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This paper presents an efficient computer-based method for optimal
criteria design of composite girder under biaxial bending. The width,
depth for concrete dab and steel section are taken as the design
variables. The strength constraints for the design are formulated using
the finite element method. The method solves composite girders taking
into consideration the material non-linearity due to the change in stress-
strain curves of steel and concrete, and geometric non-linearity due to
the change of the path of the composite girder during deformation. The
formulation depends on the principle of Virtual Work. An optimality
criteria method is applied to minimize the cost of concrete dab, stedl, and
form subject to constraints on strength and stiffness. Four full composite
girder examples are presented to illustrate the features of the design
optimization method.

It is shown that the design method provides an effective iterative
optimization strategy that converges in relatively few cycles to a least-
cost design of reinforced concrete element satisfying all relevant
requirements of the governing design code. The iterative process is
insensitive to the selected initial design and converges smoothly to a final
design involving concrete slab dimensions and steel section consistent
with usual design practice. A complete computer program has been
developed to solve the problem of full composite-beams under biaxial
bending.

KEYWORDS: Composite girders, Concrete-slab, Finite element,
Material and Geometric non Linearities, Incremental loading, Virtual
work, Optimization.

INTRODUCTION

Considerable research can be found in the strdctytamization literature that has
focused on reinforced concrete structures. Mangistuhave been concerned with the
optimization of cross-section dimensions becausehef repeated use of standard
reinforced concrete members in prefabricated coostm (e.g. Chou 1977, and Friel
1974). Similar studies have considered individwadstruction elements such as shear
walls, retaining walls, plates, and slabs (e.geland Frangopdl991; Rhomberg and
Street1981). Still other optimization studies have accounted plastic behavior in
reinforced concrete frameworks (e.g. Cohn and Mae B84). In their work, the
objective is to achieve minimum structure cost tigtoredistribution of member forces
while satisfying all equilibrium, serviceabilitynd compatibility conditions for the
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structure. Optimum member capacities are determnadiser than optimum cross-
sectional dimensions of individual members. Anotlyge of optimization problem is
concerned with the optimal design of the crossisestof reinforced concrete
members within the context of the assembled stract&lastic behavior of the
structure is generally assumed, and the width, hjepid steel reinforcement for
member's cross sections are taken as the desigiblesr (e.g. Kanagasundaram and
Karihaloo1990. To this point studies concerned with this degigoblem have used
various types of formal mathematical programmingPjMalgorithms to conduct the
optimization with varying degrees of success.

The present paper is concerned with the lattergdesptimization problem
noted in the foregoing discussion. Specificallye thptimal determination of section
dimensions and reinforcement within the contexadmfassembled reinforced concrete
framework under gravity and lateral loads. Suclesigh problem involves numerous
design variables and constraints, even for modeststructures, which is perhaps the
main reason why formal MP optimization techniquesehhad limited success in
achieving a solution for practical frameworks (because the basis matrix generally
reaches a prohibitive size for the numbers of Wemand constrains involved for such
structures). On the other hand, the optimalityecidt method (Venkayyd 989 is
readily applied for the solution of large-scaleimization problems involving many
design variables and constrains (primarily becdbsevariable values are established
one at a time through a recursive procedure).

Moharrami and Griersoi993 suggested the optimal criteriéD.C.) which
were adopted herein as it has the advantage ofecgimg rapidly compared to other
methods and achieving good results. Due to theieffcy of the method, it was
adopted in several researches, Chun- Man Ci#1, used the O.C. method for
optimum lateral stiffness design of tall steel aacrete building. The method was
applied to an 88-storey building in Hong-Kong. AlShun-Man and Qian Warigp06
applied the optimal criteria method and presentimrawork example.

Yasir I. Musa, and Manuel A. Diaz, M007are studys the composite girders
consisting of concrete deck on built-up girders d&requently used in bridge
construction for their economic advantages. Theafissomposite girders results in a
very economical design. Additional savings can btined in design and material
costs for some members by automating design appesabased on optimization
techniques. The other describes the use of EXCHeSw find the minimum weight
for a composite trapezoidal box cross section ftwalane bridge. Design aid tables
were generated for structural steel Grades 250, £3% and 690 MPa, and different
spans varying from 3.0 — 100 m. The search formim@mum cross section used in
this research satisfies the 17th Edition of the Acae Association of State Highway
and Transportation Officials Specifications Loadtea Design method.

