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Abstract 

In this paper we investigate sufficient conditions for many types of stability of both of the 

abstract first order linear dynamic equations on time scales of the form 

𝑥∆ 𝑡 + 𝐴 𝑡 𝑥 𝑡 = f t , t ∊ 𝕋, 

and the second order linear dynamic equations of the form 

𝑥∆∆ 𝑡 + 𝐴 𝑡 𝑥∆ 𝑡 + 𝑅 𝑡 𝑥 𝑡 = 𝑓 𝑡 , 𝑡 ∊ 𝕋, 

Where𝐴, 𝑅: 𝕋 → 𝐿(𝕏), the space of all bounded linear operators from a Banachspace 𝕏 into 

itself, and 𝑓 is rd–continuous from a time scale 𝕋to 𝕏. Some givenillustrative examples show 

the applicability of the main results. 

Mathematics Subject Classifications:26E70, 34N05, 34K20, 39A30. 
Keywords:Time scales, Linear dynamic equations, Stability theory. 

1.   Preliminaries and introduction 
       The objective of the theory of dynamic equations on time scales is to unify continuous and 
discrete calculus [3, 15] which was introduced by Stefan Hilger [14]. For more detailes about 
this theory, we refer the reader to the very interesting monographs [4] and [5]. In recent years, 
there has been an increasing interest in studying the asymptotic behavior of solutions of 
dynamic equations on time scales due to its applications in many fields especially in biology, 
economics. In [10] DUC, Ilchmann, Siegmund and Taraba derived sufficient conditions for 
stability and asymptotic stability of linear time varying second order scalar differential 
equations of the form: 
 

𝑥 + 𝑎1(𝑡)𝑥 + 𝑎0 𝑡 𝑥 = 0. 
       Drozdowicz and Popenda, in [9], investigated the asymptotic behavior of solutions 
of second order difference equations. We refer the reader to the monograph [11]. 
       In [12], Hamza and Oraby studied many types of stability of solutions of the first 
order linear dynamic equation of the form: 
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𝑢∆ = 𝐴𝑢 𝑡 ,   𝑡 ∊ 𝕋,   𝑡 > 0,

𝑢 0 = 𝑥 ∊ 𝕏,
  

 
where 𝐴 is the generator of a 𝐶0 − semigroup {𝛵(𝑡) ∶  𝑡 ∊  𝕋}; the space of all bounded linear 
operators from a Banach space X into itself. Here 𝕋 ∊  {ℤ≥0,  ℝ≥0}. For related results, see [1, 
6–10, 17]. 
       In this paper, we obtain some new results concerning with many types of stability 
like (exponential stability, uniform exponential stability, –stability and uniform – 
stability) of abstract first order linear dynamic equations of the form: 
 

𝑥∆ 𝑡 + 𝐴 𝑡 𝑥 𝑡 = f t , t ∊ 𝕋. 

We use these results to establish sufficient conditions for the stability of the abstract 
second order dynamic equations of the form 

𝑥∆∆ 𝑡 + 𝐴 𝑡 𝑥∆ 𝑡 + 𝑅 𝑡 𝑥 𝑡 = 𝑓 𝑡 , 𝑡 ∊ 𝕋, 

where 𝐴, 𝑅: 𝕋 → 𝐿(𝕏), and 𝑓 is rd–continuous from a time scale 𝕋to a Banach 
space 𝕏. Finally, we give some illustrative examples to show the applicability of the 
theoritical results. 
Now we exihibite the concepts of stability, uniform stability, exponential stability, 
uniform exponential stability,–stability and uniform –stability, of the general dynamic 
equations of the form 

𝑥∆𝑛
 𝑡 = 𝐹  𝑡, 𝑥 𝑡 , 𝑥∆ 𝑡 , … , 𝑥∆𝑛−1

 𝑡  , 𝑡 ≥ 𝜏, 𝑡, 𝜏 ∊ 𝕋,              (1.1) 

where 𝐹: 𝕋 × 𝕏𝑛 → 𝕏is rd-continuous in t with 𝐹(𝑡, 0, . . ,0)  =  0;  𝑡 ∊ 𝕋. These concepts 
include the boundedness of solutions. See [2, 16, 18]. We denote by 𝑥 𝑡 =
𝑥 𝑡, 𝜏, 𝑥𝜏

0 , …𝑥𝜏
𝑛−1 for the solution corresponding to the initial values  

𝑥∆𝑖
 𝜏 = 𝑥𝜏

𝑖 ∊ 𝑋, 𝑖 = 0, … , 𝑛 − 1 and we denote by𝑋 𝜏 = (𝑥𝜏
0 , … , 𝑥𝜏

𝑛−1) ∊ 𝕏𝑛 for the 𝑛-tuple 
composed of the initial values. We call 𝑋(𝜏)is an initial state. Assume that 𝕏is endowed with a 
norm ‖. ‖and 𝕏𝑛 is the Banach space endowed with the norm ‖𝑥1, … , 𝑥𝑛‖ =  ‖𝑥𝑖‖

𝑛
𝑖=1 . 

