Journal of Engineering Sciences, Assiut University, Vol. 39, No 6, pp.1387-1401, November 2011

CONTROL SCHEME OF A BOILER-TURBINE USING
ADAPTIVE WAVELET NEURAL NETWORK

Omar Shahin*; Mohammad El-Bardini and Nabila M. El-
Rabaie

Faculty of Electronic Engineering, Menouf, 32852, Egypt

* eng_omar_shaheen@yahoo.com

(Received June 11, 2011 Accepted September 5, 2011)

In power plant control system, the capability to achieve an optimal
tracking property of the nonlinear multi-input multi-output (MIMO) units
has been an important task. This paper proposes a direct adaptive wavelet
neural network controller of boiler-turbine system for improving the
performance and efficiently achieving the good tracking property to meet
the load demands under load changes, large disturbances and change of
system operating points. This paper describes the application of a multi-
loop direct adaptive wavelet neural network for a drum boiler; three
important outputs were controlled using a direct adaptive controller.
WNINs are rapidly trained with adaptive learning rates (ALRS) which have
been derived from the discrete Lyapunov stability theorem and used to
guarantee the convergence of the WNN controllers. Smulation results
show that the robustness and the good performance of the proposed
control system to satisfy stable tracking of the boiler-turbine system.

KEYWORDS: Boailer-turbine control system, Wavelet transforms,
Neural networks, Direct adaptive control.

1. INTRODUCTION

In recent years, great efforts have been made minat@f steam boiler- turbine system
which is the crucial part in power plant, where tloatrol of power plant system has a
central role of plant performance. Steam boilerbine system is a nonlinear, time
varying multi-input multi-output (MIMO) and uncertaindustrial process whose states
generally vary with operating conditions. The maontrol problem in nonlinear
industrial processes is the tracking problem, sodiitputs must be able to follow the
desired references even with the presence of Ibadges and large disturbances. The
central task of the boiler- turbine system conisdio adjust the output power to meet
the electrical load demand, while maintaining ttemm pressure and water level in the
drum within acceptable tolerance.

Several different types of controllers have beesigied for this system. In [1-
3] a linear control is presented based on a lineaninal model for designing a linear
control around nominal operating points of the mdr plant and the robustness of
the controller was achieved. Nonlinear control eysts designed that use an accurate
plant model [4-6]. In [7, 8] a generalized predieticontrol (GPC) is designed for
controlling the system with large range of varyiogeration conditions. In [9, 10]
intelligent methods are used. Model Predictive @irMRAC) was designed in [11].
A decentralized controller was designed in [12].
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Due to the highly nonlinear dynamic characteristitboiler- turbine unit, the
designed controller should be strongly enough deoto guarantee the best tracking of
the desired system demand. There is, thereforé&roagsmotivation for considering
adaptive control system such as wavelet neural or&tweontroller for this unit.
Wavelets which provide a very simple and efficianalysis have been widely used in
various areas. By dilations and translations, wetvighnsform can extract the detalil
information of signals with multiresolution capatyl Combining the wavelet analysis
theory with artificial neural network theory resulvavelet neural network (WNN). In
1992, Zhang and Benveniste proposed the conceptlgadithm of wavelet neural
network [13]. The main feature of the WNN is that® kind of wavelet functions are
used as activation functions of the hidden layertref WNN instead of sigmoid
functions used in multi-layer Perceptron (MLP) be tradial basis function used in
RBF networks. Incorporating the time-frequency laedion properties of the wavelet
transform and the learning abilities of neural r@kwshows the advantages of the
WNN over NNs for various applications. WNN have hegdely used for modeling of
nonlinear systems [14, 15], and control of nonlirsdmamical systems [16-20].

In this paper a direct adaptive wavelet neural netvwcontroller is proposed.
The presented control system is a decentralizettalonhere we use three separated
local controllers (multi-loop scheme) each onedasposed of wavelet neural network
to give a control input (control signal) to the qilao be controlled. The structure of
WNN consists of three layer network with wavelendtion as activation function in
the hidden layer. In order to improve the systenfgpmance the backpropagation
(BP) algorithm is used for training the parametefsthe wavelet neural network
(WNN). But since the BP method has a problem thataptimal learning rates cannot
easily be found, the adaptive learning rates (AlL.Rd)ich can adapt rapidly the
changes of the plant, have usually been deriven fite discrete Lyapunov stability
theorem [21,22] and used to guarantee the conveegainthe WNN controllers in the
proposed control systems.