Multi Science Publishing009 are study the structural optimization seeks the
selection of design variables to achieve within lilgt (constraints) placed on the
structural behaviour, geometry or other factors;goal of optimality defined by the
objective function for specified loading conditionEhe three basic features design
variables, objective function and constraints deatito form the design problem.
There are several mathematical techniques to saled problems. The polynomial
optimization technique is a recently evolved praredwhich is concerned with
finding the minimum of a polynomial objective fuimt subjected to constraints. A
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structural design problem has been formulatedisrttanner which enables minimum
cost design to be derived rapidly and simply. laldewith the application of
Polynomial optimization technique to Reinforced Gate (R.C.) beam-member
design problem. In the present study this techniguesed to determine the minimum
cost of reinforced concrete members by considesigeral design variables such as
breadth, depth, area of reinforcing steel etc. &ihes difficult for the designer in the
office to become familiar with the mathematical q@utation required, further attempt
is made to represent the resulting optimum desigpressions in the form of
"Nomograms" which will facilitate the work in thessign office.

Shan Suo Zheng, Huan Juan Lou, Lei Li, Zhi QiangWei Wang201lare
studes the optimization methodology of the steekcete composite beam. The
objective function is the cost of the compositerbgaand the design variables are the
geometry parameters, including height and widththef concrete deck, as well as
thickness of the steel flange and web. The comgtcainditions are main requirements
stated in Chinese code for the design of compdséam, reasonable calculating
theories and indispensable constructions, as wels@ne mature and consistent
conclusions confirmed by experimental studies fis#gs reduction coefficient is used
to consider the effect of bond-slip between comciatd steel when calculating the
beam deformation. The optimization for compositarhainder uniform loads is given
as a demonstration example finally. The methodolegposed should be useful for
obtaining the solution of this kind of optimizatipnoblem.

Therefore, this paper gives the details of the pwnd presents a computer-
based program achieving the minimum cost of fulinposite girders under biaxial
bending. The optimum width, depth, and steel sactibgirder sections are sought,
while ensuring that stresses for girder are wititneptable limits. The explicit design
optimization problem is first formulated includitige corresponding design sensitivity
analysis and then the details of the OC methodd&sthn optimization procedure are
given. Finally, four full composite girders examplare presented to illustrate the
features of the design method. Moreover a desigmita expressing the minimum
cost was deduced by the writer.

CHARACTERISTICS OF COMPOSITE GIRDER SECTION

The basic assumptions for the analysis of compagiteers in the present analysis are
there exists a full composite action or (complaiad) between steel and concrete slab,
the strain distribution across the section is agslmo be linear (the plane section
before bending remains plane after bending), nésfeche effect of shear
deformations, torsion deformations, shrinkage aré of concrete.

The stress strain relationships used in the preserk for concrete slab and
steel are given by El-Shaer 1997.

DESCRIPTION OF THE FULL COMPOSITE GIRDER

The full composite cross-section studied is showrFig. 1 where a force Fis
considered to act at eccentricitigsaad .
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as (tw x hw +tfyx bf,+th x bf)

Fig. 1. Geometric Configuration of full compositiedgr

EXPLICIT DESIGN PROBLEM

Consider a composite girder whose section for airalab is of width b, height h and
area of steel beam the following is the optimization problem.

Minimize:

Z=C/[bh+a(C-1)+G(2b+2h)L 1)
Subject to:-

F,—Fn<0 (2)

M,- My, <0 3)

My- Myn < 0 (4)

b<b<b,;h<h<h;a<ac<ay (5)
where

Z= the cost; &= Cost of unit volume of concrete€ratio of cost of unit volume of
steel to the cost of unit volume of concretes @tio of cost of unit area of formwork
to cost of unit volume of concrete;, M, and M= internal forces acting on the section
concerned; the forces are the axial force, momeatitax-axis and moment about y-
axis respectively; |, My, and M= the corresponding nominal forces.

b, b, h, h, ayand g, the lower and upper bounds of b, h and a
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Equations (2 to 4) can be generalized as:
F-S<0 (6)

Where
F= the internal forces (F My, M, ); S= the strength of the section (M, My, ).