 
Definition 1.1.Eq.(1.1) is called stable if for every𝜏 ∊ 𝕋 and for every 𝜖 > 0 there exists 
𝛿 = 𝛿 𝜖, 𝜏 > 0 such that for any two solutions𝑥 𝑡 = 𝑥 𝑡, 𝜏, 𝑥𝜏

0 , … , 𝑥𝜏
𝑛−1 and 𝑥  𝑡 =

𝑥  𝑡, 𝜏, 𝑥 𝜏
0 , … , 𝑥 𝜏

𝑛−1 of Eq.(1.1), corresponding to the initial states 𝑋 𝜏 = (𝑥𝜏
0, … , 𝑥𝜏

𝑛−1) and 
𝑋  𝜏 = (𝑥 𝜏

0 , … , 𝑥 𝜏
𝑛−1) respectively, we have 

‖𝑋 𝜏 − 𝑋  𝜏 ‖ < 𝛿 ⇒ ‖𝑥 𝑡 − 𝑥  𝑡 ‖ < 𝜖, 𝑡 ≥ 𝜏, 𝑡 ∊ 𝕋. 

Definition 1.2. Eq.(1.1) is called uniformly stable if for every 𝜖 > 0 there exists 𝛿 = 𝛿 𝜖 >

0 such thatfor every 𝜏 ∊ 𝕋 and for any two solutions 𝑥 𝑡 = 𝑥 𝑡, 𝜏, 𝑥𝜏
0 , … , 𝑥𝜏

𝑛−1  and 

𝑥  𝑡 = 𝑥  𝑡, 𝜏, 𝑥 𝜏
0, … , 𝑥 𝜏

𝑛−1 of Eq.(1.1), corresponding to the initial states 𝑋 𝜏  and 𝑋  𝜏 , we 

have 

‖𝑋 𝜏 − 𝑋  𝜏 ‖ < 𝛿 ⇒ ‖𝑥 𝑡 − 𝑥  𝑡 ‖ < 𝜖, 𝑡 ≥ 𝜏, 𝑡 ∊ 𝕋. 



Definition 1.3.Eq.(1.1) is called exponentially stable if there exists a constant 𝛼 > 0with 

−𝛼 ∈ ℛ+such that for every 𝜏 ∊ 𝕋, there is 𝛾 ∈ 𝐶𝑟𝑑 (𝕋 × ℝ+, ℝ≥1)such that, anysolution 

𝑥 𝑡 = 𝑥 𝑡, 𝜏, 𝑥𝜏
0 , … , 𝑥𝜏

𝑛−1 corresponding to the initial state 𝑋 𝜏 of Eq.(1.1),satisfies 

‖𝑥(𝑡)‖ ≤ 𝛾(𝜏, ‖𝑋(𝜏)‖) 𝑒_(−𝛼) (𝑡, 𝜏), 𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋. 

Here ℛ+is the family of all positively regressive functions [4]. 

Definition 1.4. Eq.(1.1) is called uniformly exponentially stable if 𝛾 is independent on 𝜏 ∊ 𝕋. 

Definition 1.5. Let  : 𝕋 → ℝ be a positive bounded function. We say that Eq.(1.1) is called  
-stable if there exists 𝛾 ∈ 𝐶𝑟𝑑  𝕋 × ℝ+, ℝ≥1 such that for any solution 𝑥 𝑡, 𝜏, 𝑥𝜏

0 , … , 𝑥𝜏
𝑛−1  

corresponding to the initial state 𝑋(𝜏) of Eq.(1.1), we have  
‖𝑥(𝑡)‖ ≤ 𝛾 𝜏, ‖𝑋 𝜏 ‖  𝑡  𝜏 −1, 𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋. 

(Here  𝜏 −1 =
1

(𝜏)
 ). 

Definition 1.6. Eq.(1.1) is called uniformly  −stable if 𝛾 is independent on 𝜏 ∊ 𝕋. 

The initial value problem  

𝐶𝑃 0 :          𝑥∆ 𝑡 = 𝐴 𝑡 𝑥 𝑡 , 𝑥 𝜏 = 𝑥𝜏
0 ∊ 𝕏, 𝑡 ≥ 𝜏 , 𝑡 ∈ 𝕋, 

has the unique solution  

𝑥 𝑡 = 𝑒𝐴 𝑡, 𝜏 𝑥𝜏
0,                  (1.2) 

And the initial value problem  

𝐶𝑃 𝑓 :          𝑥∆ 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝑓 𝑡 , 𝑥 𝜏 = 𝑥𝜏
0 ∊ 𝕏, 𝑡 ≥ 𝜏 , 𝑡 ∈ 𝕋, 

Has the unique solution 

𝑥 𝑡 = 𝑒𝐴 𝑡, 𝜏 𝑥𝜏
0 +  𝑒𝐴(𝑡, 𝜎(𝑠))𝑓(𝑠)∆𝑠

𝑡

𝜏

 ,                  (1.3) 

where 𝐴 ∈ 𝐶𝑟𝑑 (𝕋, 𝐿(𝕏)) and 𝑓 ∈ 𝐶𝑟𝑑  𝕋, 𝕏 . The formula (1.3) is called the variation 
of parameters formula. Here, 𝑒𝐴(𝑡, 𝜏) is the exponential abstract operator function. For 
properties of 𝑒𝐴 𝑡, 𝑠 , 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ 𝕋 see [13]. For instance, it satisfies 𝑒𝐴 𝑡, 𝑠 + 𝑒𝐴 𝑠, 𝜏 =
𝑒𝐴 𝑡, 𝜏 , 𝑡, 𝑠, 𝜏 ∈ 𝕋 which is called the semigroup property and 𝑒𝐴 𝑡, 𝑡 ≡ 𝐼. By linearity 
of 𝐶𝑃(0), we get the equivalence between the stability of 𝐶𝑃(0) and the stability 
of 𝐶𝑃(𝑓). We introduce the notions of many types of stability of the family{𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈

𝕋, 𝑡 ≥ 𝜏}. 

