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Abstract 
Petrophysical properties evaluation of shaly sandstone reservoirs is a challenging task in 
comparison to clean sand reservoirs. Logging derived porosity in shaly sands requires shale 
correction and Archie’s formula cannot be used in shaly sands for the determination of 
water saturation, therefore many water saturation models were proposed to get accurate 
water saturation of shaly sand reservoirs. In this paper, three water saturation models were 
used; two empirical models (Simandoux and total shale) and one theoretical model 
(effective medium model). Shale corrected density log was used in all models.  The use of 
computer-generated algorithm, fuzzy log neural network is of increasing interest in the 
petroleum industry. This paper presents artificial neural network (ANN) as an effective tool 
for determining porosity and water saturation in shaly sand reservoir using well logging 
data. ANN technique utilizes the prevailing unknown nonlinear relationship in data 
between input logging data and output petrophysical parameters. Results of this work 
showed that ANN can be supplement or replacement of the existing conventional 
techniques to determine porosity and water saturation using empirical or theoretical water 
saturation models. Two neural networks were presented to determine porosity and water 
saturation using GR, resistivity and density logging data and adapted cut off for porosity 
and water saturation. Water saturation and porosity were determined using conventional 
techniques and neural network approach for two wells in a shaly sand reservoir. Neural 
network approach was trained for porosity and water saturation using the available well 
logging data. The predicted porosity and water saturation values have shown good 
matching with the core data in the two wells in comparison to the porosity and water 
saturation derived from the conventional techniques. This work showed that developed 
neural network (ANN) could provide an accurate porosity and water saturation in shaly 
sands reservoirs, it is subject to volume of available well logging data. 

 
 

Introduction 

Shaly sand layer is a sandstone with a considerable 

amount of clay minerals (shale) distributed in different 

forms depending geological depositional conditions. The 

term “shale” is defined and used differently in various 

disciplines in the petroleum industry. From a geologist’s 

perspective, shale is defined as a clastic sedimentary rock 

with a fine grain size below 0.031 mm and having > 35% 

clay minerals and silt grains; From a reservoir engineer’s 

point of view, shale is simply classified as low 

permeability or impermeable formation. The distribution 

of clay minerals in sandstone rock can be in three forms: 

dispersed, laminated, or structural with each form having 

different direct effects on porosity and indirect effects on 

water saturation. The relationship between different 

petrophysical properties and fluid saturation is well-

known for clean sand reservoirs, developed by Archie 

1942 [1]. The existence of shale in reservoir rock is, 

however, an extremely disturbing factor because it (a) 
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complicates the determination of oil-in-place, (b) 

considerably reduces the permeability of the reservoir 

rock for oil production, and (c) significantly affects the 

reservoir characterization of shaly sand producing 

formations. [1,2,3,4,5] 

Shale volume or clay content has a significant impact on 

porosity, permeability and water saturation. In general, 

shale is indicated by high gamma-ray responses and low 

resistivity. However, as it was mentioned above, 

interpretation and estimation of the main petrophysical 

parameters from log responses with shale consideration 

is a complex matter. Over the decades, many corrections, 

correlations, and even new models have been proposed 

and published for the estimation of petrophysical 

parameters in shaly sand formations. Nonetheless, there 

is still, a certain extent of error in manual empirical 

calculations due to its non-linear nature and assumptions 

made for each model to account for uncertainties. [5,6,7] 

Water saturation is usually derived from resistivity log, 

however, most of the water saturation models evolved 

from the very first and basic Archie’s equation with 

considerations of conductivity contributed by clay or 

shale presence. The core assumption of Archie’s equation 

is that the formation is considered as clean sands with no 

shale or clay presence. This implies that this equation 

assumes the matrix has zero contribution of conductivity 

to the formation resistivity. [1,2,5,8,9] 

