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In this paper we present the topic of sampling of signals that are not band 
limited 60 years after the well known Shannon-Nyquist sampling theory. 
We consider the sampling process of several signals that were not exactly 
considered or treated by Shannon. We can call them non band limited 
signals. Research in sampling of non band limited signals is divided into 
two main categories. Signals that are sensed using modern state of the art 
compressive sensing techniques, and signals with a finite number of 
degrees of freedom that are sensed through sampling kernels that are 
physically realizable. These latter types of signals are typically called 
signals with finite rate of innovation. We present our results with these two 
main categories with different images and signals. Illustrative examples of 
the proposed techniques are presented. 

 
1. INTRODUCTION 

Driven by the massive development of digital applications over the past few decades 
with its analog sources and its associated discrete time representations, the sampling 
theory became a central element in many modern signal processing, sampling rate 
conversion, coding and decoding and communication systems. To accommodate the 
high data acquisition rate, while maintaining affordable computational cost, efficient 
Analog to Digital sampling conversion has to be developed. 

Traditionally, sampling conversion has been conducted under the well known 
Shannon-Nyquist umbrella, which states that data needs to be sampled at twice the 
signal bandwidth to be able to reconstruct it perfectly. While Shannon’s theorem has 
been one of the greatest contributions during the last century that has had a huge 
amount of impact on modern electrical engineering, it suffered from several problems 
such as its assumption that signals are always band limited in terms of their 
frequencies, which is not usually the case as we will show latter, and its dependence on 
ideal low pass filters as Sinc functions. 

Recently, intense research has investigated the problem of sampling signals 
beyond the Nyquist limit; these efforts were successful when dealing with non band 
limited signals such as streams of Diracs or piecewise polynomial signals. The 
majority of these efforts focused on signals that have a sparse representation [1]. These 
algorithms managed to perfectly reconstruct signals from non uniform measurements 
through L1 norm optimization of nonlinear sampling. These efforts, typically classified 
as compressive sensing algorithms, considers Shannon’s theorem as a special case for 
the Perfect Reconstruction PR of digital samples. 

More recently, non band limited signals have been perfectly reconstructed 
from uniform samples that are sampled far below the Shannon Nyquist limit. In [2] and 
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[3] perfect reconstruction was achieved for streams of Diracs that are sampled 
uniformly with special kernels. These special kernels can reproduce polynomials or 
exponentials and are also physically realizable. This input signal, that was a stream of 
Diracs, was sampled uniformly with those special sampling kernels and had a finite 
number of degrees of freedom per unit of time. Hence, they are typically called signals 
with a finite rate of innovation (FRI) [2]. 

The main objective of this paper is to present our analogy of non band limited 
sampling using compressive sensing (CS) techniques and compare it with the 
traditional Shannon-Nyquist theorem. We also present and propose techniques for 
efficient sampling of non band limited signals which can have a wide spectrum of 
impact on different sensors, data acquisition, rate conversion, and super resolution 
applications. This is due to the fact that it captures a minimal amount of data samples, 
that can be stored and transmitted, and can later perfectly reconstruct the original input 
signal at the receiver side. This reconstruction process is based on a pre-knowledge of 
the input signal structure/characteristics, or the sampling kernel order/response, and is 
also physically realizable in a PR manner. We present our simulated results on 
different low resolution images for super-resolution purposes. 

Section 2 gives a brief background of the sampling process of non band limited 
signals using Compressive Sensing techniques (CS). Section 3 introduces the concept 
of finite rate of innovation of uniformly sampled signals and shows how it can also be 
perfectly reconstructed at a data rate that is far below the Shannon Nyquist limit. 
Section 4 presents a sample of our simulation results for sections 2 and 3, followed by 
conclusions in section 5. 

 
2. COMPRESSIVE SENSING OF SPARSE SIGNALS 

The main idea behind Compressed Sensing, [4-5], is to acquire analog samples and 
convert them into a digital form, and then compress them simultaneously. This would 
be like lump summing the two major blocks, sampling and transformation, into one 
single block. The only important feature that should exist in signals that are 
compressively sensed, it that they are spares in some kind of a plane, or frame. This 
sparsity feature will guarantee that there is a frame in space that the signal can be 
projected to and have the minimum number of non-zero coefficients. 

Data are acquired from an analog image using a linear set of measurements, 
like big pixels, or lines or sinusoids. Then, an adaptive approximation for the sparse 
basis in the signal/image is performed through some kind of optimization. 

Pre-knowledge of the signal characteristics is the main reason for the 
Compressive Sensing efficiency in coding and decoding. If we consider a time domain 
signal f(t), as in fig.1, that consists of a known number of sinusoidal signals that have 
un known periods and amplitudes. We will only know that they are 15 sinusoids (for 
example), but the values of α’s and β’s in the Fourier Domain are unknown, eq. 1. Due 
to the fact that they correspond to the unknown periods and amplitudes, f(w) and f(t) in 
eq. 1 correspond to the frequency and time representations, with K=15. 