Definition 1.7. We say that family {𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏} is  

i. stable if there is 𝛾(𝜏) ∈ ℝ+ such that 

‖𝑒𝐴 𝑡, 𝜏 ‖ ≤ 𝛾 𝜏 , 𝑡 ≥ τ, 𝑡 ∊ 𝕋. 



ii. uniformly stable if there is a positive constant number 𝛾 such that 

‖𝑒𝐴 𝑡, 𝜏 ‖ ≤ 𝛾, 𝑡 ≥ τ, 𝑡, 𝜏 ∊ 𝕋. 

iii. exponentially stable if there are 𝛼 > 0 with −𝛼 ∈ ℛ+ and 𝛾 ∈ 𝐶𝑟𝑑 (𝕋 × ℝ+, ℝ≥1) 

such that 

‖𝑒𝐴 𝑡, 𝜏 ‖ ≤ 𝛾 𝜏 𝑒−𝛼 𝑡, 𝜏 , 𝑡 ≥ 𝜏, 𝑡 ∊ 𝕋. 

In this case, it is called exponentially stable of type 𝛼, 𝛾 𝜏 . 

iv. uniformly exponentially stable if there are 𝛼 > 0 with −𝛼 ∈ ℛ+ and 𝛾 ∈ ℝ≥1such 

that 

‖𝑒𝐴 𝑡, 𝜏 ‖ ≤ 𝛾 𝜏 𝑒−𝛼 𝑡, 𝜏 , 𝑡 ≥ 𝜏, 𝑡, 𝜏 ∊ 𝕋. 

In this case, it is called uniformly exponentially stable of type 𝛼, 𝛾. 

v.   −stable if there is 𝛾 ∈ 𝐶𝑟𝑑 (𝕋, ℝ≥1) such that  

‖𝑒𝐴 𝑡, 𝜏 ‖ ≤ 𝛾 𝜏  𝑡  𝜏 −1, 𝑡 ≥ 𝜏, 𝑡 ∊ 𝕋. 

In this case, it is called  −stable of type 𝛾 𝜏 . 

vi. uniformly  −stable if there is 𝛾 ∈ ℝ≥1  such that  

‖𝑒𝐴 𝑡, 𝜏 ‖ ≤ 𝛾 𝜏  𝑡  𝜏 −1, 𝑡 ≥ 𝜏, 𝑡, 𝜏 ∊ 𝕋. 

In this case, it is called uniformly −stable of type 𝛾. 

We need the following two results from [1] concerning the stability of 𝐶𝑃(0) and 𝐶𝑃 𝑓 . 

Theorem 1.8. The following conditions are equivalent  

i. 𝐶𝑃 0  is stable. 

ii. 𝐶𝑃 𝑓 is stable. 
iii. {𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏} is stable. 

Theorem 1.9. The following conditions are equivalent  

i. 𝐶𝑃 0  is uniformly stable. 

ii. 𝐶𝑃 𝑓 is uniformly stable. 

iii. {𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏} is uniformly stable 

 

 

2.   Exponential stability (𝒉 −stability) of 𝑪𝑷 𝒇  

This section is devoted to studying the exponential stability (–stability) of the 
nonhomogeneous abstract Cauchy problem 𝐶𝑃(𝑓)in terms of the exponential stability 



(–stability) of the family {𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏}. 

 

Theorem 2.1.  If the following conditions 

i.  𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏  is exponential stable, with type 𝛼, 𝛾 𝜏 ,  

ii. there exists 𝛽 = 𝛽 𝜏 ≥ 0 such that  
‖𝑓 𝑠 ‖𝛾 𝜎 𝑠  

1−𝜇 𝑠 𝛼

𝑡

𝜏
𝑒−𝛼 𝜏, 𝑠 ∆𝑠 ≤ 𝛽, 𝑡 ∈ 𝕋, 

are satisfied, then 𝐶𝑃(𝑓) is exponentially stable and every solution 𝑥 with initial value 𝑥𝜏
0  

satisfies the following inequality 

‖𝑥(𝑡)‖ ≤  𝛾 𝜏 ‖𝑥𝜏
0‖ + 𝛽 𝑒−𝛼(𝑡, 𝜏). 

Proof. Let 𝑥 𝑡  be a solution of 𝐶𝑃(𝑓) with initial value 𝑥𝜏
0 . Then using formula (1.3), we 

obtain  

‖𝑥 𝑡 ‖ ≤ 𝛾𝑒−𝛼 𝑡, 𝜏 ‖𝑥𝜏
0‖ +  ‖𝑓 𝑠 ‖𝛾 𝜎 𝑠  𝑒−𝛼 𝑡, 𝜎 𝑠  ∆𝑠

𝑡

𝜏

 

≤ (𝛾‖𝑥𝜏
0‖ + 𝛽)𝑒−𝛼(𝑡, 𝜏). 

There, 𝐶𝑃(𝑓) is exponentially stable. 

