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The present paper investigates the power system stabilizer based on
neural predictive control for improving power system dynamic
performance over a wide range of operating conditions. In this study a
design and application of the neural network model predictive controller
(NN-MPC) on a simple power system composed of a synchronous
generator connected to an infinite bus through a transmission line is
proposed. The synchronous machine is represented in detail, taking into
account the effect of the machine saliency and the damper winding.
Neural network model predictive control combines reliable prediction of
neural network model with excellent performance of model predictive
control using nonlinear Levenberg-Marquardt optimization. This control
system is used the rotor speed deviation as a feedback signal.
Furthermore, the used performance system of the proposed controller is
compared with the system performance using conventional one (PID
controller) through simulation studies. Digital simulation has been
carried out in order to validate the effectiveness proposed NN-MPC
power system stabilizer for achieving excellent performance. The results
demonstrate that the effectiveness and superiority of the proposed
controller in terms of fast response and small settling time.

KEYWORDS: Power system stabilizer, NN_MPC control and single
synchronous machine infinite bus systems

LIST OF SYMBOLS

Inertia constant of the machine, X
in second
d-axis armature current, in p.u. Xy

Field winding current, in p.u. Xq
d- and g-axis damper winding X(',
currents, in p.u.

g-axis armature current, in p.u. X;

Series resistance of transmission o
system, in p.u.

Field and armature resistance, in @
p.u.

Machine electromagnetic torque, w,
in p.u.

The d-axis damper winding self
reactance, in p.u.

The g-axis damper winding self
reactance, in p.u.

g-axis synchronous reactance, in
d-axis transient reactance, in p.u.

d-axis subtransient reactance, in g.u.

Rotor displacement angle, in radig

Rotor instantaneous angular
velocity, in rad./sec
Rotor synchronous speed, in rad/J
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Tn  Shaft torque, in p.u. W The d-axis armature flux linkage i
d
p.u.
Vi Field voltage, in p.u. W,  The field winding flux linkage in p.
V,  Machine terminal voltage, in p.u. W The d-axis damper winding flux
k' linkage in p.u.
X4  d-axis synchronous reactance, in W, The g-axis damper winding flux
p.u. linkage in p.u.
Xe  Series reactance of transmission W, The g-axis armature flux linkage i
system, in p.u. p.u. T

1. INTRODCTION

Power system stabilizers (PSSs) have been widely as supplementary controllers to
provide extra damping for synchronous generatorseliectrical power system.
Conventional power system stabilizer (CPSSs) aed us damp out small signal
oscillations and they are designed based on a meldeh is linearized around a
particular operating point. Conventional desigresithe gain and time constants of the
PSS, which are mostly lead-lag compensator, usiodainfrequency techniques [1-3].
The feedback signal is subtracted from the referéaaletermine the error signal. Due
to the complexity of the mathematics, the convergtiocontrol methods were used
mostly for single-input-single-output system. Madeontrol methods were extremely
successful because they could be efficiently implet@d on computers, they could
handle multi-input-multi-output system, and thewicbbe optimized [4-7]. With the
development of numerical algorithms for solvingelm matrix inequality (LMI)
problem in the last few years, the LMI approach kagrged as a useful tool for
solving a wide range variety of control problems.

Predictive control is now widely used in industrgdaa large number of
implementation algorithms. Most of the control aljoms use an explicit process
model to predict the future behavior of a plant &edause of this, the term model
predictive control (MPC) is often utilized [8-10[he most important advantage of the
MPC technology comes from the process model itsdiich allows the controller to
deal with an exact replica of the real process nyos, implying a much better control
quality. The inclusion of the constraints is thatéee that most clearly distinguishes
MPC from other process control techniques, leading tighter control and a more
reliable controller. Another important charactecistvhich contributes to the success
of the MPC technology, is that the MPC algorithnemisider plant behavior over a
future horizon in time. Thus, the effects of boteed forward and feedback
disturbances can be anticipated and eliminated, ¥atch permits the controller to
drive the process output more closely to the refezdrajectory.

Several versions of MPC techniques are model dlgoic control (MAC)
[11], dynamic matrix control (DMC) [12], and intenmodel control (IMC) [13].
Although the above techniques differ from each otime some details, they are
fundamentally the same, because all of them aredoas linear process modeling.

The Neural Network Model Predictive Control (NN-MPI1S another typical
and straightforward application of neural netwadiksonlinear control. When a neural
network is combined with MPC approach, it is use@dorward process model for the



NEURAL NETWORK PREDICTIVE CONTROL ....... 1433

prediction of process output [14,15]. Neural netwmiodel predictive control has been
applied on the process control as chemical, ingwgtplications. But, applying MPC
on power system stability and control is still vehightly used [16-19].

