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The present paper investigates the power system stabilizer based on 
neural predictive control for improving power system dynamic 
performance over a wide range of operating conditions. In this study a 
design and application of the neural network model predictive controller 
(NN-MPC) on a simple power system composed of a synchronous 
generator connected to an infinite bus through a transmission line is 
proposed. The synchronous machine is represented in detail, taking into 
account the effect of the machine saliency and the damper winding.  
Neural network model predictive control combines reliable prediction of 
neural network model with excellent performance of model predictive 
control using nonlinear Levenberg-Marquardt optimization. This control 
system is used the rotor speed deviation as a feedback signal.  
Furthermore, the used performance system of the proposed controller is 
compared with the system performance using conventional one (PID 
controller) through simulation studies. Digital simulation has been 
carried out in order to validate the effectiveness proposed NN-MPC 
power system stabilizer for achieving excellent performance. The results 
demonstrate that the effectiveness and superiority of the proposed 
controller in terms of fast response and small settling time.  
KEYWORDS:  Power system stabilizer, NN_MPC control and single 
synchronous machine infinite bus systems  

 

LIST OF SYMBOLS 

H Inertia constant of the machine, 
in second 

Xkd The d-axis damper winding self 
reactance, in p.u. 

id d-axis armature current, in p.u. Xkq The q-axis damper winding self 
reactance, in p.u. 

if Field winding current, in p.u. Xq q-axis synchronous reactance, in p.u. 
ikd, 
ikq 

d- and q-axis damper winding 
currents, in p.u. 

'
dX  d-axis transient  reactance, in p.u. 

iq q-axis armature current, in p.u. ''
dX  d-axis subtransient reactance, in p.u. 

re Series resistance of transmission 
system, in p.u. 

δ  Rotor displacement angle, in radian 

rf, rm Field and armature resistance, in 
p.u. 

ω  Rotor instantaneous angular 
velocity, in rad./sec 

Te Machine electromagnetic torque, 
in p.u. 

oω  Rotor synchronous speed, in rad/sec 
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Tm Shaft torque, in p.u. 
dΨ  The d-axis armature flux linkage in 

p.u. 
Vf Field voltage, in p.u. 

fΨ  The field winding flux linkage in p.u.

Vt Machine terminal voltage, in p.u. 
kdΨ  The d-axis damper winding flux 

linkage in p.u. 
Xd d-axis synchronous reactance, in 

p.u. kqΨ  The q-axis damper winding flux 
linkage in p.u. 

Xe Series reactance of transmission 
system, in p.u. qΨ  The q-axis armature flux linkage in 

p.u. 
 

1. INTRODCTION 

Power system stabilizers (PSSs) have been widely used as supplementary controllers to 
provide extra damping for synchronous generators in electrical power system. 
Conventional power system stabilizer (CPSSs) are used to damp out small signal 
oscillations and they are designed based on a model which is linearized around a 
particular operating point. Conventional design tunes the gain and time constants of the 
PSS, which are mostly lead-lag compensator, using modal frequency techniques [1-3]. 
The feedback signal is subtracted from the reference to determine the error signal. Due 
to the complexity of the mathematics, the conventional control methods were used 
mostly for single-input-single-output system. Modern control methods were extremely 
successful because they could be efficiently implemented on computers, they could 
handle multi-input-multi-output system, and they could be optimized [4-7]. With the 
development of numerical algorithms for solving linear matrix inequality (LMI) 
problem in the last few years, the LMI approach has emerged as a useful tool for 
solving a wide range variety of control problems.  

