
Journal of Engineering Sciences, Assiut University, Vol. 39, No 3, pp.607 -624, May 2011

607

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION
WITH KEYWORD SEARCH SYSTEM

B. MORGAN1, M. HAMADA2, AND G. ABDELFADEL3

(Received Jaunary18, 2011 Accepted Arial 18, 2011)

Efficient Public key encryption with key word search (EPEKS) enables
user Alice to send a secret key to a server that will enable the server to
locate all encrypted messages containing the keyword, but learn nothing
else. We have already published a previous paper explaining this scheme
the Efficient Public Key Encryption with Keyword Search (EPEKS). In
this paper, we focused on the relationship between the security and
(EPEKS). Firstly we briefly review the construction of this scheme
(EPEKS). (EPEKS) doesn’t base on Identity Based Encryption or pairing
which was used in the construction of the (PEKS) that proposed in
Boneh’s paper and other papers; it is based on Public Key Cryptosystem.
Secondly, we explained and compared between previous published
papers and clarified the relationship between security and (EPEKS).
Finally, we mentioned the encryption mechanisms regarding the system.

KEYWORDS: EPEKS, Encryption email, Hash function, Mail server,
Refreshing keywords, Security.

1. INTRODUCTION

1.1 Basic Concept

In [1] EPEKS realizes the following scenario. Suppose Alice, who is a manager of a
bank, is having a holiday and away from work. She is equipped with a smart phone that
can be used to check her important emails, in case there is an urgent email that requires
her attention. In this scenario, Alice should be able to select her important emails to be
read during her holiday, but not all of them. Due to the importance of her email, all the
emails sent to her will be encrypted using her public key. This ensures that nobody
else, other than Alice, will be able to retrieve the emails directed to Alice. To enable
Alice to select her important emails, she must send a “hashed value” to the server, so
that the server can use this information to select the emails that Alice wants to read.
For instance, assume that the keyword W is known by both the sender “Bob” and the
receiver “Alice”, and a variable value r will be created by Bob. Both the keyword W
and the variable value r will be conjunct, hashed and sent by Bob. Bob would like to
send an email to Alice, he encrypts his email and the variable value r by using Alice’s
Public Key, and appends the hashed value to the resulting ciphertexts. The ciphertexts
and the hashed value will be saved in Alice’s mail server. When Alice wants to read
any urgent emails, she will send a request to the mail server regarding the new emails.

1 Bassant.Morgan@live.com
2 Assistance Professor, Communication and Electronics Department, Helwan University
3 Professor, Communication and Electronics Department, Helwan University.

B. MORGAN, M. HAMADA, and G. ABDELFADEL 608

 The mail server will reply by sending the encrypted variable value r. Alice will
decrypt the variable value r by using her private key, conjunct both the known
keyword W and the decrypted variable value r, and hash them to get the hashed value
that will be sent to the mail server to get the appropriate email.

In short, EPEKS provides a mechanism that allows Alice to have the email
server to extract emails that contains a particular keyword by providing a hashed value
corresponding to the keyword, while the email server doesn’t learn anything else about
the email.

In this paper, we focused on the relationship between security and EPEKS. We
mentioned some encryption mechanisms and clarified the security level of EPEKS
based on their definitions.

1.2 Related work and our Contributions

There are few papers directly related to Public Encryption with keyword Search PEKS.
In [1] the author built a new EPEKS scheme based on Public key Encryption.
However, PEKS was first introduced in Boneh [2], and later improved in Baek [3], Gu
[4], and Khader[5]. The works in [2, 3, 4 and 5] depend mainly on Pairing Based
Cryptography, and Identity Based Encryption IBE.

In [1] the author presented scheme called EPEKS where Alice sends secret key
to the receiver in order to get the original encrypted message from the mail server
which stores all the incoming messages from the sender Bob. Once Alice receives a
notification from the mail server stating that there is a message waiting for her, she
sends the secret key to the mail server. The secret keys come in the form of some kind
of data that is used to test the existence of keywords within an email without revealing
any other information. The author clarified the security of the system by adding some
functions to the system which are: Refreshing Keywords and Handling Multiple
keywords search. In [2] the authors presented general scheme called PEKS where
Alice gives trapdoors for the words she wants the gateway to search for. In practice,
the system will be used over many rounds. The server which received the trapdoor for
a keyword W can store the trapdoor and use it to learn all future emails with that
category. One can assume that the server cannot memorize trapdoors but this is a very
restrictive assumption and not easy to implement in practice. The paper does not
specify what happens if the server memorizes the trapdoor information related to the
keyword sent by Alice, and the protection against this situation is not discussed. In [3]
the authors mentioned that some search will be done by multiple keywords, but they
didn't discussed how one can formalize the concept of the multiple keywords search,
and create the PEKS cipertexts for multiple keywords. In [3] the authors pointed out
two features that were not covered in [2]. The first one was the ability to search for
multiple keywords. The second one was the requirement of secure channels, for
sending trapdoors. However, in [3] the authors mentioned that there were open
problems, such as the design of the PEKS, and the way to find an efficient and
convenient way to refresh keywords. In [4] the authors presented PEKS based on
pairing, and their paper provided a discussion on removing the secure channels from
PEKS, and presented secure channel free PEKS. In [5] the author mentioned that the
security of her new scheme was proved by showing that the use of Identity Based

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 609

Encryption IBE has a notion of key privacy, besides to the modifications which were
done to enable multiple keyword searches, and remove the need of the secure channels.