In shaly sand formations, the clay bound water has to be 

taken into account Peeters [10]. In general, the formation 

water is saline and have charged ions such as Cl- (anions) 

and Na+ (cations). The dipole nature of water molecules 

creates an exchange of cations and anions, conducting a 

current through the pore water. Thus, the presence of the 

bound water results in an extra conductivity which 

distorts the principles of standard log-derived 

calculations of water saturation. Alruwaili & Alwaheed 

[11] reported that shale type distribution must also be 

considered. Many empirical models have been developed 

for calculation of water saturation in shaly sands and they 

are dependent on input variables, and type of clay 

minerals and their distributions. Table 1 summarizes the 

most commonly used water saturation models that were 

developed for shaly sand formations. [5,12,13,14,15] 

                 

 Table 1  Shaly Sand Application for the calculation of water saturation [15] 
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Analyzing shaly sand formations using water saturation 

shaly sand models is challenging for log analysts because 

there is no recommendations or clear limitations for 

using a certain model than others. There is also no 

complete sensitivity analysis to test the different water 

saturation shaly sand models against any errors in the 

following: porosity, volume of shale, true formation 

resistivity, shale resistivity, mud filtrate resistivity, water 

resistivity, spontaneous potential, temperature, and 

Archie's constants (a, m, n) values. In this regard, neural 

network could be taken as the rightful tool or model for 

accurate determination of water saturation and effective 

porosity of shaly sand layers. [3,13]  

Neural network is a computational model of a largely 

distributed processor with parallel networks which uses 

input processing units called neurons to predict single 

output values for non-linear problems. It is a machine-

representative of a human brain that can attain and store 

knowledge and learn through a training process to solve 

for problems with inputs that are unseen before [16,17]. 

As a human brain is made of nuclei, dendrites, and axons 

to convey signals, the imitated neuronal model is also 

made of 3 main components; (I) a set of synapses or 

connecting links, each characterized by its "weights" (II) 

An adder for combining or generalizing the input signals 

and (III) An activating function to limit the boundaries of 

an output signal.[18,19,20] 

Multilayer Perceptron (MLP) networks can provide a non-

linear relationship between inputs and outputs. 

Therefore, the MLP networks are the most suitable for 

function approximation. The additional advantage is the 

ability to learn and generalize with its built-in capability 

to adapt the synaptic weights to decrease the error. 

Moreover, this network structure shows great robustness 

and error tolerance due to its built-in redundancy; even if 

there are a few faults in its hidden components, the 

network's overall performance will not be affected, 

unlike Multiple Linear Regression (MLR) which also 

predicts relationship among variables, MLP does not tend 

to reinforce the algorithm for predicted values to lie close 

to the mean values and hence, it maintains the variable 

and non-linear nature of the data. [21, 22] 

For the above-mentioned advantages, MLP architecture 

is the best candidate for estimating petrophysical 

parameters since these parameters cannot be simply 

derived directly from well log and core data due to their 

non-linear nature in complex reservoirs. The known 

petrophysical models and formula are tuned for such 

reservoirs with many assumptions and the results can 

mostly be distorted with errors, which, in extreme cases, 

are negligible. [16, 23, 24, 25, 26] 

One of the challenges faced in training MLP is the over-

fitting of data where the network memorizes the training 

data. The performance of the network is reduced when 

exposed to unseen testing data, to avoid this, data must 

be allocated into three separate groups for training, 

validation and testing. Moreover, regression line can be 

plotted to see the generalization performance of the 

network. Figure 1 illustrates the artificial neuron and 

Figure 2 illustrates the perception of the hidden layers 

used in the design of ANN algorithm. [21,27,28,29,30,31].  