Predictive control is now widely used in industry and a large number of 
implementation algorithms. Most of the control algorithms use an explicit process 
model to predict the future behavior of a plant and because of this, the term model 
predictive control (MPC) is often utilized [8-10]. The most important advantage of the 
MPC technology comes from the process model itself, which allows the controller to 
deal with an exact replica of the real process dynamics, implying a much better control 
quality. The inclusion of the constraints is the feature that most clearly distinguishes 
MPC from other process control techniques, leading to a tighter control and a more 
reliable controller. Another important characteristic, which contributes to the success 
of the MPC technology, is that the MPC algorithms consider plant behavior over a 
future horizon in time. Thus, the effects of both feed forward and feedback 
disturbances can be anticipated and eliminated, fact, which permits the controller to 
drive the process output more closely to the reference trajectory. 

Several versions of MPC techniques are model algorithmic control (MAC) 
[11], dynamic matrix control (DMC) [12], and internal model control (IMC) [13]. 
Although the above techniques differ from each other in some details, they are 
fundamentally the same, because all of them are based on linear process modeling.  

The Neural Network Model Predictive Control (NN-MPC) is another typical 
and straightforward application of neural networks to nonlinear control. When a neural 
network is combined with MPC approach, it is used as a forward process model for the 
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prediction of process output [14,15]. Neural network model predictive control has been 
applied on the process control as chemical, industry applications. But, applying MPC 
on power system stability and control is still very slightly used [16-19].   

The main objective of this study is to investigate the application of neural 
network model predictive controller on the single synchronous machine connected to 
an infinite bus power system. The system is modeled and the NN-MPC is designed and 
applied on the system. A comparison between the system performance obtained when 
using the proposed NN-MPC controller and the performance obtain using  PID 
controller at different operating conditions is presented and evaluated for power 
system. The feasibility and effectiveness of the proposed controller have been 
demonstrated through computer simulations. Simulation results have NN-MPC proved 
that the proposed controller can give better overall performance. Simulation results 
show also that the NN-MPC gives promising results. 
 

2. POWER SYSTEM MODEL 

Figure 1 shows a synchronous machine with salient poles and damper windings 
represented in rotating d-q axis coordinates. The coordinates are fixed on the rotor and 
rotate with it. The non-linear differential equations of unsaturated salient pole 
synchronous machine can be expressed as [1] 
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The non-linear differential equations described above from Eqns. (1-7) can be 
linearized around an operating point become linearized algebraic equations as follows: 

 

qdodqodqoqdoe IiIiT ∆Ψ−∆Ψ−∆Ψ+∆Ψ=∆                                               (8)  

qedeobtd ixirVv ∆−∆+∆=∆ δδcos                                                              (9) 

deqeobtq ixirVv ∆+∆+∆−=∆ δδsin                                                           (10) 



Ali Mohamed Yousef Ali 1434 

 

Fig. 1 :  Representation of synchronous machine in d-q axis coordinate 
 

 The relation between fluxes and currents can be derived from the following matrix [1], 
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From Eqn. (11), the currents can be derived as a function of fluxes. These yields 

dkdff aaai ∆Ψ+∆Ψ+∆Ψ=∆ 876                                                               (12) 

dkdfd aaai ∆Ψ+∆Ψ+∆Ψ=∆ 543                                                               (13) 

dkdfkd ccci ∆Ψ+∆Ψ+∆Ψ=∆ 321                                                               (14) 

kqqq bbi ∆Ψ+∆Ψ=∆ 21                                                                                  (15) 

kqqkq bbi ∆Ψ+∆Ψ=∆ 43                                                                                (16) 

The linearized model for this system can be written in the state space form as::                        

                      mTBuBAxx ∆++= 2211

.

                                                                 (17) 

           θ++= DuCxy   
Where; 
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[ ]Tkqqkddfx ωδ ∆∆∆Ψ∆Ψ∆Ψ∆Ψ∆Ψ= , are the system states 

u   is the control signal  
θ  =  is the sensor noise 

[ ]TowB 00000011 =  , is the input vector 

[ ]T
o HwB 2/00000022 = , is the disturbance vector     

 

The mathematical coefficients a1 ,a2 , …., and c3 can be summarized as follows [2]: 
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13 /)( axxc fmd −=  
 

3. MODEL BASED PREDICTIVE CONTROL 

MBPC is a name of several different control techniques. All are associated with the 
same idea. The prediction is based on the model of the process, as it is shown in Fig. 2. 