The rest part of the paper is organized as folldBextion 2 formulates the
nonlinear MIMO boiler-turbine unit. In section 3het architecture and training
algorithm of the direct adaptive control using waveneural network are described.
The convergence and stability analysis of the WN#I€xplained in section 4. Section
5 gives simulation results of boiler-turbine cohggstem. Finally, Conclusion of this
paper is summarized in section 6.

2. BOILER-TURBINE SIMULATION

The boiler-turbine simulation model employed instistudy is the Bell and Astrom
model as considered in [23, 24]. The model is adtloirder non-linear dynamical
model. The feature of the model is the non-linepragions utilized in the predictions
of the three outputs, drum steam pressure, outpwepand drum water level, these
outputs being functions of the three inputs, flehf control valve position and feed
water flow. The simulation contains the major irgpahd outputs which are needed for
the overall plant control and essential non-lingas, so that regulation about normal
operating conditions may be investigated. The mpdeameters have been estimated
from a 160 MW oil-fired unit on the Swedish gridstgm. The three inputs, three
outputs nonlinear model is given by the followirggations:
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%, =—0.00184,%"° + 09u, - 015u,
x, = (- 0073, - 0016)x’'® - 0.1x, 0
(141, - (1.1u, - 019)x,) /85

Where the state variablgs X,and X, are the drum steam pressure, the

electrical output, and the density of fluid in thgstem respectively. The control
inputsu, ,u, and u, denote the fuel actuator position, the governdvevaosition, and

X3

the feed water actuator position. The variabldsetoegulated are the drum pressyjre
the electrical outpuy,, and the drum water levgy:
Yi=X
Y, =% ()
y, = 0050.1307%, +100z, +(q, /19— 67975))

Where a is the quality factor of steam, argy is the evaporation mass flow

rate. They can be expressed by:
_ (1- 0001538, )(0.8x, — 256)

®  x%,(1.0394- 0.0012304,)

q, = (0854u, — 0147)x, + 4559, — 2514u, — 2096 (4)

Due to actuator limitations, the control inputs ateject to the following
constraints:

O<u <1 =123
- 0007< 1, < 0007,
-2<u, < 002

~ 005< U, < 005,

The normal operating point of Bell and Astrom modg&) with initial
conditions and corresponding system set-pointsiaoa/n in Table 1 [24].

3)

©)

Table 1: Normal operating point of Bell and Astrom model

0 0 0 0 0 0
X2 X3 ul u 2 u3 y3 yl y2 y3

108 66.65| 428 034 0.69 0433 O 108 6665 D

3. CONTROL STRATEGY

The block diagram of the direct adaptive waveletraknetwork controller (WNNC) is
shown in Fig.1. As shown, there is a multi-loop elat neural network control system
that provides control signals to the plant.
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Fig.1.The architecture of the direct adaptive caintr
3.1. Wavelet Neural Network Controller (WNNC)

The control problem in MIMO control system is tangeate control signals such that
the plant output tracks the desired references siraeture of every sub-controller is
shown in Fig. 2. The WNN structure consists of ¢legyers:

Layer 1: is an input layer withN, inputs that accepts the input variables and tratissmi

the weighted inputs to the next layer. The inpettor to the WNN is the desired
reference, previous values of the plant controliirgnd the plant output.

X =[r(K),....r (k= p), y(k =,...,y(k = q),u(k =2),...,u(k —m)]" (6)
Where,r is the desired outpuly is the actual output of MIMO plant aads the
output of WNNC (control signalp,q, andm are the number of previous desired

output, actual output and control signal respelive
Laver 2: is a hidden layer that uses a wavelet functioaneactivation function in each

node. In this paper, the second derivative of Gangdlexican Hat),
2

Yt = (1—t2)exp%) is selected as a mother wavelet function. Theutupthe

j™node in the hidden layer is:

j i=1

W, . (net)= ! w(netj_bj) with net.:iw..x—a G
aj.bj i \/aT a ! i ji j
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Where w is the connection weight matrix between input rsodied hidden nodes, is

the bias inputa and b are the dilation and translation parameters ofvtheelets in
the WNNC.