 

 

 

 

 

 

 

 

Figure 1 Model of Artificial Neuron,[28] 
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Figure 2 Multilayer Perceptron Network [27] 

Neural Network Applications in Shaly Sand Evaluation, 

Elshafei & Hamada [32] achieved a successful result in its 

utilization of neural networks for predicting porosity, 

water saturation and hydrocarbon potential index of a 

shaly sand formation. Jozanikohan et al [33] also 

conducted a study on the application of MLP network for 

clay estimation in shaly sandstone reservoir, Shurijeh gas 

field in Northeastern Iran. The results showed a 

satisfactory success in estimating clay content using MLP 

network, and backpropagation algorithm with values 

close to laboratory data, the network is then validated 

with unseen core data. Moreover, this study as well 

conquered the conventional petrophysical and multiple 

linear regression models. Different network architectures 

require appropriate learning algorithms where the 

network structure involves determining: the number of 

hidden layers and the number of neurons in the layers, 

type of activation function in hidden and output layers, 

and selecting the optimization learning algorithm. As 

there are no clear limitations for using a certain model of 

the shaly sand models, the objective of this study is to 

help the log analyst to choose the suitable model for any 

formation under study based on sensitivity analysis taken 

place. Accurate prediction of water saturation from ANN 

depends on the accuracy of the training patterns, which 

are from the computer processed interpretation (CPI) 

logs, and the accuracy of the individual log 

measurements. The idea of using neural networks for 

fluid saturation is thus not to eliminate the careful 

petrophysical evaluation behind the CPI log, but to 

transfer into the neural 

network for future application the effort and expertise 

already imbedded in the 

petrophysical database. Comparison of Sw values of the 

neural network with those 

of CPI logs, in wells that are unknown to the network, 

indicates a standard error 

of less than 0.03. For porosity prediction we have made a 

study initially with a single neural 

network and then by the CM approach. [16, 17, 34,35,36]   

This paper focuses on the application of artificial neural 

network (ANN) as an effective tool for determining 

porosity and water saturation in shaly sand reservoir 

using well logging data. ANN technique utilizes the 

prevailing unknown nonlinear relationship in data 

between input logging data and output petrophysical 

parameters. Results of this work showed that ANN can be 

supplement or replacement of the existing conventional 

techniques to determine porosity and water saturation 

using empirical or theoretical water saturation models. 

Two neural networks were presented to determine 

porosity and water saturation using GR, resistivity and 

density logging data and adapted cut off for porosity and 

water saturation. Water saturation and porosity were 

determined using conventional techniques and neural 

network approach for studied two wells in a shaly sand 

reservoir.  

Used Data and Methodology 

A set of logging data of two wells (Well A and Well B) of 

Upper Cretaceous shaly sand formation in the Western 

desert, Egypt was available. This includes five types of 

well log data: gamma-ray, laterolog deep, density, 

neutron and photoelectric factor. Core data was available 
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for the section 8284 ft to 8373 ft with 90 data points in 

Well A and 8194 ft to 8378 ft with 179 data points in Well 

B. Using this data, evaluation of petrophysical properties, 

mainly porosity and water saturation were done by two 

approaches; conventional approach and neural network 

approach. This work starts by determining water 

saturation and porosity using well logging records of GR, 

prosody logs and resistivity logging records using 

conventional methods and in the second stage ANN will 

be tested and validated to predict porosity and water 

saturation of shale sand layers.    

Evaluation of Petrophysical Properties of 
Shaly Sandstone Reservoir (Conventional 
Approach) 
 
In this section, using conventional well logging records of 

porosity logs and resistivity logs, petrophysical properties 

mainly porosity and water saturation will be determined 

using conventional methods. Porosity and water 

saturation for both Well A and Well B were calculated 

using conventional empirical formula. The results were 

plotted against depth in comparison with the measured 

water saturation and porosity from core samples analysis 

and shown in the figures in following sections.  

(a) Porosity 

 Log-derived total porosity was determined 

using RHOB and NPHI logs as input to the empirical 

formula as below. 

∅𝐷 =
𝜌𝑚𝑎−𝜌𝑏

𝜌𝑚𝑎−𝜌𝑓
    (1) 

where, ∅𝐷 = porosity density, 𝜌𝑚𝑎  = matrix density 

(assumed 2.67 g/cc), 𝜌𝑏 = bulk density, 𝜌𝑓 = fluid density 

(assumed 1 g/cc). 