By taking 30 random measurements of the time domain sequence in fig.1, 
which correspond to the f(t) values in eq.1, we can determine the unknown values of 
α’s and β’s, that represent the amplitudes and frequencies of the Fourier domain 
version of the signal, as in fig.1. These 30 values represent the circles in fig.1, and they 
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should be randomly distributed over the time domain range. They should also have a 
structure that is un-similar to the basis in the Fourier domain, as will be shown next 
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Perfect reconstruction of the original input signal is possible from the nonzero  

 
It is well known that the more the values of f(t), the faster is the optimization 

process and the more accurate are the determined α’s and β’s values. Interestingly to 
know, the fact that we can get adaptive approximation performance of the basis in the 
projected domain, which is the Fourier Domain in our case, from a fixed set of 
measurements. More surprisingly, as stated before, the measurements should not match 
the projection basis structure, as in eq. 2. 
Φ ψ α = y                                                                                                                       (2) 

Eq.2 represents the acquisition/transformation process in Compressed Sensing 
(CS), where Φ represents the measurements matrix, and ψ represents the sparsity 
matrix, which is the basis matrix of the projected space. α is the input data vector in the 
un compressed domain, and y is the delivered output data in the compressed form. 
While the measurements are typically global, and incoherent, the sparsity matrix 
should be local and coherent. 
samples in the sparse domain, as shown in Fig.2. If we assume the original acquired 
data is the  α vector, then with the knowledge of a domain, space or frame, where if the 
input data vector is transformed into it will be sparse (majority of samples zeros), we 
can deliver just the few non zero samples out of the acquisition process (non zero 
samples of output vector y). These delivered y non-zero samples are far beyond the 
Shannon/Nyquist limit and corresponds to the output samples of the compressed 
sensor. Perfect reconstruction is guaranteed from these y samples with the knowledge 
of the projection plane where the input data is sparse. The Φ matrix, which is the 
measurement matrix, projects the input data vector α into a sparse domain, while the ψ 
matrix, which represents the sparsity matrix, selects the non zero samples to be 
delivered as output y samples. Hence for an input vector α with N samples, the size of 
the measurement matrix should be NxN, while the size of the sparsity matrix is NxM , 
with M samples as delivered output y, and N>>>M, Fig.2. 

 

Fig. (1) Time domain (Left) and Frequency domain (Right) signals, where the time domain 
is reconstructed from circles through CS algorithm 
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It is worth mentioning that there may be a small amount of error in the 
reconstruction quality due to the non optimal optimization process. However, as the 
number of measurements increases, the error decreases ( and also get determined 
faster) at a near –optimal rate. The sparsity projected domain matrix can be any well 
known domain such as DCT, wavelet, Hadamard, or it can be an application specific 
domain that is pre-determined. 

We note here that while the sensing algorithm (measurements) is non-adaptive, 
the projection basis optimization is adaptive and requires some kind of post sampling 
computing power. 

The optimization process of the projection space basis, is calculated through 
the L1 norm equation, eq.3. This L1 norm equation would require that the ψ should be 
unstructured with respect to φ and would be the only type of norm that can work (not 
L2 norm or any type of norm), as will be shown in the next equation. 

1
min

l
αα  using the L1 so that Φ ψ α = y                                                               (3) 

The L1 norm is used, since it guarantees that during the optimization process, 
the projected basis will converge to zeros and non zeros, while the L2 norm will result 
in small amounts (values) to even smaller (may be negligible) values, but still can’t be 
classified into zeros or non zeros, which is against the sparsity concept.  

From a different point of view and analysis, in this optimization process we 
also try to look to a common point between two orthogonal planes, the original data 
plane (which has the horizontal axis x), and the projection plane (which must have the 
point of intersection of the planes). The optimization process is like the point of origin 
and then we increase it in different direction until it meets the 2 planes. 

With the L1 norm this increasing size origin point would be like the diamond 
point (as diamond corresponds to L1 optimization), and the intersection point is a 
diamond tangent with the 2 planes simultaneously, while the L2 norm would be like the 
circle point (as the circle point corresponds to L2 optimization), and the intersection 
point is a circle tangent with the 2 planes, which can never happen except in 
perpendicular planes (Shannon case). Fig.3 shows the intersection in both cases 
(diamond which corresponds to L1 and circle which corresponds to L2). 

In quick comparison with the well known Shannon-Nyquist sampling limit, 
Compressive Sensing (CS) can sense data samples at a sampling rate that is far beyond 

Fig. (2) a graphic illustration for the measurement and sparsity 
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the Shannon limit. In our time domain example, fig.1, the number of required samples 
to recover f(t) is far higher than 30 samples, which is required with CS. With Shannon, 
the reconstruction happens from equally spaced samples in a known space and the 
reconstruction is done with Sinc interpolation in a linear manner, while with CS the 
reconstruction happens from unequal spaced (arbitrarily spaced) samples in an 
unknown space, and the reconstruction is done with convex programming in a non 
linear manner. 