Laver 3: is the output layer that accepts a linear comhmnatf the outputs from layer
2 and provides the control input (control signal)the plant to be controlled. The
output of this layer is:

u(k) = Zh:ijaj,bj (net;) (8)
j=1

Where v is the connection weight vector from hidden note®utput node in the
WNNC.

r(k +1)

u(k)

Input layer Hidden layer Output layer

Fig. 2.The structure of a wavelet neural netwonhktcaler

3.2. Training of the WNNC

The goal of the training is to obtain optimal cehtsignal u(k) from each controller
to minimize the following cost function:

E:%€W) ©)

Where, e(k) =r(k+1) - y(k+1)is the control error; the difference between the
referencer (k +1) and the actual output of the plarfk +1) .
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The weights and the wavelet parameters of eactraitant are adjusted by
propagating the calculated error signal using theignt-descent (GD) method as
follows:

Vi (k+1) =v; (k) +Av; (k) = v, (k)+/7v(‘g—ij) (10)
wy (K +1) = vy (K) + Aw, (K) = w, (K *”W('aaw_Eﬁ) (a1)
a (k+1)=a (k) +Aa (k) =a (k)+/7a(—§—:) 12§
b, (k+1) =b, (k) + Ab, (K) =b, (k)+qb(—%) (13)

J
Where,n7,,1,,.1,.1], are the learning rates for the weights and wayseameters of

WNNC.

4. CONVERGENCE AND STABILITY ANALYSIS

For training the WNNC effectively, adaptive leamimates, which guarantee the
convergence of WNNC based on the analyses of aetistype Lyapunov function,

are derived. In this section, we develop some cmaree theorems to derive
appropriate learning rates adaptively for the wetveleural network parameters to
ensure the stability of the proposed controllebaifer- turbine system.

A discrete-type Lyapunov function can be defined as

V(K) :%ez(k) (14)
Where (k) is the control error. The change in the Lyapunancfion is obtained by:
AV (K) =V (k +1) =V (k) =%[e2(k+1) & (K)] (15)
The error difference of WNNC can be representefllBy 20]:

e(k +1) = g(k) + Ae(k) = g(k) +[%}T AW (16)

WhereW is arbitrary weight of the WNNC weighting vectatxddAW represent the
corresponding change of this weight. In WNNC, theight change is obtained from
the update rules of Egs. (10— 13) as:

aw (k) = =" e(k) 22 - e, (1) 200K

where 7" is the arbitrary learning rate of correspondingglte component in the
WNNC .
Theoreml: Let 7V = l/]" n° n? /7WJ be the learning rates of the WNNC and

defineS" asS" =makaSW(k)H, whereS" (k) = du(k)/oW, and || is the

max max

(17)

cl
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Euclidean norm. Then, the asymptotic convergend&NNC is guaranteed i) are

chosen to satisfy:

0<p¥ <, 2o (18)

(sv.f

in whichW is the weights and wavelet parameteya,b, w.
Proof: From Eqgs. (19) — (21), the change in thepuysv function is

AV (K) = Ae(k){e(k) - %Ae(k)}

_Tae(k)]" w ou 1[ae(k)]" w ou 19
[avv} 7 e(k)avv'{e(khz[avv} 7 e(k)avv} o)

Since for WNN@e(k)/dW = —adu/dW , and leS" (k) = du(k)/0W ,

S = maxk|S" (k)| , we obtain
BV (k) = e ()" (0 727" (0 ) = e (). (20
wheret =28 () " (2-*[s" (9] ) 1)

If A >0, then AV(K) <0 is satisfied. Thus the asymptotic convergence hef t

proposed control system is guaranteed, and frojy2lobtain (18).This completes
the proof.
Coroallary 1: The maximum learning rates which guarantee theergence are:

w_ 1

n =7 (22)
(sv,)
Proof: From theorem 1,
A= Zfsv o (2= ¥ (o ) = - S5k, )‘{/72 G )2}
2
1 1 1
p=-fwyy- Lt |4t (23)
2( max) |:’7 (Syax)2j| +2

For the condition of the asymptotic convergeAce0, the maximum learning
rates which guarantee the convergence were obtaBe(R2). This completes the
proof.

Theorem 2: Let 77° be the learning rate for the weightof the WNNC. The
asymptotic convergence is guaranteed if the legmrate satisfies:

0<n’<2/N, (24)
Where N,, is the number of neurons in the WNNC hidden layer.