In [2-5] the authors mentioned that Public key encryption with keyword search
PEKS based on the pairing scheme. Constructing a PEKS is related to Identity Based
Encryption IBE, though PEKS seems harder to construct. They showed that PEKS
implies Identity Based Encryption, but the converse is currently an open problem.
In this paper, we discuss the following issues:

1- Brief description for the construction of EPEKS scheme.
2- Security and EPEKS.
3- Encryption mechanisms and EPEKS.
4- Neither secure channel nor pairing has been discussed in this paper.

2. PRELIMINARIES

In this section we will go through brief description for the construction of EPEKS
scheme.

2.1 Definitions of EPEKS

An encrypted email is sent from Bob to Alice. The gateway wants to check whether a
certain keyword exists in an email or not. Nevertheless Alice doesn’t want the email to
be decrypted by anyone except her, not even the gateway. This is a scenario where
efficient public key encryption with keyword search EPEKS is needed.

In our new scheme, three parties called "sender", "receiver", and "server" are
involved. The sender “Bob” is a party that creates and sends encrypted message and
variable value which we call "ciphertext". The server “mail server” is a party that
receives the encrypted message and variable value "ciphertext", stores them in its
database, and performs search upon receiving the request “check for new mail” from
the receiver. The receiver “Alice” is a party that sends the requests “check for new
emails” to the server to get the required data. The below diagram describes the process
in a simple steps. See Fig.1.

Fig.1 The parties of the new scheme EPEKS
A: The encrypted message “email” is sent by Bob.
B: The request “Check for new Emails” is sent by Alice.
C: The required data “new emails” is sent by the mail server.

B. MORGAN, M. HAMADA, and G. ABDELFADEL 610

2.1.1 The sender party has the following elements:

1- The encrypted message (M).
2- Sender's public key (Alice's public key KUa)
3- The chosen keyword (W), the keyword is known for both the sender and the

receiver.
4- Hash function (H).
5- Variable value (r).

2.1.2 The mail server

Contains a database which consists of the encrypted email Ekua(M), the hashed value
H(W||r), and the encrypted variable value Ekua(r).

2.1.3 The receiver party has the following elements:

1- Receiver's Private Key (Alice's private key KRa).
2- Hash function (H).
3- The chosen keyword (W).

2.2 Construction of EPEKS

The below section describes the construction of EPEKS by using both RSA as
cryptography algorithm, and hash function as authentication function. The below
section explain the EPEKS scheme in two stages. The first stage is the encryption
process, and the second stage is the decryption process.

2.2.1 The Encryption Process

The encryption is the first stage in our scheme, and it is done by the sender “Bob”
under the receiver’s “Alice” public key.

A) The Sender Party

Assumptions:
1- The keyword W is known by both the sender “Bob”, and the receiver “Alice”.
2- By using RSA algorithm, public key KU and private key KR are known by

Bob and Alice.
3- The variable secret value r is chosen and known by “Bob”.

Consider Bob sends an encrypted message to Alice, using her public key KUa.
Let the keyword W. This keyword will be added to the variable value r. Assume r is a
number, such as 10. The variable value r plus the keyword will be hashed by the hash
function.

It is important to hide r from the mail server and from anyone wants to reach
Bob's encrypted message, however Alice must know this variable value so as to get
Bob's encrypted message.

To solve this problem, Bob encrypts r under Alice's public key. Therefore,
Alice will be the only one who can decrypt r and reaches Bob's encrypted message.

Therefore, the three outputs from the encryption stage are: the encrypted
message Ekua(M), the encrypted variable value Ekua(r), and the hashed value

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 611

H(W||10). The outputs will act as inputs to Alice’s mail server as shown in Fig.2. Note
that r could be either a number or a word. In this document, r has chosen as number in
section 4, and 5.
So to send a message with keyword W, Bob sends
x1 = EKUa [M]
x2 = H [W || r]
x3 = EKUa [r]
X = x1||x2||x3

X = EKUa [M] || H [W || r] || EKUa [r] (1)

Fig.2 Sender Party

B) Mail Server Party

The mail server receives Eq.1 as input. Assume that the mail server database divided
into four columns: sender column, the encrypted message column, the hashed value
column, and the encrypted variable column. Each value will be directed and located in
its appropriate column (this behavior is done by the mail server itself, and it hasn’t
been discussed in this document). We assumed in this section that the database has
only one data value (one email) related to “Bob” as shown in table 1. In this document
we ignored the mail server application type.

The mail server stores these inputs in its database and gets ready to perform
search upon receiving the request (check for new emails) from the receiver to send her
the encrypted variable value as shown in Figure 3.

Table 1 Mail Server Database

Encrypted
Variable Value

Hashed Values Encrypted
Message

Sender

EKUa [r] H [W || r] EKUa [M] Bob

B. MORGAN, M. HAMADA, and G. ABDELFADEL 612

Fig.3 The communication between the Mail Server and the Receiver

2.2.2 The Decryption Process

A) The Receiver Party

Alice sends a request to check for her new emails, the mail server replies by sending
the encrypted variable value EKUa [r]. Alice decrypts the r by using her private key
DKRa [r]. She adds the variable value to the known keyword and hashes them by using
the hash function to get the hashed value H [W || r]. Alice sends the hashed value to the
mail server to be compared with the one which was sent by the “Bob” and stored in the
mail server database as shown in Fig.4

Fig.4 The Decryption Process at the Receiver Party

B) Mail Server Party

The hashed value received by the mail server. The main role for the mail server is
searching for any matching in its database regarding the hashed value. If the server
found the exact hashed value which Alice asked for, the server would send the
encrypted message to Alice, otherwise the mail server would send a message asking
Alice to try again as shown in Fig.5.

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 613

Fig.5 Matching process in the Mail Server

Due to the first assumption that the mail server database contains only one data
value (one email), then Alice will receive Bob’s email, and won’t get “Try again”. In
[1] is more instance than this section.