The target of the model-based predictive control is to predict the future 
behavior of the process over a certain horizon using the dynamic model and obtaining 
the control actions to minimize a certain criterion, generally [10]: 
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Signals M(k+t), Ym(k+t), u(k+t) are the t-step ahead predictions of the process 
output, the reference trajectory and the control input, respectively. The values N1 and 
N2 are the minimal and maximal prediction horizon of the controlled output, and Nu is 
the prediction horizon of the control input. The value of N2 should cover the important 
part of the step response curve. The use of the control horizon Nu reduces the 
computational load of the method. The parameter �represents the weight of the control 
signal. At each sampling period only the first control signal of the calculated sequence 
is applied to the controlled process. At the next sampling time the procedure is 
repeated. This is known as the receding horizon concept. 

The controller consists of the plant model, the optimization block, objective 
function and prediction block as shown in Fig. 2. The input and output constraints are: 

1,.....,0 2,maxmin −=≤≤ Niuuu i        

1,.....,0 2,maxmin −=∆≤∆≤∆ Niuuu i           

         2max,min ,...,1 Niyyy i =≤≤    
 

The ability to handle constraints is one of the key properties of MBPC and also 
causes its spread, use, and popularity in industry. MBPC algorithms are reported to be 
very versatile and robust in process control applications. 

 
4. NEURAL NETWORK PREDICTIVE CONTROL 

Neural networks have been applied very successfully in the identification and control 
of dynamic systems. The universal approximation capabilities of the multilayer 
perception make it a popular choice for modeling of nonlinear systems and for 
implementing of nonlinear controllers. The unknown function may correspond to a 
controlled system, and the neural network is the identified plant model. Two-layer 
networks, with sigmoid transfer functions in the hidden layer and linear transfer 
functions in the output layer, are universal approximations. The prediction error 
between the plant output and the neural network output is used as the neural network 
training signal. The neural network plant model uses previous inputs and previous 
plant outputs to predict future values of the plant output. The structure of the neural 
network plant model is given in the Fig. 3, where u(t) is the system input, yp(t) is the 
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plant output, ym(t) is the neural network model plant output, the blocks labeled TDL 
are tapped delay lines that store previous values of the input signal, IW i,j is the weight 
matrix from the input j to the layer i. LW i,j is the weight matrix from the layer j to the 
layer i. 
 

 
Fig. 2. Classical model-based predictive control scheme 

 
This network can be trained off-line in batch mode, using data collected from 

the operation of the plant. The procedure for selecting the network parameters is called 
training the network. The Levenberg-Marquardt (LM) algorithm is very efficient for 
training. The LM algorithm is an iterative technique that locates the minimum of a 
function that is expressed as the sum of squares of nonlinear functions. It has become a 
standard technique for nonlinear least-squares problems and can be thought of as a 
combination of steepest descent and the Gauss-Newton method [17]. When the current 
solution is far from the correct one, the algorithm behaves like a steepest descent 
method: slow, but guaranteed to converge. When the current solution is close to the 
correct solution, it becomes a Gauss-Newton method. 

Assumed functional relation which maps a parameter vector mRP ∈  to an 
estimated measurement vector nRxpfx ∈= ˆ),(ˆ . An initial parameter estimate po and a 
measured vector x are provided, and it is desired to find the vector p̂ that best satisfies 
the functional relation f, i.e. minimizes the squared distance eTe with e= x �� x̂  . The 
basis of the LM algorithm is a linear approximation to f in the neighborhood of p. For a 
small pδ  , a Taylor series expansion leads to the approximation 

pp JPfPf δδ +≈+ )()(  where J is the Jacobi matrix 
P

Pf

∂
∂ )( . Like all non-linear 
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optimization methods, LM is iterative: initiated at the starting point po, the method 
produces a series of vectors p1, p2, ..., that converge towards a local minimize p̂  for f. 