 

Theorem 2.2.  If the following conditions 

i.  𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏  is uniformly exponential stable, with type 𝛼, 𝛾,  

ii. there exists 𝛽 ≥ 0  independent of τ  such that  
‖𝑓 𝑠 ‖

1−𝜇 𝑠 𝛼

𝑡

𝜏
𝑒−𝛼 𝜏, 𝑠 ∆𝑠 ≤ 𝛽, 𝑡, 𝜏 ∈

𝕋, 

are satisfied, then 𝐶𝑃(𝑓) is uniformly exponentially stable. 

Proof. The proof is similar to the proof of Theorem 2.1 and will be omitted. 

Theorem 2.3.  If the following conditions 

i.  𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏  is  −stable, with type  𝛾,  

ii. there exists 𝛽 = 𝛽 𝜏 ≥ 0 such that  
‖𝑓 𝑠 ‖𝛾 𝜎 𝑠  

 𝜎 𝑠   𝜏 −1

𝑡

𝜏
∆𝑠 ≤ 𝛽, 𝑡 ∈ 𝕋, 

are satisfied, then 𝐶𝑃(𝑓) is  −stable and every solution 𝑥 with initial value 𝑥𝜏
0  satisfies the 

following inequality 

‖𝑥(𝑡)‖ ≤  𝛾 𝜏 ‖𝑥𝜏
0‖ + 𝛽  𝑡  𝜏 −1. 

Proof. Let 𝑥 𝑡  be a solution of 𝐶𝑃(𝑓) with initial value 𝑥𝜏
0 . Then it satisfies  

‖𝑥 𝑡 ‖ ≤ 𝛾‖𝑥𝜏
0‖ 𝑡  𝜏 −1 + 𝛽 𝑡  𝜏 −1 



≤ (𝛾‖𝑥𝜏
0‖ + 𝛽)  𝑡  𝜏 −1 ∀𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋. 

Therefore, 𝐶𝑃(𝑓) is  −stable. 

Theorem 2.4.  If the following conditions 

i.  𝑒𝐴 𝑡, 𝜏 : 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏  is uniformly  −stable, with type  𝛾,  

ii. there exists 𝛽 ≥ 0 (independent of 𝜏) such that  
‖𝑓 𝑠 ‖

 𝜎 𝑠   𝜏 −1

𝑡

𝜏
∆𝑠 ≤ 𝛽, 

are satisfied, then 𝐶𝑃(𝑓) is uniformly  −stable. 
Proof. The proof is similar to the proof of Theorem 2.3 and will be omitted. 

       Theorems 2.3 and 2.4 yield Theorems 2.1 and 2.2 respectively, by putting  𝑡  𝜏 −1 =

𝑒−𝛼 𝑡, 𝜏 . 

3.   Stability of second order linear dynamic equations on time scales 

       section we establish many types of stability of the second order non-homogeneous 

dynamic equations of the form 

𝑥∆∆ 𝑡 + 𝐴 𝑡 𝑥∆ 𝑡 + 𝑅 𝑡 𝑥 𝑡 = 𝑓 𝑡 , 𝑡 > 𝜏, 𝑡 ∊ 𝕋,        (3.1) 

with initial conditions 𝑥∆𝑖
 𝜏 = 𝑥𝜏

𝑖 ∈ 𝕏, 𝑖 = 0, 1 where 𝐴, 𝑅: 𝕋 → 𝐿(𝕏) and 𝑓 ∈ 𝐶𝑟𝑑  𝕋, 𝕏 . Let 

𝑧 ∶ 𝕋 → 𝐿(𝕏) be a particular solution of the corresponding Riccati equation  

𝑧∆ 𝑡 +  𝐴 𝑡 − 𝑧𝜎 𝑡  𝑧 𝑡 = 𝑅 𝑡 , 𝑡 ∈ 𝕋.              (3.2) 

Assume that 𝐷 = 𝑧𝜎 − 𝐴, -z are regressive and 𝐷 ∈ 𝐶𝑟𝑑 (𝕋, 𝐿(𝕏)). 

We need the following lemma. It proof is straightforward and will be omitted. 

Lemma 3.1. If x is a solution of Eq.(3.1), then 𝑔(𝑡)  =  𝑥∆(𝑡)  +  𝑧(𝑡)𝑥(𝑡) is a solution of 

𝑔∆ − 𝐷𝑔 − 𝑓 = 0                                        (3.3) 

Theorem 3.2.If the functions ‖ 𝑒𝐷(𝑡, 𝜏) ‖, ‖𝑒−𝑧(𝑡, 𝜏)‖and ‖𝑒−𝑧(𝑡, 𝜎(𝑠))‖
𝑡

𝜏
∆𝑠are bounded for 

every 𝜏 ∈ 𝕋, then Eq.(3.1) is stable. 