FORCE AND STRENGTH SENSITIVITIES
For the purpose of this study, adopt the variablation:

x;=b, %=h, x=a (7)
Also, adopt a first - order Taylor series expansmiqgn. (6) to obtain:
0 _ <o 3 oF ° _ 0S° v
FO-S +ZK'1[axK aij(xK x2)<o (8)
Where

superscript zero (0)= known or calculated quardtifier the current design ( eg.
initial trial design )
Xy = the design variables ; k=1, 2, 3.
The derivative 9F is the internal force sensitivity to the desigmiables X.
X
The derivative 9S s the strength sensitivity to the design variatig
0X
The sensitivities may be evaluated using the fiditeerence technique as follows:
Consider the composite girder axial force capaéity, for the current design
variables {b, h andgpand the six neighboring designs {lob, h+h, a+ éa} and {b-
db, hdh, a-6as } where db, 6h anddas are small specified increments in the design
variable. The sensitivities of the composite girdeial force capacity are then found
as:
oF,, _ F,(b+d)-F,(b-b)

db 2% ©
oF,, _ Fp(h+dh)-F,(h-an) (10)
oh 26h

0F, _ F.(a +d)-F,(a-&) an
02y 208,

The other force and strength sensitivities arerdeteed using the same procedure.

OPTIMALITY CRITERIA METHOD

The optimization problem can be expressed as maeimi

Z=Z(X) 12
Subject to:
gX)<0  (j=1,........ m) (13)

XkL< Xk < Xku (14)
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Where equations (12, 13 and 14) correspond to esafl, 6 and 5) respectively.
The design optimization problem can be reformulasdhe minimization of
the Lagrangian function
L (X, %) =Z0+ X =1 N g (Xk) (15)
Where the Lagrange multipliers are such that0 if constraint j is active ork; =0 if

constraint j is inactive. Differentiate (18)r.t. the design variable$(() and rearrange
the terms to obtain

)]

Multiply both sides of Eq. (16) by xand take they, root and then, apply a
first order binomial expansion to obtain

oz )

Where

n= step-size parameter that controls convergen¢é. andv indicate successive
iterations. Consider the changeg in the 1th constraint due to changesy in the
design variables ie,

Ag, =g (le +Axk)_ g (ka): Zi 1:3 AXy (18)

from Eqgns. (17 and 18) we deduce that

romlE]

We have from Eqns. (18 and 19) that

ST X Kag j( j/(aa; j}:qgl(x;)—z;x;%a:l, ..m)  (20)

The optimization problem is solved using Eq. (17 &q.(20 ) in an iterative
procedure. However the components of the gradieator 0Z/0Xy, 0g;, 0Xx are -
replaced by the normalized forms.

AX, = XVt = X! =—

0z . 0Z
=l @1)
o-=Ire u"’gl @)
Where.
|0z| = /(92 190) + (0 1 0h)? + (32 / 9a)*

and

Hng H Is computed in the same sense eg.
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|OF,| = {/3F, /0b)? + (9F, / 0h)? + (dF, /9a,)?
Therefore, equations (17 and 20) respectively ytielthe two followingequations.

X = ol 1 | 0z } (23)
n o 0X, 0X,

and substituting from Eqns. (21 and 22) into EQ),(the normalized system of linear
equations in terms of Lagrange variables is

mo [ e

where the normalized Lagrange Variables are

, 1og |
M= ) 2)

The Gauss-Seidel technique is applied to solve (24) for the Lagrange
variablesA;. The Gauss-Seidel technique involves an itergtiweedure given by:

Aﬂ - _(q z _1e|J _+1 zl,-_:lmqj /\_Jj (26)

noting that A and A ™% in the R.H.S. of Eq. (26) are the old and new hage
variables respectlvely where from Eq. (24)

<2 o099 Yog | [0z

N _ZKﬂXkl:(axk axk]/(axkﬂ @)
3 v ag_, ag—j 0Z

G 'zklxkl(axk akaaka (28)

b :ﬂg'(xz)‘z‘,iﬂxf(aa'} (29)

|Og | 0X,

DESIGN OPTIMIZATION PROCEDURE

The following arc the steps of design:

1. Set= 0 and adopt on initial set of design variables X

2. For the current X ,establish the gradient vect@®#£/0X

3. For the current X , analyses the structure and establish the grbdextors dg;
10Xk (=1, ... m) for the m constraints that are cotleactive.