Hence, at each step, it is required to find the pδ  that minimizes the quantity pJe δ− . 

The sought pδ  is thus the solution of a linear least-square problem: the minimum is 

attained when J pδ  � e �is orthogonal to the column space of J. This leads to 

0)( =− eJJ p
T δ ��which yields pδ  as the solution of the normal equations: 

 

eJJJ T
p

T =δ                                                      (19) 

The matrix JJ T  in the left hand side of Eqn. (19) is the approximate Hessian, 
i.e. an approximation to the matrix of second order derivatives. The LM method 
actually solves a slight variation of Eqn. (19), known as the augmented normal 

equations eJN T
p =δ , here the off-diagonal elements of N are identical to the 

corresponding elements of JJ T  and the diagonal elements are given by 

[ ]iiT
ii JJN += µ . The strategy of altering the diagonal elements of JJ T

 is damping 

and �is referred to the damping term. If the updated parameter vector p+ pδ  with pδ  

computed from Eqn. (19) leads to a reduction of the error e, the update is accepted and 
the process repeats with a decreased damping term. Otherwise, the damping term is 
increased, the augmented normal equations are solved again and the process iterates 
until a value of pδ  that decreases error is found. 

In LM, the damping term is adjusted at f the following conditions are met. 
Each iteration to assure a reduction in the error e. The LM algorithm terminates when 
at least one o 

1. The magnitude of the gradient of eeT , i.e. eJ T
in the right hand side of Eqn. 

(19), drops below a threshold ε1. 
2. The relative change in the magnitude of pδ  drops below a threshold ε2. 

3. The error eeT  drops below a threshold ε3. 
4. A maximum number of iterations k-max is completed. 

If a covariance matrix ∑�for the measured vector x is available, the minimum 
is found by solving a weighted least squares problem defined by the weighted normal 
equations: 
    

  eJJJ T
p

T ∑=∑ δ                                        (20) 

Model predictive control using a neural network model for single-input, single-
output systems has been studied by a few researchers and is outlined. For multivariable 
systems, the neural network MPC strategy was described using three fixed MLP 
models. The same strategy is used in our system using two MLP models with an 
adaptive model as shown in Fig.4. 
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Fig. 3: Structure of the neural network plant model 

 

 

 

Fig.4: Multivariable NNMPC control strategy 
 

5. PID POWER SYSTEM STABILIZER 

PID controllers are dominant and popular and, have been widely used because one can 
obtain the desired system responses and they can control a wide class of systems. This 
may lead to the thought that the PID controllers give solutions to all requirements, but 
unfortunately, this is not always true [18]. In this work, the PID optimal tuning method 
used is found in Ref. [19]. In this method, the parameters of PID controller satisfying 
the constraints correspond to a given domain in a plane. The optimal controller lies on 
the curve. The design plot enables the identification of the PID controller for desired 
robust conditions, and in particular, gives the PID controller for lowest sensitivity. By 
applying this method, trade-off among high frequency sensor noise, low frequency 
sensitivity, gain and phase margin constraints are also directly available. 
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The transfer function of a PID controller is given by: 
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The optimal PID controller parameters values were: 22=pK , 6.0=IT  and 12=DK  
 