∅𝑡 =
∅𝐷+∅𝑁

2
     (2) 

 

where.,∅𝑡=total porosity, ∅𝐷= density porosity, ∅𝑁= 

neutron porosity (NPHI). 

To calculate effective porosity, shale volume must be 

known. Shale volume was calculated using GR log and 

correlation [3 and 4], where: 

IGR =
GRLog signal−GRClean rock 

GRShale−GRClean rock 
         (3)

  

𝑉𝑠ℎ = 0.33(2(2𝐼𝐺𝑅) − 1)                        (4) 

 

Where, IGR = gamma ray index, GRLog signal= 

gamma ray reading of zone of interest (API), 

GRClean rock = gamma ray reading of clean bed (API), 

 GRShale = gamma ray reading of shale bed (API), 𝑉𝑠ℎ= 

shale volume. 

∅𝑒𝑓𝑓 = ∅𝑡(1 − 𝑉𝑠ℎ)    (5) 

where, ∅𝑒𝑓𝑓= effective porosity, ∅𝑡= total porosity, 𝑉𝑠ℎ= 

shale volume. 

 

Porosity was calculated for both Well A and Well B by 

using the empirical formula depicted in equations 

number (1) to (5). The results were plotted against depth 

in comparison with the core porosity. In Figure 3, from 

the plot of calculated porosity versus core porosity of 

Well A, it can be observed that the conventional 

approach gave an acceptable accuracy for sections with 

insignificant shale content. However, for sections with 

high shale content or very shaly sections, which are from 

8310 ft to 8370 ft, the accuracy was very poor when 

validated with core data. Similarly, in Figure 4, the plot of 

calculated porosity versus core porosity of Well B, it 

showed that shaly sections which are from 8240 to 8260 

ft and from 8280 to 8300ft yielded very poor accuracy 

when validated with core data. This is believed to be due 

to the distortion in log responses by the presence of 

shale, which led to errors in linear relationship assumed 

in log-derived calculations using linear empirical 

equations. 
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Figure 3 Log-derived Porosity versus Core Porosity, Well A 

 

 

 

 

 

 

 

 

 

Figure 4 Log-derived Porosity versus Core Porosity, Well B 

 

(b) Water Saturation 

Water saturation was determined by the conventional 

approach using three different models. The calculation of 

water saturation of shaly sand formations is considered a 

relatively large area of study with more than 30 

commonly used models to be covered. Therefore, three 

suitable models were chosen to be covered according to 

the type of shaly sand of the field where the data was 

taken from, which is laminated shale.  

Simandoux Equation This model was developed by 

Simandoux [37] to calculate water saturation of shaly 

sands based on laboratory experiments on physical 

reservoir models of artificial sands and clays. This 

equation works regardless of the type of shale 

distribution (Simandoux 1963). 

𝑆𝑤 =
𝑎𝑅𝑤

2∅𝑚 [√(
4∅𝑒𝑓𝑓

𝑚

𝑎𝑅𝑤𝑅𝑡
+

𝑉𝑠ℎ

𝑅𝑠ℎ
) −

𝑉𝑠ℎ

𝑅𝑠ℎ
]  (6) 

where, Sw = water saturation, Rt = true/deep resistivity 

(obtain from resistivity log), Rw = water resistivity, m = 

cementation exponent (assumed 2), n = saturation 

exponent (assumed 2), α= tortuosity factor (assumed 1), 

∅𝑒𝑓𝑓  = effective porosity, Rsh = shale resistivity,                   

Vsh= shale volume. 

Total Shale Model This model was developed by 

Schlumberger [4] based on the previous study by 

Simandoux and field experience in Niger Delta. This 

model also can be applied to any type of shale 
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distribution. However, it does not consider the effect of 

cementation factor unlike Simandoux, and relatively can 

reduce the accuracy. 

