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The performance of a given type of actuators can be markedly enhanced 
by judicious choosing parameters of design. However, choosing 
parameters of design to optimize the actuator’s performance has been 
challenging due to nonlinear equations of state, multiple modes of 
failure, parameters of design, and measures of performance. The 
actuator has three dimensionless parameters of design, the pre-stretches 
in length and width of the plane of the elastomer membrane and the 
dimensionless ratio between the stiffness of the spring and that of the 
elastomer. These parameters of design are prescribed once the actuator 
is constructed. This paper aims to optimize these parameters to get the 
maximum actuation of Spring-Roll Dielectric Elastomer actuator.  
Analysis and software programs are developed to graphically represent 
the equations of state for any design parameter values. Also, to design 
the dimensions of the actuator, the applied voltage, and the stiffness of 
the spring when the axial length at relax and axial load are prescribed. 
Different loads and actuator axial lengths and their counterpart designs 
are also addressed. Actuation range and maximum actuation for each 
design are determined.  Compared with the most recent work [1-6], the 
achieved results show that the presented work outperforms.  
In addition to, getting out of the region of failure modes is described. 
This paper also presents robust and reliable design techniques for a 
Spring-Roll Dielectric Elastomer Actuator, whose actuation exceeds 300 
% and could be used as a promising device in various medical 
applications.  
KEYWORDS:  Spring roll dielectric elastomer actuator, modes of 
failure, region of allowable states, actuation range, optimal design 
parameters.  

 
1. INTRODUCTION 

Dielectric elastomer actuators have been intensely studied in the recent decade. To 
explore some of the basic issues in the design, one particular type of actuators is 
studied, the spring-roll actuators [7-9]. The construction of a spring-roll actuator is 
sketched in Fig. 1. Two membranes of a dielectric elastomer are alternated with two 
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electrodes. The laminate is prestretched in two directions in the plane, and then rolled 
around a spring [10]. 

 

 

Fig. 1. The construction of a spring-roll actuator  
 

Two membranes of a dielectric elastomer are alternated with two electrodes. 
The laminate is first prestretched and then rolled around a relaxed spring. When the 
spring roll is subject to a voltage and an axial force, the length of the spring couples the 
electrical and mechanical actions. 

Providing dielectric elastomer actuators with a level of pre-stretch can improve 
properties such as breakdown strength, actuation strain and efficiency [11].  

When the actuator is subjected to an applied voltage and an applied axial force, 
the axial elongation couples the electrical and mechanical actions. The parameters of 
design include prestretches of the elastomer and the stiffness of the spring.  

 
2. EQUATIONS OF STATE 

Referenced to Fig. 1, the electrodes are compliant and bear no mechanical load. The 

elastomer is of thickness L3 and sides L2 and L1. The relaxed spring is of length 11 Lpλ . 
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The elastomer is prestretched to 22Lpλ and 11 Lpλ , and then the elastomer is rolled around 
the relaxed spring. When the actuator is subjected to an applied voltage Φ and an axial 

force P, the thickness of the laminate changes to33Lλ , and the length of the spring 

changes to 11Lλ .  However, side 2 of the laminate, 22Lpλ  is constrained by the diameter 
of the spring and remains unchanged. The elastomer is taken to be incompressible, so 

that 1321 =λλλ p

 
During the operation, the actuator varies its state in two ways, as specified by 

two generalized coordinates: the stretch1λ in the axial direction, and the charge Q on 
one of the electrodes. Helmholtz free energy A of the actuator is prescribed as a 
function of the two generalized coordinates: 
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The free energy of the elastomer is the sum of the elastic energy, with µ being 

the shear modulus of the elastomer and the dielectric energy, with ε being the 
permittivity of the elastomer [12, 13]. The spring is taken to obey Hooke’s law, with k 
being the stiffness of the spring.  