The main objective of this study is to investig#ite application of neural
network model predictive controller on the singj@mahronous machine connected to
an infinite bus power system. The system is modatetithe NN-MPC is designed and
applied on the system. A comparison between thesyperformance obtained when
using the proposed NN-MPC controller and the pemforce obtain using PID
controller at different operating conditions is ggated and evaluated for power
system. The feasibility and effectiveness of theppsed controller have been
demonstrated through computer simulations. Sinarnatesults have NN-MPC proved
that the proposed controller can give better oVgraiformance. Simulation results
show also that the NN-MPC gives promising results.

2. POWER SYSTEM MODEL

Figure 1 shows a synchronous machine with sali@éspand damper windings
represented in rotating d-q axis coordinates. Tdogdinates are fixed on the rotor and
rotate with it. The non-linear differential equatso of unsaturated salient pole
synchronous machine can be expressed as [1]

1 . .
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The non-linear differential equations describedvabivom Egns. (1-7) can be
linearized around an operating point become lizedralgebraic equations as follows:

AT, =W, Ai, + 1 AW, =W Aiy =1, AW, (8)
Avy, =V, c0s9,A0 + 1Al = XAi, 9
Av,, = -V, Sind,Ad +r i, + XAl (10)
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d-axis

Fig. 1 : Representation of synchronous machirtegraxis coordinate

The relation between fluxes and currents can beatefrom the following matrix [1],
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(11)

From Eqn. (11_), the currents can be derived asitifin of fluxes. These yields
Ai, =a AW, +a,AW,, +a,AY,
Aiy =a AW, +a,AW,, +a AW,
Aiy =c AW, +c,AW,, +C,AY,

Ai, =b AW, +b,AW,
Aiy, =bAW, +b, AW,

(12)

(13)

(14)
(15)
(16)

The linearized modédbr this system can be written in the state spao®a fis::

X = AX+ Bu + B,AT,
y=Cx+Du+6

Where;

17)
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X=[Aqu AV, AW, AY, AY¥,, Ao Aa)]T,are the system states

u is the control signal
@ = is the sensor noise

B, = lwo 00000 OJT , is the input vector

B,, = [O 0 00O0O0 w, /2H]T, is the disturbance vector

The mathematical coefficients @&, ...., and gcan be summarized as follows [2]:
& = X XX Xt ™ X X ™ Xt Xt + DXy = Xy X

8, = (X Xy — Xy = X¢ Xg + Xg X))

8y = ((Xpg = Xg)/8,) (L= ((X¢ XgXia  Xg = Xig X + X =X X )/ &)

-1
a, :g{xf D X O = %)+ (XX 7 Xy =X )X XXt I X = XX + Xg = Xena X1/ 20)}

-1
as :a_{(xmd = X J((Xg Xy Xig I Xong = Xig X +Xr$1d = X Xa) ! 8)}
2

ag =1/ X, +agXy /Xy = Xog I X (Xg = Xg) /&
a, = A, X I X = Xog I X { (Xg X I Xg = Xig )/ 8}
A5 = 85Xy [ X¢ = Xog I X { (X = X¢ )/ A}

by = X (%, (Xog = Xiq X)) =1/ X,

b, = =X /(Xog = Xg %)

b, = b,

b, = =%, (%o = X X)

C, = (Xpg = X%q)/ 3y

C = (Xg X [ Xy = Xog) &y
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Cs = (X = X¢) /3y

3. MODEL BASED PREDICTIVE CONTROL

MBPC is a name of several different control techei All are associated with the
same idea. The prediction is based on the modbkeqgbrocess, as it is shown in Fig. 2.

The target of the model-based predictive controltaspredict the future
behavior of the process over a certain horizonguie dynamic model and obtaining
the control actions to minimize a certain criteriganerally [10]

N, 2 Ny 2
3= ¥ M+ -v (t+K) +kz_1(/1kAun(t+k)) 18)

1
SignalsM(k+t), Ym(k+t), u(k+t) are thet-step ahead predictions of the process
output, the reference trajectory and the contrplinrespectively. The valuég and
N, are the minimal and maximal prediction horizonla# tontrolled output, andu is
the prediction horizon of the control input. Théueof N2 should cover the important
part of the step response curve. The use of thératohorizon Nu reduces the
computational load of the method. The parametepresents the weight of the control
signal. At each sampling period only the first cohsignal of the calculated sequence
is applied to the controlled process. At the nexngling time the procedure is
repeated. This is known as the receding horizocen
The controller consists of the plant model, theirj&ation block, objective
function and prediction block as shown in Fig. BeTinput and output constraints are:

umin = ui = umax,

Au, £Au; <Au . i=0,....,N,-1

ymin < yi < ymax, I :1""1N2

The ability to handle constraints is one of the geyperties of MBPC and also
causes its spread, use, and popularity in industBRPC algorithms are reported to be
very versatile and robust in process control apgibns.