Proof.We denote by 𝐾 = 𝑠𝑢𝑝𝑡≥𝜏  ‖ 𝑒−𝑧 𝑡, 𝜎 𝑠   ‖ ∆𝑠
𝑡

𝜏
, 𝐿 = 𝑠𝑢𝑝𝑡≥𝜏   ‖𝑒−𝑧 𝑡, 𝜏  ‖ and 

𝑀 = 𝑠𝑢𝑝𝑡≥𝜏   ‖𝑒𝐷(𝑡, 𝜏)‖. The equation 𝑔∆ − 𝐷𝑔 − 𝑓 = 0is stable by Theorem 1.8,since 

{𝑒𝐷 𝑡, 𝜏 ∶ 𝑡 ≥ 𝜏}is stable. Let 𝜖 > 0. There is 𝛿1 𝜖, 𝜏 > 0 such that forany two solutions 

𝑔(𝑡)  =  𝑔(𝑡, 𝜏, 𝑔𝜏)and 𝑔  𝑡 = 𝑔 (𝑡, 𝜏, 𝑔 𝜏)with initial values 𝑔τand 𝑔 𝜏respectively, we have 

‖ 𝑔𝜏 − 𝑔 𝜏‖< 𝛿1 ⇒ ‖𝑔 𝑡 − 𝑔  𝑡  ‖ <
𝜖

2𝐾
 

Choose𝛿 > 0 such that 

𝛿 ≤ min 
𝛿1

max(‖𝑧 𝜏 ‖, 1)
,
𝜖

2𝐿
  



Let 𝑥 𝑡 = 𝑥(𝑡, 𝜏, 𝑥𝜏
0 , 𝑥𝜏

1) and 𝑥  𝑡 = 𝑥 (𝑡, 𝜏, 𝑥 𝜏
0 , 𝑥 𝜏

1)be two solutions with initial states 
𝑋 𝜏 =  𝑥𝜏

0 , 𝑥𝜏
1 and 𝑋  𝜏 = (𝑥 𝜏

0, 𝑥 𝜏
1)such that 

‖ 𝑋 𝜏 − 𝑋  𝜏  ‖ < 𝛿 

Hence,𝑔(𝑡)  =  𝑥∆(𝑡)  +  𝑧(𝑡)𝑥(𝑡) and 𝑔 (𝑡)  =  𝑥 ∆(𝑡)  +  𝑧(𝑡)𝑥 (𝑡)are solutions of 
Eq.(3.3)corresponding to the initial conditions 

𝑔𝜏 =  𝑥∆ 𝜏 +  𝑧 𝜏 𝑥 𝜏 𝑎𝑛𝑑 𝑔 𝜏 =  𝑥 ∆ 𝜏 +  𝑧 𝜏 𝑥  𝜏 ;  𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

We see that ‖𝑔𝜏 − 𝑔 𝜏‖ < 𝛿1. Consequently, ‖𝑔 𝑡 − 𝑔  𝑡 ‖ <
𝜖

2𝐾
, ∀𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋.Thesolutions 

𝑥(𝑡)and 𝑥 (𝑡)of Eq.(3.1) are given by 

𝑥 𝑡 = 𝑒−𝑧 𝑡, 𝜏 𝑥𝜏
0 +  𝑒−𝑧(𝑡, 𝜎(𝑠))𝑔(𝑠)∆𝑠

𝑡

𝜏

 

And 

𝑥  𝑡 = 𝑒−𝑧 𝑡, 𝜏 𝑥 𝜏
0 +  𝑒−𝑧(𝑡, 𝜎(𝑠))𝑔 (𝑠)∆𝑠

𝑡

𝜏

 

This implies that‖𝑥 𝑡 − 𝑥  𝑡 ‖ < 𝜖. Therefore, Eq.(3.1) is stable. 

Theorem 3.3. If the function ‖𝑧(𝑡)‖ is bounded and the functions ‖ 𝑒𝐷(𝑡, 𝜏) ‖, ‖𝑒−𝑧(𝑡, 𝜏)‖ and 

 ‖𝑒−𝑧(𝑡, 𝜎(𝑠))‖
𝑡

𝜏
∆𝑠 are uniformly bounded with respect𝜏 ∈ 𝕋, then Eq.(3.1) is uniformly 

stable. 
Proof. The proof is very similar to the proof of Theorem 3.2 and will be omitted. 

Theorem 3.4. Assume that the following conditions 

i. There exist constants 𝛼 > 0 and 𝛼1 > 0 , and there is  𝛾 ∈ 𝐶𝑟𝑑  𝕋, ℝ≥1 such 
that  𝑒𝐷 𝑡, 𝜏 ∶ 𝑡 ≥ 𝜏   ( resp.   𝑒−𝑧 𝑡, 𝜏 ∶ 𝑡 ≥ 𝜏   )is stable, with type 𝛼 and 𝛾 𝜏 (resp. 
with type 𝛼1 and 𝛾(𝜏)), 

ii. There are constants 𝛽 > 0 and 𝑙 >  0, dependent on 𝜏, such that 

 
‖𝑓 𝑠 ‖𝛾 𝜎 𝑠  

1 − 𝜇 𝑠 𝛼
𝑒−𝑧 𝜏, 𝑠 ∆𝑠 ≤ 𝛽,   𝑡 ≥ 𝜏

𝑡

𝜏

 

and  

 
𝛾 𝜎 𝑠  

1 − 𝜇 𝑠 𝛼1

𝑒−𝛼 𝑠, 𝜏 

𝑒𝛼1(𝜏, 𝑠)
∆s ≤ 𝑙,   𝑡 ≥ 𝜏

𝑡

𝜏

,  

hold. Then Eq.(3.1) is exponentially stable. 
Proof. The equation 𝑔∆ − 𝐷𝑔 − 𝑓 = 0 is exponentially stable, by Theorem 2.1, and any 
solution 𝑔 𝑡 =  𝑔 𝑡, 𝜏, 𝑔𝜏 with initial value 𝑔𝜏 , satisfies 

‖𝑔 𝑡 ‖ ≤  𝛾 𝜏 ‖𝑔𝜏‖ + 𝛽 𝜏  𝑒−𝛼 𝑡, 𝜏   ∀𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋 

Set 

𝛾 𝜏, 𝑟 = 𝛾 𝜏 𝑟 + 𝛽(𝜏) 
This gives 

‖𝑔 𝑡 ‖ ≤ 𝛾1 𝜏, ‖𝑔𝜏‖ 𝑒−𝛼 𝑡, 𝜏  ∀𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋. 