When the actuator is in a state( )Q,1λ , in equilibrium with the applied axial 
force P and the applied voltage Φ, for any small change in the stretch and charge, 

1λd anddQ , the change in the Helmholtz free energy equals the work done by the 
applied force and the voltage, namely [14]. 

dQPLdA Φ+= 1                                                                     (2) 
Consequently, the force and the voltage are the partial differential coefficients 

of the free-energy function( )QA ,1λ . The axial force is work-conjugate to the 
elongation: 
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The voltage is work-conjugate to the charge:     
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Inserting (1) into (3), we obtain that  
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where 32

1

LL

KL

µ
α =

is a dimensionless ratio between the stiffness of the spring and that 
of the elastomer. Equation (5) shows that the axial force is balanced by contributions of 
three origins: the elasticity of the elastomer, the permittivity of the elastomer, and the 
elasticity of the spring. Equation (5) can also be obtained by invoking the Maxwell 
stress [15, 16].  
Inserting (1) into (4), we obtain that 
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The actuator has three dimensionless parameters of design: the prestretches in 

the two directions in the plane of the elastomer, 
p
1λ and

p
2λ , as well as the normalized 

stiffness of the spring α. These parameters of design are prescribed once the actuator is 
constructed. 

Equations (5) and (6) are the equations of state, relating the dimensionless 

loading parameters,  ( )32LLP µ  and ( )εµ3LΦ , to the dimensionless generalized 

coordinates, 1λ and ( )εµ21LLQ . 
These nonlinear equations of state can be displayed graphically on a plane 

spanned by the two dimensionless generalized coordinates as shown in Fig. 2. Plotted 
on this plane are the lines of constant force and the lines of constant voltage. Fig. 2 can 
be used to locate the state of the actuator under prescribed axial force and voltage. In 
plotting the equations of state in Fig. 2, we have set the parameters of design to a 
particular set of values. 

 

 

Fig. 2: A graphical representation of the equations of state.  
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When the design variables( )pp
21 ,, λλα are prescribed, the state of the actuator 

is characterized by two generalized coordinates: the stretch
p
1λ in the axial direction, 

and the charge Q on one of the electrode.  
 

3. MODES OF FAILURE 

The range of operation of an actuator is limited by various modes of failure. Each 
mode of failure restricts the state of the actuator to a region on the plane of the 
generalized coordinates. The common region that averts all modes of failure constitutes 
the set of allowable states. To illustrate the procedure to construct the region of 
allowable states, several representative modes of failure are considered [17, 18].  

First electromechanical instability (EMI) of the elastomer is considered. As the 
applied voltage is increased, the elastomer reduces its thickness, so that the voltage 
induces a high electric field. The positive feedback between a thinner elastomer and a 
higher electric field may cause the elastomer to be reduced drastically, resulting in an 
electrical breakdown. This electromechanical instability can be analyzed by using a 
standard method in thermodynamics. [19].  

Consider a three-dimensional space, with the generalized coordinates λ1 and Q 
being the horizontal axes, and the Helmholtz free energy A being the vertical axis. In 

this space, the free-energy function ( )QA ,1λ is a surface. A point on the surface 
represents a state of the actuator, and a curve on the surface represents a path of 

actuation. Imagining a plane tangent to the surface at a state ( )Q,1λ . The slopes of 
this tangent plane are PL1 and Φ, according to (3) and (4).  

For a state ( )Q,1λ  to be stable against arbitrary small perturbations in the 

generalized coordinates, the surface( )QA ,1λ must be convex at the point( )Q,1λ .  
This condition of stability is equivalent to the following set of inequalities: 
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Based on the three inequalities, (7a) ensures mechanical stability, (7b) 
electrical stability, and (7c) electromechanical stability. Using (1), it is noticeable that 
(7a) and (7b) are satisfied for all values of ( )Q,1λ , but (7c) is violated for some values 

of ( )Q,1λ . A combination of (1) and (7c) shows that the electromechanical instability 
sets when:  
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This equation corresponds to the curve marked by EMI in Fig. 3. The curve 
divides the ( )Q,1λ plane into two regions. Above the curve, the actuator is stable 
against small perturbation of the generalized coordinates. Below the curve, the actuator 
undergoes electromechanical instability.  

