostic Applications in Forensic Science. In *Molecular Diagnostics: Third Edition* (pp. 371–394). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802971-8.00021-3
- Penn, A. (2019). Micromanipulation and Genetic Analysis of Individual Sperm Cells for Sexual Assault Investigations. University of Central Florida.
- Prinz, M., Ishii, A., Coleman, A., Baum, H. J., & Shaler, R. C. (2001). Validation and casework application of a Y chromosome speci®c STR multiplex. *Forensic Science International*, 120, 177–188. https://doi.org/https:// doi. org/10.1016/S0379-0738(00)00467-9
- Purps, J., Geppert, M., Nagy, M., & Roewer, L. (2015). Validation of a combined autosomal/Y-chromosomal STR approach for analyzing typical biological stains in sexual-assault cases. *Forensic Science International: Genetics*, 19, 238–242. https://doi.org/ 10.1016/j.fsigen.2015.08.002
- Ramos González, B., Córdova Mercado, M., Salas Salas, O., Carlos Hernández Reyes, J., Guardiola Ramos, M., Solis Esquivel, E., Castellanos Aguilar, G., & Diaz Torres, P. (2020). Biological Evidence Analysis in Cases of Sexual Assault. In *Biochemical Analysis Tools - Methods for Bio-Molecules Studies* (pp. 1–25). IntechOpen. https://doi.org/10.5772/intechopen.82 164
- Roewer, L. (2019). Y-chromosome short tandem repeats in forensics—Sexing,

profiling, and matching male DNA. Wiley Interdisciplinary Reviews: Forensic Science, February, e1336. https://doi.org/10.1002/wfs2.1336

- Schwerdtner, G., Germann, U., & Cossu, C. (2017). The separation of male and female: A comparison of seven protocols (P). Forensic Science International: Genetics Supplement Series, 6(August), e9–e11. https:// doi.org/10.1016/j.fsigss.2017.09.021
- Semaan, M., Abbas, S., & Mansour, I. (2020). A Mixed DNA Profile Controversy. April, 2–5.
- Tan, Y., Bai, P., Wang, L., Wang, H., Tian, H., Jian, H., Zhang, R., Liu, Y., Liang, W., & Zhang, L. (2018). Two-person DNA mixture interpretation based on a novel set of SNP-STR markers. *Forensic Science International: Genetics*, 37(July), 37–45. https:// doi.org/10.1016/j.fsigen.2018.07.021
- Vuichard, S., Borer, U., Bottinelli, M., Cossu, C., Malik, N., Meier, V., Gehrig, C., Sulzer, A., Morerod, M. L., & Castella, V. (2011). Differential DNA extraction of challenging simulated sexual-assault samples: A Swiss collaborative study. *Investigative Genetics*, 2(1), 11. https://doi.org/ 10.1186/2041-2223-2-11
- Yoshida, K., Sekiguchi, K., Mizuno, N., Kasai, K., Sakai, I., Sato, H., & Seta, S. (1995). The modified method of two-step differential extraction of sperm and vaginal epithelial cell DNA from vaginal fluid mixed with semen. *Forensic Science International*, 72(1), 25–33. https://doi.org/10.1016/0379-0738(94)01668-U.

ARABIC SUMMARY

دراسة توصيف الحمض النووي لعينات مختلطة لمساهمين متعددين وإجراءات مقترحة للتغلب على مشاكل الخليط في التحقيقات الجنائية

صبحي السيد حسب النبي1، إيمان حامد شاكر خاطر2، أحمد إبراهيم عبد السلام أحمد3 ومحمد حسين عواد2 1 كلية العلوم، جامعة المنوفية، شبين الكوم، المنوفية، مصر 2 كلية العلوم، جامعة بنها، بنها، القليوبية، مصر 3الإدارة العامة لتحقيق الأدلة الجنائية، وزارة الداخلية، العباسية، القاهرة، مصر

يمثل الخليط من التصنيفات الجينية لأكثر من شخص أحد أصعب التحديات التي تواجه خبراء البصمة الوراثية في التحقيقات الجنائية، وأحد أهدافهم هو إيجاد تفسير وتحليل لهذا الخليط وذلك لإيجاد الطرق المناسبة للفصل وبخاصة عندما يزيد الخليط عن شخصين. وتهدف تلك الدراسة إلى إيجاد أفضل الطرق التي يمكن الاعتماد عليها لفصل الخليط لهذه التصنيفات الجينية من البصمة الوراثية، والكشف عنها من خلال النمط الجيني الناتج من الخليط بين ذكرين، وكذلك الخليط بين ذكر وأنثى. تم جمع عدد من العينات المختلفة (عينات دماء، لعاب، وأنسجة) من عدة مسارح للجريمة في قضايا جنائية مختلفة.

تم تعريض جميع العينات لعدة خطوات للحصول على البصمة الوراثية منها بداية باستخلاص الحمض النووي، مرورا بتكبير المواقع الجينية الخاصة بالبصمة الوراثية، وفصل المواقع الجينية على جهاز التحليل الوراثي للحصول في النهاية على النمط الجيني للبصمة الوراثية لتلك العينات. حيث أظهرت النتائج وجود خليط من التصنيفات الجينية لأكثر من شخص يفترض أن يكون بين ذكرين أو ذكر وأنثى. وبتحليل النتائج الخاصة بأطوال الأليلات في المواقع الجينية، أظهرت وجود اختلاف في الأطوال فيما بينها مما يشير إلى وجود أليلات أحد الأشخاص في الخليط أطول من أليلات الشخص الأخر. وفي حالات أخرى تبين تقارب أطوال الأليلات في المواقع الجينية للخليط مما استدعى استخدام كروموسوم الذكورة لتحديد التصنيفات الجينية الخاصة بكروموسوم الذكورة للذكر المشارك في الخليط وهي طريقة فعالة في حالة الخليط بين نكر وأنثى. كما أن استخدام طريقة الاستخلاص التفاضلي في حالات الخليط بين الذكر والأنثى طريقة مميزة لفصل الذكر عن ذلك الخليط. مما سبق نستنتج أن هناك أكثر من طريقة لفصل الخبيط من أهمها طريقة أطوال الأليلات للشخص عن ذلك الخليط. مما سبق نستنتج أن هناك أكثر من طريقة لفصل الخبيط من أهمها طريقة أطوال الأليلات الشخاص ي ذكر وأنثى. كما أن استخدام طريقة الاستخلاص التفاضلي في حالات الخليط بين الذكر والأنثى طريقة ميزة لفصل الذكر عن ذلك الخليط. مما سبق نستنتج أن هناك أكثر من طريقة لفصل الخبيط من أهمها طريقة أطوال الأليلات للأشخاص بين ذكر وأنثى في حالة وجود خلايا منوية مناك من طريقة لفصل الخبيط من أهمها طريقة أطوال الأليلات للأشخاص