Let  𝑥(𝑡) be a solution of Eq.(3.1) with initial value  𝑋(𝜏) = (𝑥𝜏
0, 𝑥𝜏

1). Then  𝑔(𝑡) = 𝑥Δ(𝑡) +
𝑧(𝑡)𝑥(𝑡) is a solution of Eq.(3.3) with initial value  𝑔(𝜏) = 𝑥𝜏

1 + 𝑧 𝜏 𝑥𝜏
0. The solution  𝑥(𝑡)  is 

given by 

𝑥(𝑡) = 𝑒−𝑧 𝑡, 𝜏 𝑥𝜏
0 +  𝑒−𝑧 𝑡, 𝜎 𝑠  𝑔 𝑠 Δ 𝑠

𝑡

𝜏

. 

  Hence 

‖𝑥 𝑡 ‖ ≤ 𝛾 𝜏 ‖𝑋(𝜏)‖   𝑒−𝛼1(𝑡, 𝜏)  

                                                                      +  𝛾 𝜎 𝑠  𝑒−𝛼1
 𝑡, 𝜎 𝑠  𝛾1 𝜏 , ‖𝑔𝜏‖ 𝑒−𝛼 𝑠, 𝜏 Δ 𝑠 

𝑡

𝜏

 

 

≤  𝛾 𝜏 ‖𝑋 𝜏 ‖ + 𝛾2 𝜏, ‖𝑋 𝜏 ‖  𝑙  𝑒−𝛼 𝑡, 𝜏 , ∀ 𝑡 ∈ 𝕋, 𝑡 ≥ 𝜏, 

where  𝛾2(𝜏 , 𝑟) = 𝛾 (𝜏) \𝑚𝑎𝑥(‖ 𝑧(𝜏)‖ ,1)𝑟 + 𝛽(𝜏).Therefore, Eq. (3.1) is exponentially stable. 

Theorem 3.5. Assume that the following conditions 

i. There exist constants 𝛼 > 0, 𝛼1 > 0 and 𝛾 ≥ 1,such 
that{𝑒_𝐷 (𝑡, 𝜏): 𝑡 ≥ 𝜏} (  resp.   𝑒−𝑍 𝑡, 𝜏 : 𝑡 ≥  𝜏  )  is stable, with type 𝛼 and𝛾( resp.  

with type 𝛼1and 𝛾)  

ii. There are constants 𝛽 > 0 and 𝑙 >  0, independent on 𝜏, such that 

 
‖𝑓 𝑠 ‖

1 − 𝜇 𝑠 𝛼
𝑒−𝑧 𝜏, 𝑠 ∆𝑠 ≤ 𝛽,   𝑡 ≥ 𝜏

𝑡

𝜏

 

and  

 
𝛾 𝜎 𝑠  

1 − 𝜇 𝑠 𝛼1

𝑒−𝛼 𝑠, 𝜏 

𝑒𝛼1(𝜏, 𝑠)
∆s ≤ 𝑙,   𝑡 ≥ 𝜏

𝑡

𝜏

, 𝜏 ∈ 𝕋 

are satisfied. Then Eq.(3.1) is uniformly exponentially stable. 
Proof.The proof is similar to the proof of Theorem 3.4 and will be omitted. 

Theorem 3.6.Let  and 1 be positive bounded functions on 𝕋. Assume that the following 

conditions 

i. There exist𝛾 ∈ 𝐶𝑟𝑑  𝕋, ℝ≥1 such that   𝑒𝐷 𝑡, 𝜏 ∶ 𝑡 ≥ 𝜏  is -staple with type 𝛾(𝜏) and 
{𝑒−𝑧 𝑡, 𝜏 ∶ 𝑡 ≥ 𝜏} is 1-staple with same type 𝛾 𝜏 . 

ii. There are constants 𝛽 > 0 and 𝑙 >  0, dependent on 𝜏, such that 

 
‖𝑓 𝑠 ‖𝛾 𝜎 𝑠  

 𝜎 𝑠   𝜏 −1
∆𝑠 ≤ 𝛽,   𝑡 ≥ 𝜏

𝑡

𝜏

and  
𝛾 𝜎 𝑠  

1 𝜎 𝑠  1 𝜏 −1
 𝜎 𝑠   𝜏 −1∆s ≤ 𝑙 

𝑡

𝜏

 

 
 

are satisfied. Then Eq.(3.1) is-stable. 