The second mode of failure is the electrical breakdown (EB) of the elastomer. 
Even before the electromechanical instability sets, the electric field in the elastomer 
may become too high, leading to localized conduction path through the thickness of the 
elastomer. For the complexity of the microscopic process of electrical breakdown, it 
will not be addressed in this paper. To illustrate the procedure of design, we assume 
that electrical breakdown occurs when the true electric field exceeds a critical value Ec. 
For the ideal dielectric elastomer, D = εE, where the true electric displacement 

is 2121 LLQD pλλ= , the condition for electric breakdown is  

    
µ
ελλ

µε C
pE

LL

Q
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21

=                                                            (9) 

Equation (9) corresponds to the straight line marked by EB on the 
( )Q,1λ plane as shown in Fig. 3. The actuator in a state in the region above this 
straight line will not suffer from the electrical breakdown.  

Loss of tension of the elastomer when the voltage Φ is large is considered, or 
axial force P is compressive and of a large magnitude, the stress in the plane of the 
elastomer may cease to be tensile. This loss of tension will cause the elastomer to 
buckle out of the plane, so that elastomer will no longer generate force of actuation. To 
avert this mode of failure, the stress is required to be tensile in every direction in the 
plane of the elastomer. That is, both the stress along the axial direction and the stress in 
the circumferential direction are required to be tensile, 01 >S and 02 >S . Following 
[20], the nominal stress in the axial direction is obtained in terms of the two 
generalized coordinates: 
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Setting the critical condition in (10), we obtain that 
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Similarly, nominal stress s2 in terms of the two generalized coordinates can be 
obtained: 
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Setting the critical condition s2=0 in (11), the following equation can be obtained: 
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The critical conditions for loss of tension, s1=0 and s2=0, are plotted in Fig. 3. 
A comparison of (8) and (10a) shows that, for spring-roll actuators, loss of tension in 
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the axial direction will always precede electromechanical instability. In contrary, other 
types of dielectric elastomer actuators may fail by electromechanical instability [21, 
22]. 

 

 

Fig. 3 A graphical representation of modes of failure 
 

Next tensile rupture of the elastomer is considered. When an elastomer is 
stretched too severely, the elastomer may rupture. The critical condition for tensile 
rupture is not well quantified. Here the simple criterion that the elastomer will rupture 
when either stretch, λ1 or λ2 exceeds a critical value λc is used. A representative value λc 
= 5 is included in Fig.3.  

The compressive limit of the spring is finally considered. The spring in the 
spring-roll actuator is designed to be under compression. When the spring is 
compressed excessively, however, it may deform plastically. The length of the spring 

at its relaxed state is 11 Lpλ  , and the length of the actuated spring is11Lλ . We assume 

that the spring deforms plastically when 11 λλp exceeds a critical value c, which we set 

to be c = 4. In the (λ1, Q) plane, Fig. 3, the region above the line cp
11 λλ = will 

guarantee that the spring remains elastic.  
The modes of failure discussed in this section are all averted in the shaded 

region in Fig. 3. As evident from the above discussion, this region of allowable states 
will depend on the critical conditions for various modes of failure.  
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4. DESIGN OF A SPRING-ROLL DIELECTRIC ELASTOMER 
ACTUATOR 

4.1 Actuation Range (Maximum and Minimum Required Actuation) 

For maximum required actuation, as illustrated from fig. 4, moving from a lower state 
to an upper state along the applied voltage curve, the compressive axial force has to 
decrease in magnitude. That is, behind the point of intersection of the applied voltage 
curve and the prescribed axial force curve, the actuator becomes unable to burden the 
already prescribed compressive load which it designed for. Therefore, we should not 
move upwards on the applied voltage curve to surpass the point of maximum required 
actuation max1λ .  