3. SECURITY AND EPEKS

In [2], the author mentioned that for a PEKS to be considered secure he needed to
guarantee that no information about a keyword is revealed unless the trapdoor of that
word is available. To define security against an active adversary A he used the
following game between A and challenger.
– CKA-Setup: The challenger runs the key generation algorithm and gives the

Apub to adversary A and keeps Apriv to itself.
– CKA-Phase 1: A asks the challenger for trapdoors corresponding to keywords of

its choice.
– CKA-Challenge: The adversary decides when phase 1 ends. Then it chooses two

words W0,W1 to be challenged on. The two words should not be among those for
which A obtained a trapdoor in phase 1. The challenger picks a random bit b ∈
{0, 1} and gives attacker. C = PEKS (Apub,Wb).

– CKA-Phase 2: A asks for more trapdoors like in phase 1 for any word of its
choice except for the W0, W1.

– CKA-Guess: A outputs its guess of b' and if b' = b that means A guessed the
encrypted message and the adversary wins.

He said that the scheme is secure against a chosen keyword attack (CKA) if A
has a low advantage of guessing the right word being encrypted.

He proved that this system is a non-interactive searchable encryption scheme
semantically secure against a chosen keyword attack in the random oracle model. The
proof of security relies on the difficulty of the Bilinear Diffie-Hellman problem
(BDH). Indeed, it is currently an open problem to build a secure IBE, and hence a
PEKS, without the random oracle model. In [3] the authors used the security notion for
PEKS schemes, “indistinguishability of PEKS against chosen keyword attack” which
was introduced in [2] to present important issues regarding PEKS, which were not
addressed in [2] paper which are: Refreshing keywords, Removing Secure Channel,
and Handling Multiple keywords. Firstly, the author discussed the refreshing keywords

B. MORGAN, M. HAMADA, and G. ABDELFADEL 614

issue and he presented a method which makes the size of a keyword space infinite and
makes it useless for the server to keep trapdoors. Hence, the security notion for PEKS
scheme IND – CKA, now becomes meaningful in reality. Secondly, In the PEKS
scheme in [2] there is a need to have a secure channel between Alice and the server, so
that an eavesdropper (Eve) cannot get hold of the trapdoors sent. No one but the server
should be capable of testing emails for certain keywords. This is one of the drawback
that the authors of [3] tried to solve by generating a public and a private key that
belong to the server. The PEKS algorithm was modified to encrypt keywords using
both Alice’s and the server’s public key, while the testing algorithm needs the server’s
private key as an input. In this way the scheme is secure channel free (SCF-PEKS)
because Eve cannot obtain the server’s private key, therefore cannot test.

The SCF-PEKS is said to be IND-SCF-CKA secure when it ensures that the
server that has obtained the trapdoors for given keywords cannot tell a PEKS
ciphertext is the result of encrypting which keyword, and an outsider adversary that did
not get the server’s private key cannot distinguish the PEKS ciphertexts, even if it gets
all the trapdoors for the keywords that it queries. He proved that IND – SCF – CKA
secure in the random oracle model assuming that the BDH problem is intractable.
Finally, he mentioned that in practice, one may need to relate multiple keywords to one
message. As Boneh [2] suggested, one can achieve this by simply creating
E(pkR,M)||PEKS(pkR,w1)||…….||PEKS(pkR,wn), where E denotes a secure public
key encryption function, however, that no formalization, efficient construction, and
issues related to disjunctive and conjunctive search were given in [2], and he dealt with
these problems by defining a PEKS scheme with multiple keywords and defining a
security notion for MPEKS, which he called “indistinguishability of PEKS with
multiple keyword search against chosen keyword attack (IND-SCF-CKA)”. He proved
that IND – MK – CKA secure in the random model assuming that BDH problem is
intractable. However, at the end of his paper, he concluded that the server’s attack by
storing trapdoors seems to be inherent weakness of PEKS. Another open problem is to
find a more efficient and convenient way to refresh frequently-used keywords than the
one proposed in his paper. In [4], the author provided further IND – MK – CKA
discussion on the notion of SCF – PEKS scheme, gave a formal security model and
presented an efficient SCF – PEKS scheme. The new scheme can also be proved to be
secure in the random oracle model. In [5], a new scheme was suggested for conjunctive
search called PECK. The scheme substitutes the PEKS algorithm with a PECK
algorithm that encrypts a query of keywords. The testing is done with a trapdoor for
each query instead of each word. So Bob sends Alice the following:

[E(Apub,M), PECK(Apub, (W1,W2, ...,Wm))]

She said that the scheme is secure against a chosen keyword attack (CKA) if
an adversary has a low advantage in guessing the right query of keywords being
encrypted. The author constructed a new scheme (KR-PEKS) the KResilient Public
Key Encryption with Keyword Search. The new scheme is secure under a chosen
keyword attack without the random oracle. The ability of constructing a Public Key
Encryption with Keyword Search from an Identity Based Encryption was used in the
construction of the KR-PEKS. The security of the new scheme was proved by showing
that the used IBE has a notion of key privacy. She showed that since the PEKS was
built from the KRIBE and KRIBE has key privacy notions then PEKS should logically

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 615

be proved to be secure under a CKA. The K-Resilient PEKS scheme [5] is based on the
Decisional Diffie Hellman problem (DDH). The security of such scheme is based on
the difficulty of solving DDH and whether the hash functions used are collision
resistant or not.

In this paper, we haven’t mentioned any secure channel. We discussed
refreshing keywords and handling multiple keywords under chosen keyword attack.