4. NEURAL NETWORK PREDICTIVE CONTROL

Neural networks have been applied very successiultie identification and control
of dynamic systems. The universal approximationabdpies of the multilayer
perception make it a popular choice for modeling nohlinear systems and for
implementing of nonlinear controllers. The unknofumction may correspond to a
controlled system, and the neural network is thentified plant model. Two-layer
networks, with sigmoid transfer functions in thedden layer and linear transfer
functions in the output layer, are universal apprations. The prediction error
between the plant output and the neural networkuius used as the neural network
training signal. The neural network plant modelsupeevious inputs and previous
plant outputs to predict future values of the plantput. The structure of the neural
network plant model is given in the Fig. 3, whe(® is the system inpugp(t) is the
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plant outputym(t) is the neural network model plant output, the béotebeled TDL
are tapped delay lines that store previous valfisednput signallW i,j is the weight
matrix from the inpuj to the layei. LW i,j is the weight matrix from the laygto the
layeri.

Refetence MPC
ot +
W 3 Opmuzaion : p  plaet nu?ut

- 1
Objective  —M
fton g |

prediction (g

Fig. 2. Classical model-based predictive controksce

This network can be trained off-line in batch modsing data collected from
the operation of the plant. The procedure for $eigdhe network parameters is called
training the network. The Levenberg-Marquardt (L&gorithm is very efficient for
training. The LM algorithm is an iterative technéggthat locates the minimum of a
function that is expressed as the sum of squarasrdinear functions. It has become a
standard technique for nonlinear least-squareslgmraband can be thought of as a
combination of steepest descent and the Gauss-Rewethod [17]. When the current
solution is far from the correct one, the algorithmhaves like a steepest descent
method: slow, but guaranteed to converge. Wherctingent solution is close to the
correct solution, it becomes a Gauss-Newton method.

Assumed functional relation which maps a parameeator POR™ to an
estimated measurement vector f (p), XOR". An initial parameter estimate pmd a
measured vector are provided, and it is desired to find the veditihat best satisfies

the functional relatior, i.e. minimizes the squared distarede with e= x [1[1X . The
basis of the LM algorithm is a linear approximattorf in the neighborhood of p. For a

small [5,] , a Taylor series expansion leads to the approiomat

f(P+9,)= f(P)+JJ, whered is the Jacobi matrix%. Like all non-linear



1438 Ali Mohamed Yousef Al

optimization methods, LM is iterative: initiated #ite starting point po, the method
produces a series of vectqs, p2, ..., that converge towards a local minimizefor f.

Hence, at each step, it is required to find shethat minimizes the quantitfe- 35, .
The soughtg, is thus the solution of a linear least-square @oblthe minimum is
attained whenlg, [ e [is orthogonal to the column space &f This leads to

J7(39, —e) =01 which yields 3, as the solution of the normal equations:

J'Jo,=J"e 19)

The matrix J™J in the left hand side of Egn. (19) is the appratenHessian,
i.e. an approximation to the matrix of second orderivatives. The LM method
actually solves a slight variation of Eqn. (19),otam as the augmented normal

equationé\ldp:JTe, here the off-diagonal elements of N are identital the

corresponding elements ofJTJ and the diagonal elements are given by
N; =,u+[JTJ]ii . The strategy of altering the diagonal elements)of) is damping

andis referred to the damping term. If the updatechpeater vectop+ 5p with 9,

computed from Eqgn. (19) leads to a reduction ofettere, the update is accepted and
the process repeats with a decreased damping @timerwise, the damping term is

increased, the augmented normal equations aredsalyain and the process iterates
until a value ofg, that decreases error is found.

In LM, the damping term is adjusted at f the foliog/ conditions are met.
Each iteration to assure a reduction in the ezrdthe LM algorithm terminates when
at least one o

1. The magnitude of the gradient efe,ie. J'ein the right hand side of Eqgn.
(19), drops below a threshadd.
The relative change in the magnitudesgfdrops below a threshok®.