For minimum required actuation, to avoid actuation in the region of modes of 
failure, the actuator should work in the allowable states region; therefore the first point 
on the applied voltage curve in this region is the minimum required actuation. In other 
words, the lowest actuation of the applied voltage curve in the allowable state region is 
the minimum required actuationmin1λ .  

Actuation range = Maximum required actuation (max1λ ) – Minimum required 

actuation ( min1λ ), (which is a dimensionless value). 

 

 

Fig. 4: Actuation range 
 

4.2 Criteria for Designing Dielectric Elastomer Roll Actuator 

1. The allowable states are upper bounded by tensile rupture 5=Cλ , and lower 

bounded by loss of tension 01 =S  and electrical breakdown EB. 
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2. Line of constant force should be located in the region of allowable states.  
3. The actuator should be able to achieve both maximum and minimum actuation.  
4. Physical dimensions of the actuator; actuator length 11Lλ , and actuator 

diameter D, have to fit the purpose it designed for.  
5. The applied voltage should be regulated (stabilized) and controlled to a 

specific value. 
6. Charges flow to the electrodes of the actuator should be controlled by a charge 

controller. 
 

5. THE PARAMETERS OF THE DESIGN 

Mickael Moscardo et al. [23], stated that “In the absence of the applied force 32LLP µ , 

the combination of 11 =pλ , 52 =pλ and α=0 gives the optimal range of actuation”. This 
is not true because the curve of constant force according to these values is almost touch 
the curve of EMI, that is, it is not far from modes of failure and each of maximum 
actuation and maximum actuation range are not achieved at these values as it is clear in 
Fig. 5.   

    

 

Fig. 5: Maximum actuation range are not achieved at11 =pλ , 52 =pλ  and α=0  
 

Maximum actuation is not also achieved at 85.21 =pλ , 52 =pλ  and α=2.5. In 

this case max1λ will be 1.9 as shown in Fig. 6.  
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Fig. 6: Maximum actuation is not achieved at 85.21 =pλ , 52 =pλ  and α=2.5 
 

Now we study the effect of parameters of design on the actuation. To gain 
insight into the behavior, we will now fix two of the three parameters of 

design( )αλλ andpp ,, 21 , and vary the third. P is not a design parameter but it is a given 

parameter. Figure 7 shows the effect of p1λ on the actuation at 22 =pλ , α=2 

and 132 −=LLP µ .  It is noticed that asp
1λ increases, 1λ increases and the highest 

actuation (optimal value) is achieved at 51 =pλ .  

 
Fig. 7: The effect of p

1λ on the actuation at 22 =pλ , α=2 and 132 −=LLP µ  
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We will now fix the values of p
1λ , and α and vary p

2λ . Fig. 8 shows the effect of 
p
2λ on the actuation at 21 =pλ , α=2, and 132 −=LLP µ . It is noticed that 

as p
2λ increases, 1λ decreases and the highest actuation (optimal value) is achieved at 

22 =pλ .  
 

 

Fig. 8: The effect of p
2λ on the actuation at 21 =pλ , α=2 and 132 −=LLP µ  

 

We will now fix the values of p
1λ , and p

2λ and vary α. Fig. 9 shows the effect of 

α on the actuation at 21 =pλ , 22 =pλ and 132 −=LLP µ . It is noticed that as α 

increases, 1λ increases and the highest actuation (optimal value) is achieved at α=10.  
 

 

Fig. 9: The effect of α on the actuation at 21 =pλ , 22 =pλ and 132 −=LLP µ  
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From the above curves, we can deduce that the optimal values of design 

parameters are: 51 =pλ , 22 =pλ ; and α=10. These results can be verified by plotting 

the generalized coordinates 1λ and µεµ 21LLQ using different sets of design 

parameters. 
 