3.1 Refreshing keywords:

In [1] refreshing keywords in our mechanism depends on number of variable values
which are: a variable secret value r which will be added to the keyword, and a hashed
value, besides each message will has its own variable secret value. For instance, find
the below examples.

Example 1: Bob would like to send Alice a message M
Assume Bob and Alice have chosen a keyword W = Urgent.
Bob encrypts M under Alice’s public key EKUa[M].
Bob chooses and encrypts variable secret value r under Alice’s public key
EKUa[r]. r and W will be hashed by hash function at Bob’s end H [W ||r].
Assume that the attacker is the administrator of the mail server.

The three values EKUa[M], EKUa[r], and H [W ||r] will be sent from Bob to
the mail server and saved into its database as mentioned before in table 1.

Formally, we define security against CKA using the following game between
EPEKS and the attacker:

1- If the administrator would like to get r, he needs either Alice’s private key or
he needs to break the hashed value.

2- If the administrator would like to get M, he needs Alice’s private key.
3- If the administrator would like to get W, he needs to break the hashed value.

M, W, r, and the hashed value are unknown values for the administrator. The
administrator will not be able to decrypt r because he doesn’t know Alice’s private key,
besides he doesn’t have the keyword to be added to r to get the hashed value.

Therefore, the administrator will learn nothing about M, W, r, and the hashed
value. Even if he reach one of them, it will be difficult to get the rest.

From the above, we can get that the security of EPEKS system depends on
number of variables. It is too difficult for any attacker to get all the variables at the
same time to reach the encrypted message. One can decide that there is no need for the
refreshing keywords process, because all the variables are unknown. Despite of the
unknown variables, we would like to get the highest level in security by refreshing the
keywords.

Refreshing keywords in EPEKS against CKA has been proved in this
document through the below example.

Example 2: Bob would like to send Alice two messages M1,M2 by using the
same keyword.(The below is the second game between EPEKS and the attacker).

If we assumed that W = Urgent , and r = 10, Bob will send the message
normally as shown in example 1, but if Bob decided to use the same keyword W in the
second message, he will create a new r and this is the trick. Therefore the second
hashed value will be different from the previous one which was mentioned in example
one (1).

B. MORGAN, M. HAMADA, and G. ABDELFADEL 616

a. Let W = Urgent, and W is known by Bob and Alice.
b. Bob encrypts M under Alice’s public key EKUa[M].
c. Assume each M has its own r. [r1 = 10 and r2 = 20 for M1 and M2

respectively].
d. Bob chooses and encrypts two variable secret values r1, and r2 under Alice’s

public key EKUa[r1], and EKUa[r2].
e. r1, and r2 will be added to W and hashed by hash function at Bob’s end. H1

[Urgent ||10], and H2 [Urgent ||20].
f. Assume that the attacker is the administrator of the mail server.

Bob sent messages to the same receiver Alice, using the same public key,
using the same hash function, and using the same keyword in both messages. If the
attacker would like to get to W, it will be impossible because he doesn’t know either r1
or r2 to reach the hashed values. In case if he gets either r1 or r2, still W is unknown to
get the hashed value. Due to H1 [Urgent ||10] is not equal to H2 [Urgent ||20], it will be
difficult for the attacker to reach the encrypted messages.

Based on the above, Bob can use W as a keyword several time without
effecting the security of the EPEKS scheme. Even if the mail server has the ability to
store large number of hashed values, it won’t be able to memorize the hashed value
because they are not equal to each other due to the variable r. Hence the security
method of EPEKS scheme is easy to implement, and difficult to break under CKA.

3.2 Handling multiple keywords:

Multiple Keyword search in the EPEKS is the capability of searching for more than
one word in the mail server database. In [4], the author mentioned that multiple
keyword searches in a PEKS is the capability of searching for more than one word
either disjunctively or conjunctively. She continued that in [2] the only way to do this
is to search for each word separately and then do the disjunctive or conjunctive
operations on the result testing algorithm. In her point of view, this technique is
impractical when it comes to a large number of keywords on one conjunctive search
request, because every email is searched for every single keyword. She suggested a
new scheme for conjunctive search called PECK. This scheme substitutes the PEKS
algorithm with PECK algorithm that encrypts a query of keywords. The testing is done
with a trapdoor for each query instead of each word. She said that the scheme is secure
against a chosen keyword search attack (CKA) if an adversary has a low advantage in
guessing the right query of keywords being encrypted.

We presented the above opinion for the related works regarding multiple
keyword searches, however, in this document we proposed different mechanism which
is not related to the previous works. The below example explains the multiple keyword
search process.

Example3: Bob would like to send Alice a message M with two keywords W1, and W2
a. Assume Bob and Alice have chosen two keywords W1 = Urgent W2 =

Important.
b. Bob encrypts M under Alice’s public key EKUa[M].
c. Bob chooses and encrypts variable secret value (r) under Alice’s public key

EKUa[r].[assume r = 10]

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 617

d. Each (W) will be added to (r) and hashed by the hash function at Bob’s end. H
[W1 ||r1], and H [W2 ||r1], then the hashed values are H [Urgent ||10], and H [
Important ||10].
EKUa[M], H [Urgent ||10], H [Important ||10], and EKUa[10] will be saved

in the mail server database. Alice will send a request asking for new emails. The mail
server will reply by sending EKUa[10] to be decrypted under Alice’s Private key at
Alice’s end. Alice will add [10] to [Urgent and Important], and hashed them. If we
assumed that the mail server contains 100 encrypted emails from Bob to Alice, and
Alice would like to search for an important email in a short time. She will send the
hashed values H [Urgent ||10], and H [Important ||10] to reach the encrypted message
quickly.