4. For the current active, X; use Gauss-Seidel technique Eq.(29) to solvE2&y.
for the set of Lagrange multipliem;v When convergence of the Gauss- Seidel
technique rl1as occurred such that= A™ the solution of Eq. (24) has been found
asA'j =A™
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5. For the current active Xand currentA’; , find the new set of active design
variables ¥"** from Eq (23).

6. Ifallx ™" =x" and A’ = A", go to stef¥; otherwise set v =v +1 and update
Eq (24). For the current xkvalues and return to step 4.

7. If the cost is the same for two successiveigdesycles, terminate with the
minimum cost, otherwise set= 0 and return to step2.

A computer program was developed by the writerdives the optimization
problem the flow-chart of the program is given ig.R.

The optimal criteria, (O.C.), is adopted hereinsmlve several composite
girders under biaxial bending. It is shown that @€. provides an effective iterative
optimization strategy that converges in relativedy cycles to the least cost. The
convergence is achieved whether the start poirfeasible or infeasible. Also, a
comparison between the O.C. and the penalty fumatiethod is held to show the
difference of the rate of convergence of the twohods.

v =0
I
Determine initial set of xie (b,h,3

|
Determine Z

Q |

Determine the Vectol
0z . 9z 9Z 9Z

e —,—,—
aX, ' ob ' oh 'da,

Analyze the structure and Determine
1- Nominal force E, for the given internal forces Mand M,
2- Nominal moment Iy for the given internal forces, Bnd M
3- Nominal moment M for the given internal forces, Bnd M,
|

[
Add the specified incremenikf) to the design variable (b) to obtain
(b+3b) and then determine
1- Nominal force E, for the given internal forces Mand M,
2- Nominal moment Iy for the given internal forces, Bnd M
3- Nominal moment i for 'Ithe given internal forces End M,

Repeat the previous step for each of
b-6b, h+3h, h-dh, a+da;, and g6as
|

Determine the vector o& for the constraints that are currently active ie,
X,
oF, OF, OF, oM, oM, oM, oM,, oMz,, oM,,
b ' oh ' da. db ' oh ' da db ' oh ' da,
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Cr

For the current active X, use Gauss-Siedel to obtain the Lagrange multgié Eq. 24

Fined the new set of active desigriables X from Eq. 23

All X =X,

And
A% =A"Y,
No Yes
v =v+l 2=7 v+l
Yes No
2=7°

V

&)

Fig. 2 Flow chart of optimization program

EXAMPLES FOR COMPOSITE GIRDER SOLVED BY O.C
Composite girder 1(CG1):

The first problem solved, herein, is a full compegjirder for length and cross-section
is shown inFig. 3 The cross-section has the following properties:

a-Elevation of Composite girder
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iy
B
n| 70500777
tfa X Dbfy 3 .
— Wz S
th x bf tw x hw
—_ |

\ | |

as (tw x hw +tf, x bf,+th x bf})

b- Girder Cross-section

Fig. 3 Composite Girder (CG1& CG2& CG3& CG4& CGhH)

foy=3.6 E 4t/ My fe= 2550 t /M ,Es = 2.06E7 t/r

The composite beam is subjected to the forces F6-t4 M=50 mt. and
M,=20 mt. The design variables are the width, hedjlthe concrete slab b, h and area
of steel @ The design optimization problem is to find thelues of the design
variables such as to minimize the cost of the caitp@irder, accounting for the costs
of concrete slab, steel and formwork while satigfyconstraints given in Egns. (2 to
5).

The ratio of the unit volume cost of steel to thatconcrete is taken as 60,
while the ratio of unit area cost of shatterindhe unit volume cost of concrete is 0.6.
The design optimization problem has the followirgeative function, strength and
sizing constraints:

Minimize Z= [b h + (60-1) a+2*0.6 (b *h)] L (30)
Subject to

F<Fan (31)
M,< Myq (32)
My< My, (33)
0.80m < b < 3.00m (34)
0.05m < h <0.50m (35)
20 cnf < as <500 cf (36)

Eq.(30) is the objective function, Egns (31 to @B} constraints on the axial



OPTIMAL DESIGN FOR COMPOSITE GIRDER UNDER ... 995

force, moments about x-axis and y-axis respectivelgns (34 to 36) are sizing
constraints on concrete slab section dimensionssteel area. The steps presented
hereafter are followed to solve the problem.