 
Fig. 10: Actuation at 21 =pλ , 52 =pλ , α=4, 132 −=LLP µ and 1.03 =Φ εµL  

 

 

Fig. 11: Actuation at 31 =pλ , 42 =pλ , α=6, 132 −=LLP µ and 1.03 =Φ εµL  
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Fig. 12: Actuation at 41 =pλ , 32 =pλ , α=8, 132 −=LLP µ  and 1.03 =Φ εµL  

 

 

Fig. 13: Actuation at 51 =pλ , 22 =pλ , α=5, 132 −=LLP µ  and 1.03 =Φ εµL  
 

Figures (7-13) prove that the maximum actuation is achieved using 51 =pλ , 

22 =pλ and α=10 (the optimal design parameters). At 51 =pλ , 22 =pλ and α=10, 
maximum actuation range is also achieved, allowable states region widens, and region 
of modes of failure contracts.  



Medhat H. A. Awadalla 372 

The most common realistic values of stiffness k of music wire stainless steel 
spring are in the range from 20 to 2500. When α=10, the values of k are very huge and 
not realistic. To get realistic values for k the design parameter α=10 is changed in our 

design to be α=2. Then the realistic optimal design parameters will be 51 =pλ , 

22 =pλ and α=2.  
 

6. DESIGN A SPRING-ROLL DIELECTRIC ELASTOMER 
ACTUATOR 

After deriving the optimal values of design parameters p
1λ , p

2λ and α, the relaxed 

elastomer dimensions 11 Lpλ , 22Lpλ  and 33Lpλ should fit the purpose of the actuator 

designed for. 
The value of 3L affects the value of the dimensionless applied voltage 

εµ3LΦ . 32 LandL  affect the value of the dimensionless axial force 32LLP µ , 

while 321 ,, LandLL affect the value of α , [ ( ) ( )321 LLkL µα = ]. The dimensionless 

applied voltage εµ3LΦ can take values from 0.04 to 0.4 however for actuator 

designing, it is better to take values between 0.05 and 0.1. The dimensionless axial 
force 32LLP µ can take values from 0 to -30, but for actuator designing it is better to 

take values between 0 and -10. It should not be positive otherwise changes from 
compressive to tensile force.  

In appendix A, equations of state based Matlab software is developed to design 

Spring-Roll Dielectric Elastomer using the optimal design parameters 51 =pλ , 22 =pλ , 
α=2, the dielectric ε=3.21 for VHB 4910 material at frequency of 1k Hz, the 

permittivity 121085.8 −×=oε Farad/ meter, the shear modulus of this material 
510=µ Pascal. Samples of these designed items are mentioned in Table [1].  

Table [1]: Actuator design and required specifications  

Actuator designed specifications 
Actuator known 

specifications 

Φ 3L  
µ
ε

3L

Φ
 2L  

32LL

P

µ
 

1L  k P relaxL1  

4000 0.001 0.071 0.1 0 0.02 950 0 0.1 
4000 0.001 0.071 0.1 -1.0526 0.03 633 -10 0.15 
4000 0.001 0.071 0.1 -2.1053 0.04 475 -20 0.2 
4000 0.001 0.071 0.1 -3.1579 0.05 380 -30 0.25 
4000 0.001 0.071 0.1 -4.2105 0.06 317 -40 0.3 
4000 0.001 0.071 0.1 -5.2632   0.07 271 -50 0.35 
4000 0.001 0.071 0.1 -6.3158   0.08 237.5 -60 0.4 
4000 0.001 0.071 0.1 -7.3684 0.09 211 -70 0.45 
4000 0.001 0.071 0.1 -8.4211    0.1 190 -80 0.5 
4000 0.001 0.071 0.1 -9.4737  0.11 173 -90 0.55 
4000 0.001 0.071 0.1 -9.5694   0.12 174 -100 0.6 
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Actuation and actuation range of the above designed actuators can be 
determined from the curves of the generalized coordinates which can be plotted using 
Matlab program which developed for this purpose, (appendix B). Table 2 summarizes 
the achieved results. 