Based on the above example, we can prove that EPEKS is convenient to
handle multiple keywords search, besides the keywords could be increased depending
on the known keywords which were assumed between Bob and Alice. Besides, the
more keywords will be used in the scheme the more complex the scheme will be.
EPEKS scheme is secure against a chosen keyword search attack (CKA) has a low
advantage in guessing the right keywords being encrypted. To break the scheme, it is
recommended from the attacker to guess either the keywords or the variable r in order
to reach the encrypted message.

4. ENCRYPTION MECHANISMS AND EPEKS

4.1 Semantic Security

Semantic security is a widely-used definition for security in an asymmetric key
encryption algorithm. For a cryptosystem to be semantically secure, it must be
infeasible for a computationally-bounded adversary to derive significant information
about a message (plaintext) when given only its ciphertext and the corresponding
public encryption key. Semantic security considers only the case of a "passive"
attacker, i.e., one who generates and observes ciphertexts using the public key and
plaintexts of her choice. Unlike other security definitions, semantic security does not
consider the case of chosen ciphertext attack (CCA), where an attacker is able to
request the decryption of chosen ciphertexts, and many semantically-secure encryption
schemes are demonstrably insecure against chosen ciphertext attack. Consequently,
semantic security is now considered an insufficient condition for securing a general-
purpose encryption scheme.

In [6] the notion of semantic security was first put forward by Goldwasser and
Micali in 1982. However, the definition they initially proposed offered no
straightforward means to prove the security of practical cryptosystems.
Goldwasser/Micali subsequently demonstrated that semantic security is equivalent to
the definition of security called ciphertext indistinguishability. [7] This later definition
is more common than the original definition of semantic security because it better
facilitates proving the security of practical cryptosystems.

Indistinguishability under Chosen Plaintext Attack (IND-CPA) is commonly
defined by the following game:

1. A probabilistic polynomial time-bounded adversary is given a public key,
which it may use to generate any number of ciphertexts (within polynomial
bounds).

B. MORGAN, M. HAMADA, and G. ABDELFADEL 618

2. The adversary generates two equal-length messages m0 and m1, and transmits
them to a challenge oracle along with the public key.

3. The challenge oracle selects one of the messages by flipping a fair coin,
encrypts the message under the public key, and returns the resulting ciphertext
c to the adversary.
The underlying cryptosystem is IND-CPA (and thus semantically secure under

chosen plaintext attack) if the adversary cannot determine which of the two messages
was chosen by the oracle, with probability significantly greater than 1 / 2 (the success
rate of random guessing). Variants of this definition define indistinguishability under
chosen ciphertext attack and adaptive chosen ciphertext attack (IND-CCA, IND-
CCA2).

Because the adversary possesses the public encryption key in the above game,
a semantically secure encryption scheme must by definition be probabilistic,
possessing a component of randomness; if this were not the case, the adversary could
simply compute the deterministic encryption of m0 and m1 and compare these
encryptions with the returned ciphertext c to successfully guess the oracle's choice.

Semantically secure encryption algorithms include Goldwasser-Micali, El
Gamal and Paillier. These schemes are considered provably secure, as their semantic
security can be reduced to solving some hard mathematical problem (e.g., Decisional
Diffie-Hellman or the Quadratic Residuosity Problem). Other, non-semantically-secure
algorithms such as RSA, can be made semantically secure (under stronger
assumptions) through the use of random encryption padding schemes such as Optimal
Asymmetric Encryption Padding (OAEP).

The EPEKS mechanism is secure against passive attacker because the
mechanism goes into three rounds. The first round when the mail server sends
EApub(r) to Alice (the receiver). At this point, if we assumed that the attacker knows
two variables (r1, r2) and we applied the above game, then EPEKS is IND-CPA (and
thus semantically secure under chosen plaintext attack) if the adversary cannot
determine which of the two variable values r was chosen with probability significantly
greater than 1/ 2 (the success rate of random guessing). The second round when the
receiver gets the variable (r) and adds the keyword W to hashes them to get the
required hashed value and returned the value back to the mail server. In the third
round, the mail server searches and matches the hashed value in its database and
returns back the possible encrypted message to Alice. For the attacker to get to the real
message (plaintext), firstly, the attacker must assume that he knows the hashed value
which a combination between the variable value r and the keyword W. Consequently,
if we assumed that the attacked got the hashed value and he would be able to send the
hashed value to the mail server on the receiver’s behalf to get the message, he must
know the receiver’s private key to decrypt the message. Secondly, the EPEKS has the
refreshing keywords function which uses different values of r for each message per
sender, which means that the attacker needs to break all the hashed values of the real
messages which come from the mail server. The probability to this assumption is very
week because each message has its own r and W and both of them are variables,
therefore the hashed value won’t be constant. It will be changed regarding the changing
of r and W.

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 619

4.2 Chosen-plaintext attack (CPA)

CPA is an attack model for cryptanalysis which presumes that the attacker has the
capability to choose arbitrary plaintexts to be encrypted and obtain the corresponding
ciphertexts. The goal of the attack is to gain some further information which reduces
the security of the encryption scheme. In the worst case, a chosen-plaintext attack
could reveal the scheme's secret key.

This appears, at first glance, to be an unrealistic model; it would certainly be
unlikely that an attacker could persuade a human cryptographer to encrypt large
amounts of plaintexts of the attacker's choosing. Modern cryptography, on the other
hand, is implemented in software or hardware and is used for a diverse range of
applications; for many cases, a chosen-plaintext attack is often very feasible. Chosen-
plaintext attacks become extremely important in the context of public key
cryptography, where the encryption key is public and attackers can encrypt any
plaintext they choose.