Proof:
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ou(k) _
ov v

Wherey = [(//1 W, .. t/lNh] " is the output vector of the hidden layer of WNNC.
S"(k)” < /N, . Accordingly,

S'(k) =

Since in neural networks, we havﬁej <1 forallj, ‘

from theorem 1, we find that
0<n" <2/N,.
Theorem 3: Let 7% be the learning rate for the dilatioaof the WNNC. The
asymptotic convergence is guaranteed if the legmrate satisfies:
2
‘a min

' 25
NhNi |V|max263/2 )
Where N, is the number of inputs of the WNNC.
Proof: See the Appendix A.
Theorem 4: Let /° be the learning rate for the translatitrof the WNNC. The
asymptotic convergence is guaranteed if the legrrdte satisfies:
2

Proof: See the Appendix B.
Theorem 5: Let 7" be the learning rate for the weightof the WNNC. The
asymptotic convergence is guaranteed if the legrrdte satisfies:

5 ‘a3/2 2
O w min (27)
A NhNi E%Wmaxzeyzxmax:l

Where X is the input vector of the WNNC.
Proof: See the Appendix C.

3/2

a

0<n

3/2
a

0<n®<
,7 NhNi

| max

5. SIMULATION RESULTS

In order to evaluate the performance of the propaseect AWWNN control system,
simulations under various conditions are performedch wavelet neural network
controller consist of 9 inputs in the input layeitwp =2, =3 andn=2. The

wavelet neural network structure contains 5 wavedetes in the hidden layer for the
drum steam pressure WNNC and 7 wavelet nodes irhidhgen layer for both the
electrical power and drum water level WNNC. Theghes and the wavelet parameters
of each controller are randomly initialized. Tharl@ng rates are chosen based on the
convergence ranges.

In the following results, the system is balancedhatnormal operating point
shown in Table 1. The performance of the proposelii-doop control scheme under
the effect of disturbance and the variation of apjen conditions was simulated.
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Figure 3 shows the system response for a step todifgturbance of 5% on the
drum steam pressure and electrical output power=at50. It can be seen that, the
boiler-turbine control system can overcome loadudizance effect on steam pressure
and electrical output power as all the outputsofeltheir set-point values. The results
also show that the constraints of actuators arisfigat although the presence of
disturbance effect.

Figure 4 shows the system response for a step todigturbance of 5% and a
15% increase in the drum steam pressure set-pdikt=450, andk =300,
respectively. Simulation results show that the drst@am pressure, the electrical
output power and the drum water level responsesos@ncome load change and
disturbance effect on steam pressure as all theutsufollow their set-point values.
The results also show that the constraints of &otsare satisfied.
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Fig.3. System responses to 5 % disturbance in gbeassure and electrical output
power set points.
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Figure 5 shows the system response for changdsibdiler operating point
with 30% increase in the drum steam pressure set-pmd 35% increase in the
electrical output power set-pointkat 100. Results show that the proposed control
algorithm improves the performance of the nonlifddviO boiler-turbine system and
efficiently achieving a stable tracking to the systdemands under load changes from
operating point to another. There are some osoillatof water drum level response at
the change of pressure and power set- points leutahtroller can overcome it and
follow the desired output. It can be seen thataliemno saturation of actuators and the
constraints are satisfied although the wide rariggerating points.
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Fig.5. System response for 30% increase in the dteam pressure and 35% increase
in the electrical output power set-points.
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6. CONCLUSION

In this paper, a direct adaptive wavelet neuralosgt controller for the nonlinear
MIMO boiler-turbine system has been designed. Tdrevergence and stability of the
proposed control system is guaranteed throughdhptive training of wavelet neural
networks using adaptive learning rates (ALRs) dmtifrom the discrete Lyapunov
stability theorem.
The system performance has been evaluated andtsresbbw good

performance over a wide range of operating contid’he direct adaptive wavelet
neural network controller can also applied to ofiiéviO complex processes.
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APPENDIX
A. The proof of Theorem 3

In order to proof Theorem 3, the following lewas are used.
Lemma 1: Letf (r) =r exp(-r?). Then|f (r)| <1,0f OO.
Lemma 2: Leg(r) =r?exp(r?). Then|g(r)| <1 0gO00.
Since
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o0 = 2 = 0 e

) onet
sM{max ou(re) Eﬁgjﬂ}

s|v|{max %(net — 3net) expnet® /2) Zet

)

1
< |V{max |——= (3- net?) exp(net? /2) [het > exp(~
IVI{ _aﬁ( )exp ) pe

o] 25272 o)

According to Lemma 2,
)

- - ex —_] -

2 2 2 2
S?(k) < |v|{ma }} = |v|(2e3’2 /‘a:‘”2
Thus

$* (] < NN M, f2e7 7

B. The proof of Theorem 4

i)
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263/2

| -

<1, then

<1,and | net’ exr(— netz)

2e3/2
a3/2

» @9
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_ﬁ(net 3net) expnet< /2) G;J'H}

{max (3-net®)exp(net® /2)
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