Proof. The equation 𝑔∆ − 𝐷𝑔 − 𝑓 = 0 is - stable, by Theorem 2.3, and any 
solution 𝑔 𝑡 =  𝑔 𝑡, 𝜏, 𝑔𝜏 with initial value 𝑔𝜏 , satisfies 

‖𝑔 𝑡 ‖ ≤  𝛾 𝜏 ‖𝑔𝜏‖ + 𝛽  𝑡  𝜏 −1  ∀𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋 

Set 

𝛾1 𝜏, 𝑟 = 𝛾 𝜏 𝑟 + 𝛽 
This gives 

‖𝑔 𝑡 ‖ ≤ 𝛾1 𝜏, ‖𝑔𝜏‖  𝑡  𝜏 −1 ∀𝑡 ≥ 𝜏, 𝑡 ∈ 𝕋. 

Let  𝑥(𝑡) be a solution of Eq.(3.1) with initial value  𝑋(𝜏) = (𝑥𝜏
0, 𝑥𝜏

1). Then  𝑔(𝑡) = 𝑥Δ(𝑡) +
𝑧(𝑡)𝑥(𝑡) is a solution of Eq.(3.3) with initial value  𝑔(𝜏) = 𝑥𝜏

1 + 𝑧 𝜏 𝑥𝜏
0. The solution𝑥(𝑡)  is 

given by 

𝑥(𝑡) = 𝑒−𝑧 𝑡, 𝜏 𝑥𝜏
0 +  𝑒−𝑧 𝑡, 𝜎 𝑠  𝑔 𝑠 Δ 𝑠

𝑡

𝜏

. 

  Hence 

‖𝑥 𝑡 ‖ ≤ 𝛾 𝜏 ‖𝑋(𝜏)‖  𝑡  𝜏 −1 

                               +𝛾1 𝜏, ‖𝑔𝜏‖ 1 𝑡  
𝛾 𝜎 𝑠   𝑠 

1 𝜎 𝑠  

𝑡

𝜏

  𝜏 −1 

 

≤  𝛾 𝜏 ‖𝑋 𝜏 ‖ + 𝛾1 𝜏, ‖𝑔𝜏‖  𝑙   𝑡  𝜏 −1 

≤  𝛾 𝜏 ‖𝑋 𝜏 ‖ + 𝛾2 𝜏, ‖𝑋 𝜏 ‖  𝑙   𝑡  𝜏 −1, ∀ 𝑡 ∈ 𝕋, 𝑡 ≥ 𝜏, 

where  𝛾2(𝜏 , 𝑟) = 𝛾 (𝜏) \𝑚𝑎𝑥(‖ 𝑧(𝜏)‖ ,1)𝑟 + 𝛽(𝜏). Therefore, Eq. (3.1) is - stable. 

Theorem 3.7. Let  and 1 be positive bounded functions on 𝕋. Assume that the following 

conditions 

i. There exist 𝛾 ≥ 1 such that   𝑒𝐷 𝑡, 𝜏 ∶ 𝑡 ≥ 𝜏  is uniformly  -staple with type 𝛾and 
{𝑒−𝑧 𝑡, 𝜏 ∶ 𝑡 ≥ 𝜏} is uniformly 1-staple with same type 𝛾. 

ii. There are constants 𝛽 > 0 and 𝑙 >  0, independent on 𝜏, such that 

 
‖𝑓 𝑠 ‖

 𝜎 𝑠   𝜏 −1
∆𝑠 ≤ 𝛽,   𝑡 ≥ 𝜏

𝑡

𝜏

and  
 𝜎 𝑠   𝜏 −1

1 𝜎 𝑠  1 𝜏 −1
∆s ≤ 𝑙 

𝑡

𝜏

 

 
are satisfied. Then Eq.(3.1) is uniformly - stable. 
Proof.The proof is similar to the proof of Theorem 3.4 and will be omitted. 

Theorem 3.6 and 3.7 yield Theorem 3.4 and 3.5 respectively, by putting  𝑡  𝜏 −1 = 𝑒−𝛼(𝑡, 𝜏) 

4.   Illustrative examples 



       The following examples show the applicability of the main results. In all examples 𝕏 

denotes a Banach space endowed with a norm ‖ ‖ and 𝐼 denotes the identity operator on 𝕏. 

Example 4.1. 

Consider the following dynamic equation 

𝑥ΔΔ  𝑡 + 𝐴 𝑡 𝑥Δ 𝑡 + 𝑅 𝑡 𝑥 𝑡 = 0, 𝑡 ∈ 𝕋 =\ℝ≥0},           (4.1) 

where  𝐴(𝑡) = 2𝑡 𝐼 and  𝑅(𝑡) = (1 + 𝑡^2) 𝐼. The corresponding Riccati equation is 

𝑧Δ 𝑡 −  𝑧𝜎 𝑡 − 𝐴 𝑡  𝑧 𝑡 = 𝑅 𝑡 , 𝑡 ∈ 𝕋.                 (4.2) 

One can see that 𝑧(𝑡) =  𝑡 𝐼 is a solution of Eq.(4.2). We have, 

 𝐷 𝑡 =  𝑧𝜎 𝑡 − 𝐴 𝑡 =  −𝑡𝐼 = −𝑧 𝑡 , 𝑡 ∈ 𝕋. 

We have  

𝑒𝐷 𝑡, 𝜏 = 𝑒−
𝑡2−𝜏2

2  𝐼, 

see for instance [1], [13], and consequently, 

‖𝑒𝐷 𝑡, 𝜏 ‖ = ‖𝑒−𝑧(𝑡, 𝜏)‖=𝑒−
𝑡2−𝜏2

2 . 