                                                          

                                                                                         (7) 

 

where, Sw =water saturation, Rt = true/deep resistivity 

(obtain from resistivity log), Rw = water resistivity, ∅= 

porosity, Rsh= shale resistivity, Vsh= shale volume. 

Effective-Medium Model   Water saturation equation 

medium effective model was derived from the Hanai-

Bruggeman (HB) equation. This is a theoretical model for 

water saturation calculation from resistivity and porosity 

measurements and can be used for laminated and 

dispersed shale distributions, the asuumption in this 

model  is that matrix and hydrocarbon can be treated 

together as developed by Berg [38] 

S𝑤

𝑛

𝑚 = (
1

∅
) . (

Rw

Rt

1

𝑚) . (
Rt − Rd

Rw −Rd
)  (8) 

where, R𝑑 =
R𝑟(1−∅𝑡𝑆𝑤

𝑛
𝑚)

(1−∅𝑡)
   (9) 

R𝑟 =
(1−∅𝑡)

(1−∅𝑠𝑎).(1−𝑉𝑠ℎ)

R𝑠𝑎
+

(1−∅𝑡).𝑉𝑠ℎ
𝑅𝑠ℎ

   (10) 

m = msa . (1-Vsh) + msh.Vsh   (11) 

Sw = whole-rock saturation, Rt = partially saturated whole-

rock resistivity, Rd = dispersed phase resistivity (the 

combination of matrix and hydrocarbons). Assumed 

values as, msa =1.8, msh= 2.7, Rsh = 10 Ωm, Rsa = 100 Ωm. 

Water saturation was calculated for both Well A and Well 

B by three shaly sand saturation models Simandoux, Total 

Shale and Effective-medium as depicted in equations (6), 

(7) and (8) respectively. In Simandoux equation, effective 

porosity was used as an input parameter. Thus, shale 

volume was determined first using equations (3) and (4). 

With calculated shale volume, effective porosity was 

determined using equation (5). The results were plotted 

against depth in comparison with the core data. Figure 5 

shows that Effective-medium model gave the best match 

with core data for Well A. However, it was difficult to 

select the best match for Well B since all three models 

produced similar trends with none of them being a 

perfect match with core data as seen in Figure 6. On the 

overall, the effective-medium model was considered as  

best choice according to the plots and logs. Thus, this 

model’s results will be used for comparison with neural 

network approach. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Water Saturation calculated by Different Models, Well A      
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Figure 6 Water Saturation calculated by Different Models, Well B 

 

Determination of Petrophysical Properties 

of Shaly Sandstone Reservoir (Neural 

Network Approach)  

This section presents application of ANN approach to 

estimate target petrophysical parameters; porosity and 

water saturation in shaly sands. Porosity and water 

saturation for both Well A and Well B were predicted by 

the neural network approach. The results were plotted 

against depth in comparison with the core data and 

conventional method. The two-layered feedforward 

networks were developed to predict porosity and water 

saturation, where for porosity, 25 neurons were used in 

the hidden layer and for water saturation, 30 neurons 

were used in the hidden layer. Both networks used five 

parameters as inputs which were well log data: gamma-

ray, laterolog deep, density, neutron and photoelectric 

factor. (Abdideh 2012) reported that in the first network 

for porosity prediction, the target output used for training 

was the core porosity and similarly, in the network for 

water saturation prediction, the target output used for 

training was the core water saturation. The available data 

was allocated to three sets which were training, validation 

and testing: 70%, 15% and 15% respectively. The training 

algorithm used in this project was Levenberg-Marquardt 

as this algorithm is mathematically easy to understand 

and training is time-efficient, especially in data fitting and 

function approximation problems. 

(a) Porosity 

Porosity prediction for Well A yielded a mean squared 

error of 0.002209 and Well B yielded a mean squared 

error of 0.002771. As observed in Figure 7, the predicted 

porosity of Well A gave a good match with core data in 

shaly sections compared to the conventional approach. 