Any cipher that can prevent chosen-plaintext attacks is then also guaranteed to
be secure against known-plaintext and ciphertext-only attacks; this is a conservative
approach to security.

In our paper, we proved that EPEKS mechanism based on variables of values
r, W and H [r||W]. For the attacker to choose arbitrary plaintexts to be encrypted and
obtain the corresponding ciphertexts, the attacker must try to get the variable r which
will be sent by the mail server to the receiver. In this mechanism, r changes regarding
the message per sender; therefore, the ciphertext will be changed too. If we assumed
that the attacker would like to get EApub(M), then he needs to get the hashed value
which is a variable value per sender as well regarding the values r and W.

4.3 Chosen-ciphertext attack (CCA)

CCA is an attack model for cryptanalysis in which the cryptanalyst gathers
information, at least in part, by choosing a ciphertext and obtaining its decryption
under an unknown key. In the attack, an adversary has a chance to enter one or more
known ciphertexts into the system and obtain the resulting plaintexts. From these
pieces of information the adversary can attempt to recover the hidden secret key used
for decryption.

A number of otherwise secure schemes can be defeated under chosen-
ciphertext attack. For example, the El Gamal cryptosystem is semantically secure
under chosen-plaintext attack, but this semantic security can be trivially defeated under
a chosen-ciphertext attack. Early versions of RSA padding used in the SSL protocol
were vulnerable to a sophisticated adaptive chosen-ciphertext attack which revealed
SSL session keys. Chosen-ciphertext attacks have implications for some self-
synchronizing stream ciphers as well. Designers of tamper-resistant cryptographic
smart cards must be particularly cognizant of these attacks, as these devices may be
completely under the control of an adversary, who can issue a large number of chosen-
ciphertexts in an attempt to recover the hidden secret key.

When a cryptosystem is vulnerable to chosen-ciphertext attack, implementers
must be careful to avoid situations in which an adversary might be able to decrypt
chosen-ciphertexts (i.e., avoid providing a decryption oracle). This can be more

B. MORGAN, M. HAMADA, and G. ABDELFADEL 620

difficult than it appears, as even partially-chosen-ciphertexts can permit subtle attacks.
Additionally, some cryptosystems (such as RSA) use the same mechanism to sign
messages and to decrypt them. This permits attacks when hashing is not used on the
message to be signed. A better approach is to use a cryptosystem which is provably
secure under chosen-ciphertext attack, including (among others) RSA-OAEP, Cramer-
Shoup and many forms of authenticated symmetric encryption.

In simple words, in this attack, the attacker has somehow acquired some
encrypted data and he doesn’t know what it means. Usually this data is captured off a
network connection with a sniffer. Boris has two ways to try to crack the ciphertext:

• He can send the ciphertext back to the victim and social-engineer the victim to
decrypt it and send it back. With both the ciphertext and plaintext, the attacker
can figure out the key.

• He can try to find some plaintext that is probably included in the ciphertext and
work backwards from there.
This sort of attack is usually tried against e-mail that has been encrypted with a

public/private key combination.
Assume that the attacker would like to walk through the first way to figure out

the hidden key. In EPEKS, Bob (the sender) sends three different values EKUa[M],
EKUa[r], and H [W ||r] to the mail server. The three values will be stored in the mail
server database and we have already assumed that the attacker is the mail server
administrator. Formally, we define security against administrator using the following
game between EPEKS and the administrator:

1- If the administrator sends EKUa[r] to Alice to get the real message. that won’t
be happened because regarding the EPEKS system, H [W ||r] will be sent to
the mail server to be matched with others hashed values sorted in the mail
server database. Therefore, the administrator will get a hashed value hidden
underneath it the keyword and the original r not the plaintext (original
message). In this round, he won’t be able to get the real message.

2- If the administrator send EKUa[M] to Alice, Alice will keep the original
message stored at her mail box and won’t resend it back to the mail server
because it is not logic to resend the decrypted message to the mail server.
Assume that the administrator will walk through the second way to get the

plaintext (the original message). Based on the EPEKS construction we will notice that
the three variable values are stored in the mail server data base and if we assumed that
the administrator has the ability to access these information in order to try to get the
original message that means that he will focus on the keyword as it might has any
information related to the original massage to be able to know its contents. Actually the
keyword is added to the variable r and hashed together to get a complete hashed value.
So the administrator needs to break the hashed value and the main concept for CCA is
to gather information in order to get the hidden key not break the hashed value. If we
assumed that the administrator would like to focus on r instead of w, then he needs to
gather all the encrypted r in order to get to the hidden key but by using the EPEKS
mechanism which stating that each message has its own r which will be very difficult
for the administrator to get the hidden key.

Chosen-ciphertext attacks, like other attacks, may be adaptive or non-adaptive.
In a non-adaptive attack, the attacker chooses the ciphertext or ciphertexts to decrypt in
advance, and does not use the resulting plaintexts to inform their choice for more

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 621

ciphertexts. In an adaptive chosen-ciphertext attack, the attacker makes their ciphertext
choices adaptively, that is, depending on the result of prior decryptions.

4.3.1 Adaptive chosen-ciphertext attack

An adaptive chosen-ciphertext attack (abbreviated as CCA2) is an interactive form of
chosen-ciphertext attack in which an attacker sends a number of ciphertexts to be
decrypted, and then uses the results of these decryptions to select subsequent
ciphertexts. It is to be distinguished from an indifferent chosen-ciphertext attack
(CCA1).

The goal of this attack is to gradually reveal information about an encrypted
message, or about the decryption key itself. For public-key systems, adaptive-chosen-
ciphertexts are generally applicable only when they have the property of ciphertext
malleability — that is, a ciphertext can be modified in specific ways that will have a
predictable effect on the decryption of that message.