 
Fig. 5: Schematic diagram of power system model with different power system 

stabilizers 
 

6. SIMULATION RESULTS AND DISCUSSION 

The objective of this control is to stabilize the power system performance and 
minimize the deviation between the actual and reference field voltage. The cost 
function of Eqn. (18) will have the following form for the proposed system: 
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the constraints are chosen such that, the output voltage is normalized to be 1, 
corresponds to output voltage. Thus, 
         εε +≤≤− refpref VuV . 
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The controller using a neural network model to predict future power system 
responses and potential control signals is designed. Then, an optimization algorithm 
related to Eq. (23) computes the control signals that optimize future plant performance. 
The neural network plant model was trained using the Levenberg–Marquardt 
algorithm. The training data were obtained from the model of the power system model 
(1–7). The used model predictive control method was based on the receding horizon 
technique. The neural network model predicted the plant response over a specified time 
horizon. The predictions were used by a numerical optimization program to determine 
the control signal that minimizes performance criterion over the specified horizon. The 
controller was implemented using Matlab/Simulink sotware program. 
Choosing power system parameters as given in Ref.  [2] in a pu.as follows: 

0.377,4.0,0.0,01.0,0.3,65.2

0011.0,04.0,02.0,01.0,6.08.0

8.0,0.1,1.1,291.0,2.1,1.1
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oeemodo
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Applying the proposed NNMPC and PID controller to the power system under 
study as shown in Fig. 5. Fig. 6 shows the rotor speed deviation response due to 0.1pu. 
step disturbance at 0.5 lag power factor load with both PID and NN-MPC controller. 
Fig. 7 depicted the rotor speed deviation response due to 0.1pu. step disturbance at -0.5 
lead power factor load with both PID and NN-MPC controller. Fig.8 shows the rotor 
speed deviation response due to 0.1pu. step disturbance at 0.8 lag power factor load 
with both PID and NN-MPC controller. Also, Fig. 9 shows the rotor speed deviation 
response due to 0.1pu. step disturbance at -0.8 lead power factor load with both PID 
and NN-MPC controller. Moreover, the rotor speed deviation response due to 0.1pu. 
step disturbance at 0.8 lag power factor load with PID and NN-MPC controller with  
20% increase in Xf and Xd. is shown in Fig. 10.  Fig. 11 depicted the rotor speed 
deviation response due to 0.1pu. step disturbance at -0.8 lead power factor load with 
PID and NN-MPC controller with  20% increase in Xf and Xd. Fig. 12 shows the  rotor 
speed deviation response due to 0.1pu. step disturbance at -0.6 lead power factor load 
with PID and NN-MPC controller with  20% increase in Xf and Xd. Furthermore, the 
maximum overshoot (MP) , settling time (Ts) and steady state error  (ess) are calculated 
in table 1 at different operating point. 

 

Table  1; The time settling and step- characteristic of different controller 

 Vt=1 pu. , Pf=0.8 

Lag power factor load 

Vt=1 pu. , Pf= -0.5 

Lead power factor load 

With PID 

control 
With  NN-MPC 

With PID 

control 
With  NN-MPC 

MP  0.029 0.008 0.028 0.012 

sT  9.0 1.0 9.0 0.9 

SSe  0 0 0 0 
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Where; MP is the maximum peak; sT is the settling time, sse is the steady state error 

  It is clear that from the above figures that the overshoot, undershoot with less 
time settling of the time response system in case of the proposed NNMPC controller 
are shorter and smaller than the case of PID controller. From table 1, the settling time 
with PID controller is 9 Sec. but with the proposed NNMPC is 1 Sec. Moreover, the 
steady state error is zero in both PID and NNMPC controllers. 
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Fig. 6: Rotor speed deviation response due to 0.1pu. step disturbance at 0.5 lag power 

factor load with PID and NN-MPC controller. 
 