 
 

 
 

The beauty and out performance of CS lies not only in the fact that 
compression is built in measurements, but also in the fact that all measurements are 
equally important or unimportant (democratic), and losing some of them due to any 
noise or communication problem is negligible. The recovery is also robust and flexible 
and independent of the acquisition process. 

CS can also be applied not only in sensing applications for higher sampling 
rates at lower bandwidths for non band limited signals, but it can be exploited in 
different sensor network or super-resolution applications that can afford to measure 
data in separate modalities, but reconstruct in a joint manner. 

Several applications has been reported in the recent literature that exploit the 
CS theory such as, single pixel camera [1], CS analog to digital converters, and other 
classification applications 

 
3. PERFECT RECONSTRUCTION OF UNIFORMLY SAMPLED 

SIGNALS THAT HAS A FINITE RATE OF INNOVATION 
 

The main idea behind perfect reconstruction (PR) of uniformly sampled signals which 
have a finite number of degrees of freedom per unit of time, which is known as finite 
rate of innovation, is that these signals result from acquiring a stream of Diracs through 
a kernel that can reproduce polynomials. The resulted signal will have a signature of 
both the input Dirac and the sampling kernel, and would be like the graph in fig.6. 
Digital samples are obtained after sampling the time domain output signal (that is the 
result of convolution between the input Diracs and the sampling kernel) with period T. 
This period T can also go beyond the Shannon limit and will still allow PR of the input 
Diracs given some restrictions on the relationship between the number of Diracs and 
the kernel order. In [4] the B-spline family was used as a sampling kernel and perfect 
reconstruction was achieved for K input Diracs given the kernel order is 2K+1, as will 
be shown next. 
We first calculate N+1 moments of the input signal x(t), with the following equation: 

Fig. (3) a graphic illustration of the L1 and L2 norms for basis optimization. L1 
norm is the only one that can work 
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Where nmc , are the basis from which we can construct a polynomial of the 

sampling kernel with max degree N, ny  are the sampled digital samples, as in fig.6, 
)(tϕ  is the sampling kernel, ka are the amplitudes of the input Diracs, and kt are the 

locations of the input Diracs at the input time domain range 
From the spectral estimation literature, we can assume the existence of a filter 

H(z), with mh ’s as its coefficients, and where its roots are the kt ’s and the following 
equation would be applied 
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This H(z) filter, is typically called an annihilating filter and by calculating the 
mh coefficients, we can determine the kt values, as the kt values are the roots of this 

annihilating filter. The only restriction that we have is that the number of input Diracs 
K , should be according to 12 −≥ KN , where N is the order of the sampling kernel 

)(tϕ  
We can calculate the mh values, from the following Yule-Walker coefficients: 
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And then we can calculate the amplitudes of the input Diracs, according to the 

following equation, which is a Vandermonde optimization equation. 
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From all above, we can show that it is possible to perfectly reconstruct 
uniformly sampled signals, that have a finite number of degrees of freedom per unit of 
time, and hence they are called signals with a finite rate of innovation, like Diracs. We 
mean by non band limited signals, signals that are sampled below the Shannon-Nyquist 
limit. The only restriction we have is that the sampling kernel, that the signal is filtered 
though before sampling, has to be able to reproduce polynomials, like the B-spline 
family, and its order should be around twice the number of input Diracs over a time 
domain range. 
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This reconstruction idea can be applied to any analysis or decomposition 
approach to analyze input uniformly sampled data, such as the wavelet decomposition. 
From different wavelet bands we can select data samples that can be used for 
reconstruction through the proposed nonlinear reconstruction eq. (4-7). 

Figure 9, illustrated the reconstruction idea for signals with a finite rate of 
innovation (FRI), from the uniformly sampled digital samples through a known kernel 
(that can reproduce polynomials) like a B-spline kernel. We can perfectly reconstruct 
the input analog signal in discrete form with a number of samples much less than what 
is needed with the regular Shannon/Nyquist approach. 
 

4. SIMULATION RESULTS 
We applied the Compressed Sensing theorem in section 2 on many time domain 
signals and projected them into the sparse domain, which was the Fourier Domain in 
our case; Fig.1 shows the original and reconstructed signal.  

We also applied the same Compressed Sensing (CS) approach on a low 
resolution image, and projected it in the wavelet domain with 5 layers, similar to many 
well known wavelet based compression techniques like JPEG2000, or SPIHT). Fig. 5 
shows the sensed low resolution image that was delivered as y output in eq.2. Fig. 4 
shows the original input high resolution image that can also be reconstructed from the y 
samples (which is the low resolution image in fig.5 in this example). 