1- Setv = 0, wherev is the counter of iterations and start with theigle
variables b = 1.20 m, h= 0.10 m and=40.8x22.0+2x1.0x15.0)=47.60 cnt .

2- For the current ¥ where X = {b,h,a},establish 62/0X

where

0Zlob = [ h + 2*0.6(h)]L (37)
0Zloh = [b + 2*0.6(b)]L (38)
0Zl0as = [60 -1]L (39)

3- The strength gradie@S/oX, is found using the interaction diagram
presented in details as follows:

The axial force capacity,,k is computed for the current design variables (b
=1.20 m, h = 0.10 m, and a 47.60 crf} by fixing M,=20mt and M = 50mt and
running the computer program to give a point on tirgeraction diagram of the
composite girder solved. Each of the other forqeacaies M, and M, are computed
in the same sense. Each qf FM,, and M, are then computed in the six designs
{b+3b, bbb, h+h, hdh, a+da and gdas}

The gradient vecta?g/oXy is then computed where

0g/0X = OFIOX - 0SIOXk

The strength sensitivitie$SIoXk is given as §F/ob, oF/oh, oF/oa,
OMy/0b, OMy/oh, OM /08 , OM /b , OM,/oh andoM,/oas}

where
OF,, _ F,(b+)-F,(b-b) 40)
db 2%

and the other components are computed in the sanse.

The components of the gradient vected#oX, andog/oX are replaced by the
normalized forms given in Eqns. (21 and 22) in ckhihe increments of changé
andash are taken a8.05m 0.01respectively and the increment of chaidgs is taken
as the average between the differences;aff dhe preceding and proceeding steel
profiles to the steel profile specified in the &gon considered.

4- Apply Gauss-Seidel technique, Eqgns. (26 to 293dlve Eq. (24). for the
normalized Lagrange variablés .

The steps are as follows:
Knowing that, each dfand j is the counter for the constraints correspantb F, My
and M, respectively, then,@n eq. (7.27) is computed as

oF,,0F, 0z 0OF,, 0F, 9z _ OF,0F,

&, =b( 2" ) th(— 25/ —+a(FF)— (41)
b b’ b “an on’on da, da, aa,s

&, and g; are computed in the same sense;ab\ereplacing Fby M, for e, and E

by M, for ey.

e, in EqQ. (28) is computed as:
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oF, a|v| 0Z aF a|v| 0Z OF. . OM.., 907
b X / X Z % X / 42
e, = (ab )— )— (aas aas)aaS (42)

e;s and g@; are computed in the same sense gsbet by taking the forces
corresponding to | and j in return. It is thus @was that eeeg .
b, in Eqg. (29) is computed as
F-F ) F
b=+ )b(Z)h()() “3)
LF, 08,
and b and k are computed in the same sence,asbioit by replacing Foy Myand M,
respectively.
Eq . (26) computes the normalized lagrange varsable
SetAj:( Aq, Agv A3)=(0,O,0)
And compute

1 Ol Ol
N =—(b _elz/\zld _els/\yld) (44)
€
1 new Ol
/\2 = (bz - en/\z - ezs/\ 3Id ) (45)
€
1 new new
/\3 :_(bs —63/\1 _eszl\z ) (46)
€33

Replace the old values &f by the new setA;, A,, As) and repeat the three previous
Egnsuntil convergence is achieved 5.

5- Apply Eg. (23) to find the new set of designiahles (b, h, 4. As an
example the variable b is computed as:
o = pofy - L 1o p #0502, g o OM, 07 OM, 07 1y

n ob db ob db ob db

h and a are computed in the same sense as b but by negldciby h and a
respectively.
The new set of variables obtained are b=1.10 niQl=cm and &47.60 cri.
Setv=v+1 and go to step 2. Proceed with the steps teaeh new section. Repeat
several times till convergence is achieved.

6- For the last cross-section check that the diéfiees within the limits of the
code. Table (1) shows the steps of convergence.

Composite girders 2to 4 (CG2 TO CG4)

The three full composite girders, the length arasstsection are presented in tables 2
to 4, the design parameters, and end cost givéovbel
The results of the previous examples are plottetheriig. 4 to 7.