4.3.1.1 Practical attacks

Adaptive-chosen-ciphertext attacks were largely considered to be a theoretical concern
until 1998, when Daniel Bleichenbacher of Bell Laboratories demonstrated a practical
attack against systems using RSA encryption in concert with the PKCS#1 v1 encoding
function, including a version of the Secure Socket Layer (SSL) protocol used by
thousands of web servers at the time [8].

The Bleichenbacher attacks took advantage of flaws within the PKCS #1
function to gradually reveal the content of an RSA encrypted message. Doing this
requires sending several million test ciphertexts to the decryption device (eg, SSL-
equipped web server.) In practical terms, this means that an SSL session key can be
exposed in a reasonable amount of time, perhaps a day or less.

4.3.1.2 Preventing attacks

In order to prevent adaptive-chosen-ciphertext attacks, it is necessary to use an
encryption or encoding scheme that limits ciphertext malleability. A number of
encoding schemes have been proposed; the most common standard for RSA encryption
is Optimal Asymmetric Encryption Padding (OAEP). Unlike ad-hoc schemes such as
the padding used in the early versions of PKCS#1, OAEP has been proven secure in
the random oracle model [9]. OAEP was incorporated into PKCS#1 as of version 2.0
published in 1998 as the now-recommended encoding scheme, with the older scheme
still supported but not recommended for new applications.

4.3.1.3 Mathematical model

In complexity-theoretic cryptography, security against adaptive chosen-ciphertext
attacks is commonly modeled using ciphertext indistinguishability (IND-CCA2).

In our mechanism, if we give the attacker the chance to choose cipher texts and
send them to the system to be able to get the secret key or the real message itself, it will
be very difficult to get them. The EPEKS system is based on variables. The first
variable is r, if we assumed the attacker will send to the system r on the behalf of the
mail server. Then the receiver will get r and try to add it to the known keyword from

B. MORGAN, M. HAMADA, and G. ABDELFADEL 622

his choice to get the hashed value therefore to send it to the mail server again to get the
correct message. If the mail server didn’t get the correct hashed value, it will send a
message asking the receiver to try again, consequently the attacker won’t be able to get
to the real message unless he knows the keyword W (and the keyword is known only
for both the sender and the receiver). The second variable is the keyword W, as it is
known for both the sender and the receiver. If we assumed that the attacker succeeds to
get to the keyword W and gets the hashed vales as well. Then at this point, you might
think that the system has been attacked, but this is not true because the system has two
functions which the refreshing keyword, and the multiple keywords. Refreshing
keyword gives the system the availability to add number of variables for each message
at the same round. Therefore, it is a must for the attacker to get all the variable values r
and to guess their keyword to be able to reach the ciphertext and get either the real
message or the secret key. Multiple keywords is another function for EPEKS, if we
assumed the both the sender and the receiver have decided to choose 2 keywords
instead of one and use one variable value r for both keywords, then the attacker must
guess the correct 2 keywords and added them to r to be able to break the mechanism.

5. EFFICENT CONSIDERATION, COMPUTATIONS AND
COMPLEXITY

5.1 Traffic (Transmission):

From this paper, you will notice that we are making number of traffic especially
between the mail server and the receiver (Alice). The journey of the traffic begins by
sending the mail server a notification for the receiver (Alice) that it has received a new
message for her. At this moment, the mail server sent the encrypted value (r). The
second trip, when the receiver Alice sends the hashed value in order to get the real
encrypted message. The third trip, when the mail server sends the real message to the
receiver (Alice). At this stage, anyone can think that the traffic scenario has been
ended. This is not true. On other words, if we would like to add another scenario, we
can assume that Alice has sent a wrong hashed value which is related to an incorrect
value (r) or an incorrect known word (W), consequently the hashed value was wrong.
In this case, the mail server will create a new traffic to Alice asks her to resend the
correct hashed value in order to get the correct message. You will notice that the traffic
in the EPEKS mechanism or the transmission is different than what was presented in
Bon’s paper. The traffic can be seen as a gap in this mechanism which will allow the
trackers to try to get any information to get the real message or the secret key or to be
under the traffic analysis control. Traffic analysis is the process of intercepting and
examining messages in order to deduce information from patterns in communication. It
can be performed even when the messages are encrypted and cannot be decrypted. In
general, the greater the number of messages observed, or even intercepted and stored,
the more can be inferred from the traffic. Traffic analysis can be performed in the
context of military intelligence or counter-intelligence, and is a concern in computer
security.

Traffic analysis tasks may be supported by dedicated computer software
programs, including commercially available programs such as those offered by i2,
Visual Analytics, Memex, Orion Scientific, Pacific Northwest National Labs, Genesis

SECUIRTY USING THE EFFICIENT PUBLIC KEY ENCRYPTION 623

EW's GenCOM Suite and others. Advanced traffic analysis techniques may include
various forms of social network analysis. To fix the above issue and to protect our
mechanism from the traffic analysis, a Traffic flow security has appeared. Traffic-flow
security is the use of measures that conceal the presence and properties of valid
messages on a network to prevent traffic analysis. This can be done by operational
procedures or by the protection resulting from features inherent in some cryptographic
equipment. In the encryption mechanism section which found in this paper, we have
shown and proved how EPEKS is difficult to be attacked as EPEKS depends on
number of variable values which made multiple keywords and the refreshing keywords
advantages.