 

Table [2]: Maximum actuation and Actuation range  

Maximum 
actuation 

Actuation 
range P 

32LL

P

µ
 Φ 

µ
ε

3L

Φ
 

From  To  
3.358 1.25 3.358 0 0 4000 0.071 
3.01 1.25 3.01 -10 -1.0526 4000 0.071 
2.651 1.25 2.651 -20 -2.1053 4000 0.071 
2.305 1.25 2.305 -30 -3.1579 4000 0.071 
1.945 1.25 1.945 -40 -4.2105 4000 0.071 
1.625 1.25 1.625 -50 -5.2632   4000 0.071 
1.255 1.25 1.255 -60 -6.3158   4000 0.071 

 
7. CONCLUSION 

This paper described new techniques to design optimal parameters of dielectric 
elastomer spring–roll actuator. We introduced a new definition of actuation range 
concept. We considered maximum actuation and actuation range as measures of 
performance; on this basis, we deduced the values of optimal design parameters. The 
graphical representation of the equations of state proves the correct choice of values of 
optimal design parameters.  Construction of actuator and modes of failure demonstrate 
the region of allowable states and define the conditions of robust design. We developed 
an optimal design parameters based Mat-Lab program to design details of the actuator; 
length, width and thickness of the dielectric elstomer laminate, applied voltage, 
stiffness of the spring, actuation and actuation range of the actuator. The achieved 
results confirmed the reliability and robustness of the proposed techniques.  
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9. APPENDICES 

APPENDIX A 

function [phi, l3, PHI, l2, axialforce, k, 
l1]=design (p, l1relax) 
% l1: length of dielectric elastomer 
membrane before prestraining 
% l2: width of dielectric elastomer 
membrane before prestraining 
% l3: thickness of dielectric elastomer 
membrane before prestraining 
% phi: applied voltage 
% PHI: dimensionless applied voltage 
% p: axial force 
% axialforce: dimensionless axial force 
% k: spring stiffness 
% l1relax: axial length of the actuator 
after prestretching 
% This program is used to design a 
Spring-Roll Dielectric 
Elastomeractuator 
epselon=3.21*8.85*10.^-12; 
mu=10.^5; 
for phi=3000: 50: 4000 
    for l3=7.5*10.^-4: 10.^-4: 10.^-3 
        PHI=(phi/l3)*sqrt(epselon/mu); 
        while PHI >=0.05 && PHI <=0.1 
            disp(phi); 
            disp (l3); 
            disp (PHI); 
            break; 
        end 
        for l2=0.1: 0.01: 1 
            axialforce=p/(mu*l2*l3); 
            if axialforce >= -10 && 
axialforce <= 0 
               disp (l2); 
               disp (axialforce); 
               break; 
            end 
        end     
    end 
end 
k=10*mu*l2*l3/l1relax; 
l1=l1relax/5; 
disp (l1); 

disp (k); 
 