Similarly, in Figure 8, the predicted water saturation of 

Well B gave a good match with core data in shaly sections 

compared to the conventional approach. 

(b) Water Saturation 

Water saturation prediction for Well A gave mean square 

error of 0.02141 and Well B yielded a mean squared error 

of 0.02921. As observed in Figure 9, the predicted water 

saturation of Well A gave a good match with core data in 

shaly sections compared to the conventional approach. 

Similarly, in Figure 10 the predicted water saturation of 

Well B gave a good match with core data in shaly sections 

compared to the conventional approach. 

Discussion of Results  

This part focuses on comparison beweeen water 

satuartion and porosity derived from from the 

conventional and the neural network approaches.  For 

both porosity and water saturation, neural network 

approach achieved better accuracy, even in sections with 

high shale content. 
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(a) Porosity 

• The results of porosity determined by both 

neural network approach and the conventional 

approach were plotted together in comparison 

with the core data. In Figure 7, a significant 

difference of the two approaches in terms of 

accuracy compared to core data can be observed 

in very shaly sections which are from 8280ft to 

8340 ft of Well A. Similarly, as seen in Figure 8, 

shaly sections of Well B which are from 8295ft to 

8335 ft and from 8360ft to 8373ft show that 

neural network approach is significantly more 

effective. Table 2 shows average porosity from 

conventional, ANN and core data for wells A & B 

over the same shaly sand section. 

 

 

 

 

 

 

 

 

 

 

Figure 7 Porosity from Neural Network and Conventional Approaches, Well A 

 

 

 

 

 

 

 

 

 

 

Figure 8 Porosity from Neural Network and Conventional Approaches, Well B 
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Table 2 Average porosity comparison from conventional, 

ANN for well A, B 

 
Average Porosity 

Core 

(Average)  

NN 

prediction 

Calculated  

Well A 0.133 0.125 0.155 

 Well B 0.12 0.10 0.16 

 

 

 

(b) Water Saturation 

The results of water saturation determined by both neural 

network approach and conventional approach were 

plotted together in comparison with the core data. In 

Figure 9, a significant difference of the two approaches in 

terms of accuracy compared to core data can be observed 

in very shaly section ranging from 8284ft to 8340 ft of 

Well A. Figure 10 shows that neural network approach is 

significantly more effective in Well B for almost the whole 

depth section. Moreover, Table 3 shows average water 

saturation from ANN, three shaly models for well A, B and 

core data for the same shaly sand section for Wells A and 

B. 

 

 

 

 

 

 

 

 

Figure 9 Water Saturation from Neural Network and Conventional Approaches, Well A 

 

 

 

 

 

 

 

 

Figure 10 Water Saturation from Neural Network and Conventional Approaches, Well B 
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Table 3 Average water saturation comparison conventional and ANN for well A, B 

  Average Water Saturation 

Core (Average) NN prediction MEF Simandoux Archie 

Well A 0.34 0.32 0.39 0.45 0.58 

 Well B 0.52 0.51 0.55 0.57 0.65 

 

Conclusion 

• Density porosity was determined using 

conventional methods and water saturation was 

determined using three water saturation models 

for shaly sands reservoir. Results have referred 

to core data values in studied wells in case study 

of shaly sandstone filed.  

• Two neural networks were successfully 

developed, trained, validated and tested. The 

first network predicted porosity and second one 

predicted water saturation. Generated results 

have demonstrated excellent match with core 

values and it is found that Neural network with 

Levenberg-Marquardt Back-propagation 

algorithm is most reliable to predict porosity and 

water saturation in shaly sand layers.  

• Data Scattering between ANN approach values 

and the core data has been observed and to 

minimize such scattering, it is recommended to 

have much data points in testing level to 

produce the most suitable ANN algorithm 

ending with good estimation of the targeted 

petrophysical parameters.  
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