From Figs. 4 to 7 , we observe that the final cbshe composite girders (CG)
is less than the initial cost by a percentage rapfliom18.7% to 22.4%The equation
of the cost as deduced from Figs. 4 to 7 is:

(47)
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Cost=-A In(x)+B

Where

A = the constant from range (3.1 to 4.6);
B = the constant from range (11.8 to 23.9).
The constants A and B depend on the first iteratibich depends on,FM,, My, L,

fsy, fc .

Table 1 Convergence of Composite Girder 1 (CG1)

(48)

No. of b h | as= (tw x hw + tf, X bf ;+tf, Stress Z
lterations | (cm) | (cm) x bf)) cm? percentage | The cost
(0.8x22.0+1.0x15.0
1 110.0 | 10.0 +1.0x15) 32.80 10.99
=47.60
(0.7x21.0+0.9x14.0
2 105 9.0 +0.9x14) 66.90 10.19
=39.90
(0.6x20.0+0.84x14.0
3 100.0| 8.0 +0.84x14) 85.20 9.51
=35.52
(0.58x19.12+0.78x13.38+0.78
4 100.0| 7.0 x13.38) 97.00 9.26
=31.96
F,=200t, M=25.0 mt, M=5.0 mt, L=6.0 m,
fsy = 36000 t/ , f.= 2550 t/M
Table 2 Convergence of Composite Girder 2 (CG2)
No. of b h as:é;vi;; hv{): tfa X Stress z
lterations | (cm) | (cm) a crln)g ) percentage | The cost
(1.2x65.0+1.8x28.0
1 190.0| 18.0 +1.8x28.0 34.30 46.72
=178.80
(1.1x63.0+1.7x26.0
2 185.0] 16.0 +1.7x26.0 49.10 43.66
=157.70
(1.0x60.0+1.6x24.0
3 180.0| 15.0 +1.6x24.0 67.10 41.01
=136.80
(0.96x57.0+1.5x23.44+1L
4 175.0| 14.0 .5x23.44 94.20 39.01
=125.04

F,=500t, M=50.0 mt, M=12.5 mt, L=12.0 m,
fsy = 24000 t/ A, f,= 0.85*4000 t/m
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Table 3 Convergence of Composite Girder 3 (CG3)
No. of b h as= (tw x hw + tf, x Stress Z
lterations | (cm) | (cm) bf.+tf; x bfj)) cm?® | percentage | The cost
(1.8x170.0+2.5x35.0
1 245 24 +3.5x50.0 31.70 179.25
=568.50
(1.7x165.0+2.3x32.0
2 235 23 +3.2x48.0 52.34 165.80
=507.70
(1.6x160.0+2.1x32.0
3 230 22 +3.0x46.0 69.74 156.28
=461.2
(1.5x150.0+2.0x30.0
4 225 20 +3.0x45.0 98.96 146.70
=420.0
F~=400t, M=105.0 mt, M=15mt, L=25.0 m,
fsy = 24000 t/ M, f,= 0.85*3000 t/m
Table 4 Convergence of Composite Girder 4 (CG4)
No. of b h as= (tw x hw + tf, x Stress 7
: (bfa+tf) x bf))
Iterations | (cm) | (cm) (cm?) percentage | The cost
(1.4x225.0+2.0x30.0
1 230.0| 28.0 +5.5x45.0 44.1 266.86
=622.50
(1.3x220.0+1.8x28.0
2 220.0| 26.0 +5.3x42.0 73.4 245.60
=559.00
(1.2x215.0+1.6x26.0
3 210.0| 24.0 +5.1x40.0 88.0 226.20
=503.60
(1.2x212.0+1.5x27.5
4 205.0| 23.0 +5.0x37.50 98.1 218.09
=483.15

F,=600t, M=320.0 mt, =70mt, L=36.0 m,
fsy = 36000 t/ A f,= 0.85*3000 t/m
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CONCLUSION

There is a reliable analytical solution for the lgeon of optimization for biaxial full
composite girders.

A computer program is now available to give a quackl accurate solution of
the optimization for biaxial full composite girdessss-sections.

The stress percentage in concrete slab, and stdel gncrease when increase the

iteration. At iteration number four the stress patage reach to more th&s%

The O.C. is applied to achieve the composite girdduces the cost B8.7%
to 22.4%

We recommend by much research in these fieldsigakio account the effect
of slipping and uplift between the concrete slad steel girder.
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