Since ‖𝑒𝐷 𝑡, 𝜏 ‖, ‖𝑒−𝑧(𝑡, 𝜏)‖ and  ‖𝑒−𝑧(𝑡, 𝜎 (𝑠))‖ 𝑑𝑠
𝑡

𝜏
are uniformly bounded with respect 

to 𝜏, then by Theorem 3.2, Eq.(4.1) is stable. 

       In this example, if we take 𝕋 is any closed bounded interval, then ‖𝑧(𝑡)‖ is bounded on 

this interval. Consequently, by Theorem 3.3, Eq.(4.1) is uniformly stable.  

Example 4.2.  Consider the following dynamic equation 

𝑥ΔΔ  𝑡 + 𝐴 𝑡 𝑥Δ 𝑡 + 𝑅 𝑡 𝑥 𝑡 = 𝑓 𝑡 , 𝑡 ∈ 𝕋 = ℝ+,          (4.3) 

Where 𝐴 𝑡 , 𝑅(𝑡) and 𝑓(𝑡) defined by 

𝐴 𝑡 = 2𝑚 𝐼, 𝑅 𝑡 = 𝑚2𝐼 and 𝑓(𝑡) = 𝑒−2𝑚𝑡   𝑎, 

where 𝑚 > 0, 𝑎 ∈  𝕏. The corresponding Riccati equation is 

𝑧Δ 𝑡 −  𝑧𝜎 𝑡 − 𝐴 𝑡  𝑧 𝑡 = 𝑅 𝑡 , 𝑡 ∈ 𝕋.         (4.4) 

One can see that 𝑧(𝑡) = 𝑚𝐼 is a solution of Eq.(4.4). We note that   

𝐷 𝑡 = 𝑧𝜎 𝑡 − 𝐴 𝑡 = −𝑚𝐼 = −𝑧 𝑡 , 𝑡 ∈ 𝕋, 

and ‖ 𝑒𝐷(𝑡, 𝜏) ‖ =  ‖ 𝑒−𝑧(𝑡, 𝜏)‖  =  𝑒−𝑚(𝑡, 𝜏) . Choosing 𝛼 = 𝛼1 = 𝑚 and 𝛾 = 1 in Theorem 

3.5, simple calculations show that 



 
‖𝑓 𝑠 ‖𝛾  𝜎 𝑠  

1 − 𝜇  𝑠 𝛼

𝑡

𝜏

𝑒−𝛼 𝜏, 𝑠 𝑑𝑠 =  𝑒−2𝑚𝑠𝑒−𝑚 𝜏−𝑠  𝑑𝑠
𝑡

𝜏

<
1

𝑚
, 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏,  

and 

 
𝛾  𝜎 𝑠  

1 − 𝜇  𝑠 𝛼1

𝑒−𝛼 𝑠, 𝜏 

𝑒−𝛼1
 𝜏, 𝑠 

𝑡

𝜏

𝑑𝑠 =  𝑒−2𝑚(𝑠−𝜏) 𝑑𝑠
𝑡

𝜏

<
1

2𝑚
, 𝑡, 𝜏 ∈ 𝕋, 𝑡 ≥ 𝜏,  

Therefore, Eq.(4.3) is uniformly exponentially stable. 

Example 4.3.  Consider the following dynamic equation 

𝑥Δ 𝑡 = 𝐴 𝑡 𝑥 𝑡 , 𝑡 ∈ 𝕋 = ℝ, 

where  𝐴(𝑡) = −𝑚𝐼  such that 𝑚 > 0. We note that  ‖ 𝑒𝐴(𝑡, 𝜏) ‖  =  𝑒−𝑚(𝑡, 𝜏). Choosing 

𝛼 = 𝑚 and 𝛾 = 1 in Theorem 3.3 conditions will be realized. Therefore, Eq.(4.5) is 

uniformly exponentially stable. 
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اللغه العربيهالملخص ب  

 دينا احمد محمد ابراهيم: اسم الطالب

 انواع عديده من الاستقراريه لمعادلات الديناميكيه من الدرجه الأولي و الثانيه علي مقاييس الزمن: عنوان البحث

قمنا في هذه الرساله بأستخدام داله ليابونوف مناسبه و وضعنا الشروط الكافيه للاستقرارية المنتظمه والاستقراريه الأسية و 

المنتظمه لمعادله ديناميكيه من  ()و الاستقراريه من النوع  ()الاستقراريه الأسية المنتظمه و الاستقراريه من النوع 

  ذات الصيغه 𝕋الدرجه الاولي علي مقاييس الزمن 

𝑥∆ 𝑡 + 𝐴 𝑡 𝑥 𝑡 = f t , t ∊ 𝕋. 

  ذات الصيغه 𝕋و معادله ديناميكيه من الدرجه الثانيه علي مقاييس الزمن 

𝑥∆∆ 𝑡 + 𝐴 𝑡 𝑥∆ 𝑡 + 𝑅 𝑡 𝑥 𝑡 = 𝑓 𝑡 , 𝑡 ∊ 𝕋, 

,𝐴حيث ان  𝑅: 𝕋 → 𝐿 𝕏  حيث انL(X)  فو فضاء المؤثرات الخطيه المحدوده من الفضاء بانخ 𝕏و ايضا في .  لنفسه

 .نهايه البحث تم عمل تطبيقات للنظريه التي حصلنا عليها

 :المشرفون
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