APPENDIX B 

function [q, d1]=draw (d1p, d2p, a, p, 
phi) 
% q: dimensionless charge (the first 
generalized co-ordinate) 
% d1p: lampda1p, prestrain of the 
length of the dielectric elastomer 
membrane 
% d2p: lampda2p, prestrain of the 
width of the dielectric elastomer 
membrane 
% a: alpha 
% p: dimensionless axial force 
% phi: dimensionless applied voltage 
% d1: strain (the second generalized 
co-ordinate) 
% This program is used to plot modes of 
failure, dimensionless axial force, and 
dimensionless 
 % applied voltage 
d1=[0: 0.1: 5]; 
q=sqrt(((1+a)*(d2p.^2)*(d1.^4)) +3); 
plot(q, d1, 'b'); 
hold on 
d1=[0: 0.1: 5]; 
q= 1.6855*d2p*d1; 
plot(q, d1, 'k'); 
hold on 
d1=[0: 0.1: 5]; 
q=sqrt(((d2p.^2)*(d1.^4)) -1); 
plot(q, d1, 'm'); 
hold on 
d1=[0: 0.1: 5]; 
q=sqrt((d2p.^4)*(d1.^2) -1); 
plot(q, d1, 'g'); 
Hold on 
d1=[0: 0.1: 5]; 
q=phi*(d2p.^2)*(d1.^2); 
plot(q, d1, 'r'); 
hold on 
d1=[0: 0.1: 5]; 
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q=sqrt((d2p.^2 * d1.^4) -1 + (a * d2p.^2 
* d1.^4) - (a * d1p * d2p.^2 * d1.^3) - 
(p * d2p.^2 * d1.^3)); 
plot(q, d1, 'c'); 

hold on 
d1=0*q + d1p/4; 
plot (q, d1, 'k') 

 

  الوصول بمعاملات تصميم مشغلات الإلاستومر العازل الملفوف على زنبرك

  إلى الحالة المثلى 

يمكن تحسين أداء المشغلات الميكانيكية المصنوعة من الإلاستومر العازل الملفوف على زنبرك بشكل 
  ).أى المشغل(ملحوظ عن طريق الاختيار الحكيم لبارامترات تصميمه 

  : ه تحدياً للأسباب الآتيةولكن هذا التصميم يواج
  . عدم خطية المعادلات التى تصيغ التصميم •
  . قد تتعرض هذه المشغلات لأنماط متعددة من الانهيار •
  . صعوبة تحديد القيم المثلى لبارامترات التصميم •
 . كيفية قياس أداء هذه المشغلات •

  ):دات قياسليس لها وح(ولهذا النوع من المشغلات ثلاث بارامترات تصميم لابعدية 
  .مط أولى لرقاقة الإلاستومر فى اتجاه الطول •
  .مط أولى لرقاقة الإلاستومر فى اتجاه العرض •
 النسبة بين صلابة الزنبرك وصلابة الإلاستومر •

ويهدف هذا البحث . هذا النوع من المشغلات) تركيب(وتحدّد قيم هذه البارامترات قبل الإنتهاء من تشييد 
لمثلى لبارامترات تصميم مشغلات الإلاستومر العازل الملفوف على زنبرك حتى إلى الوصول إلى القيم ا

  . يمكن الوصول إلى أقصى استطالة
سوفت ويير لتمثيل المعادلات التى تصيغ التصميم تمثيلاً  وفى هذا البحث ايضاً تم استحداث برنامج

بيانياً عند أي قيمة من قيم بارامترات التصميم وبرنامج آخر لتصميم ابعاد المشغل فى حالة الاسترخاء، 
وأيضاً الجهد المسلط عليه، و صلابة الزنبرك المستخدم فيه وذلك عند معرفة طول المشغل والحمل 

عدت جداول أدرج فيها عينات من هذه التصميمات عند أطوال مختلفة للمشغلات وعند وقد أ. الواقع عليه
عدد من الأحمال المختلفة الواقعة عليها، كما تم ايضاً إيجاد النهاية العظمى للاستطالة ومدى الاستطالة 

ات ويصف هذا البحث كيفية تفادى منطقة الانهيار . للتصميمات السابقة وتم إدراجها فى جدول آخر
  .والخروج منها

وبهذا يقدم ]. 6-1[وبمقارنة هذا البحث بالأعمال الموجودة حالياً نجد أن النتائج التى تحققت تؤكد تفوقه 
هذه البحث تقنيات تصميم قوية وموثوق بها فى تصميم مشغلات الإلاستومر العازل الملفوف على زنبرك 

 . بيقات مختلفة فى الأغراض الطبيةويمكن استخدامها فى تط% 300والتى تفوق استطالتهاعن 