5.2 Computation:

Assume that the public key algorithm is RSA, and hash algorithm is SHA-512. In [10],
test is performed on Pentium III machine. The time required to encrypt the message
approximately is 0.054 seconds, and the hashed value that is related to [11], could be
obtained after 40.2 cycles/byte if we assumed that 1 block = 128 bytes. These
calculations are done at Bob’s side, the encryption stage. At Alice’s side, the time
required for sending the request could be negligible, also at the mail server side, the
time required to send the total encrypted (r) values could be negligible. Alice receives
the total (r) to obtain the hashed value; it could be similar to the first hashed value. The
time required to search for the hashed value in the mail server database, depends on the
size of the mail server, and the speed of the processor to execute one instruction, and it
changes due to the processor model. Alice decrypts the message under her private key
in 0.903 seconds.

6. CONCLUSIONS

In this paper we defined EPEKS the Efficient Public Key Encryption with Keyword
Search mechanism. We explained the construction of the EPEKS. Constructing the
EPEKS is related to public key cryptosystem, not Identity Based Encryption IBE
which was used in the rest of PEKS papers. EPEKS is easier to be constructed than
PEKS because any public key encryption algorithm can be used to construct EPEKS.
We discussed the refreshing keywords process, and the multiple keywords search
process. We described the security of the new scheme by using cryptographic
algorithm and hash function and we mentioned the encryption mechanisms regarding
the system.

In short, EPEKS provides high efficiently where any public key algorithm can
be used widely in this scheme, high security where it is forbidden to either the mail
server or any intruder to reach the keywords due to the refreshing process, and the
multiple keywords, and high privacy, because it gives Alice the ability to be the only
one who could search for her encrypted emails by using encrypted keywords.

REFERENCES

1. B. Morgan, M. Hamada, and G. Abdelfadel. Efficient Public Key Encryption with
Keyword Search. Journal of Engineering Science, Assuit University, Vol. 38, No.
3, pp.749-761, May 2010.

B. MORGAN, M. HAMADA, and G. ABDELFADEL 624

2. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, Public Key Encryption
with Keyword Search, IN Eurocrypt 2004, LNCS 3027, pages 506-522, Springer -
Verlag, 2004.

3. J. Baek, R. Naini, and W. Susilo. Public key encryption with keyword search
revisited. Cryptology ePrint Archive, Report 2005/191, 2005.

4. C. Gu, Y. Zhu, and Y. Zhang. Efficient Public Key Encryption with Keyword
Search Schemes for pairings. Cryptology ePrint Archive, Report 2006/108, 2006.

5. D. Khader. Public Key Encryption with Keyword Search based on K-Resilient
IBE. Cryptology ePrint Archive, Report 2006/358, 2006.

6. Goldwasser and S. Micali, Probabilistic encryption & how to play mental poker
keeping secret all partial information, Annual ACM Symposium on Theory of
Computing, 1982.

7. Goldwasser and S. Micali, Probabilistic encryption. Journal of Computer and
System Sciences, 28:270-299, 1984.

8. Bleichenbacher, Daniel (1998). "Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard PKCS #1" (PDF). CRYPTO '98. pp. 1–12.
http://www.springerlink.com/index/j5758n240017h867.pdf. Retrieved 2009-01-
13.12 2009

9. Fujisaki, Eiichiro; Okamoto, Tatsuaki; Pointcheval, David; Stern, Jacques (2004).

"RSA-OAEP Is Secure under the RSA Assumption". Journal of Cryptology
(Springer) 17 (2): 81–104. doi:10.1007/s00145-002-0204-y.
http://www.iacr.org/cryptodb/archive/2001/CRYPTO/21390260.pdf. Retrieved
2009-01-12. 2009

 10. R. Biswas S. Bandyopadhyay, A. Banerjee. A fast implementation of the RSA
algorithm using the GNU MP library. Research 2003. Available:
http://www.cs.ucr.edu/~anirban/index.swf. 2003

11. A. Hartikainen, T. Toivanen, and H. Kiljunen. Whirlpool hashing function,
Lappeenranta University of Technology.2006. Available:
http://www.it.lut.fi/kurssit/05-06/Ti5318800/assign/Whirlpool. 2006

ير الكفء بالمفتاح العام وكلمه البحثالتشف

 .كفء للبحث عن كلمات مشفرة داخل الرسالة الالكترونية المشفرة نظاماالهدف الرئيسي من البحث هو بناء

) بوب (فعلى سبيل المثال إذا أراد المرسل . النظام يمكن بناءه باستخدام أكثر من نظام تشفير بالمفتاح العام

بدورها أن تعطي الأولوية لخادم)أليس(وأرادت ،)أليس (لمستقبلتخدام المفتاح العام للة مشفرة باسإرسال رسا

ام فباستخد. الرسالة المشفرة مع عدم معرفة أي معلومة عن محتويات الرسالة في" مهم " البريد ليختبر وجود كلمة

نظام يحتوي على نظام حماية عال فال لغرض،العام نستطيع أن نصل إلى هذا االنظام الكفء لتشفير بالمفتاح

الرسالة أو تزيف فلا يستطيع المتطفل أن يعلم محتوي أن تسرق المستقبل ورسائله منوكفء لحماية خصوصيات

هذا البحث إلى بداية لقد تطرقنا فيأولا .الكلمات التي تم استعمالها من قبل المستقبل للوصول إلى الرسالة ولا

طريقة بناء هذا ف. النظام باستخدام نظرية المفتاح العام ولم يتم بناءه بطريقة الأبحاث الأخرى كيفية بناء هذا

عرضنا بطريقة أمنة كيفية تجديد الكلمات المراد البحث لقد ثانيا.النظام مختلفة تمام الاختلاف عن باقي الأبحاث

 المتبع باستخدام كل من ح أسلوب الأمانو أخيرا لقد تم شر . عنها و كيفية استخدام أكثر من كلمة في البحث

 . نظرية المفتاح العام ودالة المزج