We also applied the perfect reconstruction of Finite rate of innovation signals 
theorem in section 3 on a stream of Diracs, shown in Fig.7. The discrete filtered 
samples are in Fig.9, the impulse response of the sampling kernel is in Fig. 8, while the 
output reconstructed Diracs in time domain spectrum are displayed in fig.10. 

Figure 11, shows the wavelet decomposition samples of a piecewise linear 
signal. Again it is possible to construct the signal in Fig 11, from uniform samples in 
Fig.12. Fig.13 shows the reconstructed Lina image where each 8 pixels are treated as 8 
Diracs (1-dimensional), and has been filtered through the Bspline kernel, then got 
reconstructed according to the technique in section 3. 

 
 

 
 
 
 
 

Fig. (4) original High resolution image that can be Perfectly reconstructed from the 
delivered image in Fig. 5 
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Fig. (5) delivered sensed Low resolution 
image from CS 

Fig.(7) Input Stream of Diracs 

Fig.6    B-spline Reconstruction of 
samples 

Fig.(8) Impulse Response of a B-spline 
sampling Kernel, x(t). 

Fig.(9) Low pass filtered output of a B-spline 
sampling kernel, y0(t) 
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Fig. (11) wavelet decomposition 
samples of a piecewise linear signal 

Fig. (12) Reconstructed samples of a 
signal in Fig. 11 

Fig.(10) Final PR samples after F0 and F1 convolution and 
addition, x(nT) 

 

Fig. (13) Reconstructed Lina image, from taking each 8 pixels as a stream of diracs 
and filtering them through a B-spline kernel and then reconstructing them 
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5. DISCUSSION 
We note here that the presented algorithm for the perfect reconstruction for non band 
limited signals has different restrictions; it is our main belief that they are useful 
extensions to the Shannon Nyquist umbrella, but they don’t replace them. They only 
deal with a special type of signals that were not investigated by Shannon. 

The pre-knowledge of the sparse domain space, that sensed data will be 
projected to, is a restriction in the Compressed Sensing acquisition theorem, while the 
existence of a stream of Diracs signal sampled with a special type of kernel that can 
reproduce polynomials with the number of input Diracs around half the kernel order is 
a restriction in the theorem presented in section 3.  

However, both algorithms were able to deliver output time domain signals that 
are perfectly error free and through a number of samples that are much less than what 
is required by Shannon-Nyquist in any regular sampling case.  

In spite of the these restrictions, the presented algorithms are considered as a 
significant break through during the last decade of the sampling and reconstruction 
theory literature, as research was at a real dead end when dealing with sampling 
reconstruction for 50 years [7], until the presented techniques were released. There is a 
general belief/ conscious that we are currently in the non band-limited sampling era.  

Several imaging [5], sensing [1], and super resolution applications [6] have 
tried to exploit the advanced non band limited signal sampling theorems, and they were 
reported successful to a certain extent, and in some specific applications. 

 
6. CONCLUSIONS 

In this paper we presented the topic of sampling of signals that are not band limited. 
Two algorithms were presented that represent the state of the art sampling 
reconstruction advances during the last decade 

Sensing data with compressed sensors (CS), that depend on the sparsity of the 
signal for perfect reconstruction. And uniformly sampled signals with a finite number 
of degrees of freedom that are sensed through sampling kernels that are physically 
realizable. Further research in this area, would include investigating what other types 
of signals that can be reconstructed using the proposed theorems, along with exploring 
other applications that would benefit from the proposed research. This work is funded 
from the Alexander von Humboldt foundation, Germany and from the ministry of 
Communications and Information Technology, ITIDA, Egypt. 
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 الأشارات الرقمية ذات المجال الترددى الغير محدد بعد ستون عاما
 على نظرية شانون

 

فى هذه المقالة نعرض أحدث الطرق لتحويل الأشارات التناظرية لأشارات رقمية بعد أكثر من ستون عاما 
على نظرية شانون الشهيرة ذات التطبيقات اللامحدودة فى نظرية الأتصالات. حيث نقوم بتعريف 

الأشارات الرقمية ذات المجال الترددى الغير محدد و تقسم بشكل عام لأشارات تم ألتقاطها بأستخدام 
أسلوب الألتقاط المضغوط الحديث الشهير و أشارات ذات معدل أستحداث محدد فى المجال الترددى و 

تم ألتقاطها بأستخدام مرشحات مجال ترددى عملية التطبيق. وهذه الأشارات الثانية الأخيرة أسمها أشارات 
ذات معدل أستحداث محدد فى المجال الترددى. و لقد تم أجراء الكثير من التجارب و التطبيقات لأختبار 

الطريقة و فاعليتها كما هو موضح بالمقالة.  
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