7. CONCLUSIONS 

The scope of this paper is to investigate the potential improvements that can be 
achieved using neural network predictive control methodologies for the design of 
power system stabilizer.  To validate the effectiveness of the proposed controller, a 
comparison among the PID controller and the proposed NN-MPC controller is 
obtained.  Both the proposed NN-MPC and PID with the single synchronous machine 
connected to infinite bus power system is evaluated when both load and parameters 
changed. From the simulations results, it is seen that the proposed controller is robust 
and gives good transient as well as steady -state performances. The digital simulation 
results validate the effectiveness and powerful of the proposed NN-MPC controller 
compared with the PID stabilizer in terms of fast power system mechanical oscillation 
damping over a wide range of operating conditions and  variations in system 
parameters. The time settling with the proposed NN-MPC stabilizer is smaller than the 
corresponding value with PID stabilizer. The maximum over and under shoot with the 
proposed NN-MPC stabilizer is less than the corresponding value with PID controller. 
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Fig. 7: Rotor speed deviation response due to 0.1pu. step disturbance at -0.5 lead power 

factor load with PID and NN-MPC controller. 
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Fig. 8: Rotor speed deviation response due to 0.1pu. step disturbance at 0.8 lag power 

factor load with PID and NN-MPC controller. 
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Fig. 9: Rotor speed deviation response due to 0.1pu. step disturbance at -0.8 lead power 

factor load with PID and NN-MPC controller. 
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Fig. 10: Rotor speed deviation response due to 0.1pu. step disturbance at 0.8 lag power 

factor load with PID and NN-MPC controller with  20% increase in Xf and Xd. 
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Fig. 11: Rotor speed deviation response due to 0.1pu. step disturbance at - 0.8 lead 

power factor load with PID and NN-MPC controller with with  20% increase in Xf and 
Xd. 
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Fig. 12: Rotor speed deviation response due to 0.1pu. step disturbance at -0.6 lead 

power factor load with PID and NN-MPC controller with with  20% increase in Xf and 
Xd. 
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 التنبؤيةِ  الأعصاب شبكة التحكم بمعتمد على  مثبّتِ نظامِ كهربائيِ 

بشبكة الأعصاب  تنبؤيِ الالتحكم على  امثبّتُ النظامِ الكهربائيِ مستند يقوم بفحص الحاليُ البحث   
ذه إقترحتْ ه ، التشغيل تتشكيلة واسعة من حالا على الديناميكيلتَحسين أداءِ النظامِ الكهربائيِ  الاصطناعية

نظام كهربائي على     (NN-MPC)الدراسةِ تصميم وتطبيقَ جهازِ سيطرة الشبكة العصبيةَ النموذجيَ التنبؤيَ 
 المتزامنةَ مُمَثلةُ بالتفصيل الماكينةإنّ  ، نقل خَطّ  صلَ إلى حافلةِ لانهائيةِ خلالمو مولّد متزامن  بسيط متكوّن من

عصبيةِ النموذجيةِ الشبكة التحكم بال ، و القطب الملفوف  لماكينةا بروز اقطاب في الحسبان تأثيرَ  مع الأخذ
 تَدْمجُ تنبؤَ موثوقَ مِنْ الشبكة العصبيةِ بالأداءِ الممتازِ مِنْ السيطرةِ التنبؤيةِ النموذجيةِ    (NN-MPC) التنبؤيةِ 

، مرجعية إشارة ران كةِ الدوّ هذه السيطرةِ إنحرافَ سرع استعملت ، ليفن مارك الاخطية النموذجية باستخدام طريقة 
المُقتَرَح الكهربائي يُمْكِنُ أَنْ  الشبكة العصبيةَ النموذجيَ التنبؤيَ  بأنّ مثبّتَ نظامِ  تظهر نَتائِجَ المحاكاةِ الرقميةِ 
 تهُ ارَنمُقَ تم أداء جهازِ السيطرة المُقتَرَحِ  ، زيادة على ذلك،  لالتشغي تِ من حالانطاق واسع  يُنجزَ أداءَ جيدَ على

وتفوقُ  الكبير  التأثيرُ  توضح النَتائِجُ المكتسبةُ  ، تقليدي خلال دِراساتِ المحاكاةِ  PIDمعتمد على بجهازِ سيطرة 
  . .الصغيرِ  الاستقرارجهازِ السيطرة المُقتَرَحِ من ناحية الرَد السريعِ ووقتِ 

  