3. The errore’e drops below a threshol.
4. A maximum number of iteratiorlsmax is completed.
If a covariance matrix. Ofor the measured vectaris available, the minimum
is found by solving a weighted least squares proldefined by the weighted normal
equations:

JTZJJp:JTZe (20)

Model predictive control using a neural network mlofdr single-input, single-
output systems has been studied by a few researahdris outlined. For multivariable
systems, the neural network MPC strategy was destrusing three fixed MLP
models. The same strategy is used in our systeng usio MLP models with an
adaptive model as shown in Fig.4.
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Fig. 3: Structure of the neural network plant model
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Fig.4: Multivariable NNMPC control strategy

5. PID POWER SYSTEM STABILIZER

PID controllers are dominant and popular and, lseen widely used because one can
obtain the desired system responses and they cdroca wide class of systems. This
may lead to the thought that the PID controllex®golutions to all requirements, but
unfortunately, this is not always true [18]. Inghwork, the PID optimal tuning method
used is found in Ref. [19]. In this method, thegmaeters of PID controller satisfying
the constraints correspond to a given domain itaagp The optimal controller lies on
the curve. The design plot enables the identificatf the PID controller for desired
robust conditions, and in particular, gives the etintroller for lowest sensitivity. By
applying this method, trade-off among high frequesensor noise, low frequency
sensitivity, gain and phase margin constraintsaése directly available.
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The transfer function of a PID controller is givieyn

K(9) =K, (1+—2+Tp 9 21)

T's
where K, Ko ond KpT, fepresent the proportional, integral and derieagiains
|
of the controller respectively. Defing)n:; andg:l Ti_as the controller's
T 2\/TD

natural frequency and the damping coefficient, eetipely. Then the PID transfer
function can be written as:
@ +2{w, s+ s?

2{w,S

The optimal PID controller parameters values wétg:=22, T, = 06 and Ky =12

K(s) =Kp (22)

Turhine

power system

stahilizers

Fig. 5: Schematic diagram of power system modéi ditferent power system
stabilizers

6. SIMULATION RESULTS AND DISCUSSION

The objective of this control is to stabilize thewsr system performance and
minimize the deviation between the actual and exfee field voltage. The cost
function of Eqn. (18) will have the following forfor the proposed system:

2

N, 2N,
3= ¥ Vi (t+K) ~Viye (t+K)) + kzzl(Akvfref (t+Kk)) (23)

_Nl

the constraints are chosen such that, the outplibge is normalized to be 1,
corresponds to output voltage. Thus,
VI’Ef _Egupsvref +£.
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The controller using a neural network model to etliture power system
responses and potential control signals is desighkdn, an optimization algorithm
related to Eq. (23) computes the control signads dptimize future plant performance.
The neural network plant model was trained using thevenberg—Marquardt
algorithm. The training data were obtained fromrtadel of the power system model
(1-7). The used model predictive control method ased on the receding horizon
technique. The neural network model predicted taetpesponse over a specified time
horizon. The predictions were used by a numeripéihozation program to determine
the control signal that minimizes performance dte over the specified horizon. The
controller was implemented using Matlab/Simulinkngre program
Choosing power system parameters as given in Réfn a pu.as follows:

X, =11, X,-12 X('1 =0291 X,,=11 X, =10 X,=08
Xq=08 X,=06 17r1,=00} r,=002 r,=004 r,=00011
T,=265 H=30, T,=00L r =00, X, =04, w,=3770

Applying the proposed NNMPC and PID controllertie power system under
study as shown in Fig. 5. Fig. 6 shows the roteespdeviation response due to 0.1pu.
step disturbance at 0.5 lag power factor load Wwith PID and NN-MPC controller.
Fig. 7 depicted the rotor speed deviation respdaogeto 0.1pu. step disturbance at -0.5
lead power factor load with both PID and NN-MPC trolter. Fig.8 shows the rotor
speed deviation response due to 0.1pu. step distoebat 0.8 lag power factor load
with both PID and NN-MPC controller. Also, Fig. Baws the rotor speed deviation
response due to 0.1pu. step disturbance at -OBgdewaer factor load with both PID
and NN-MPC controller. Moreover, the rotor speedial#on response due to 0.1pu.
step disturbance at 0.8 lag power factor load Witlh and NN-MPC controller with
20% increase in ¥Xand X. is shown in Fig. 10. Fig. 11 depicted the ratpeed
deviation response due to 0.1pu. step disturbane@ & lead power factor load with
PID and NN-MPC controller with 20% increase inaXd X. Fig. 12 shows the rotor
speed deviation response due to 0.1pu. step distoebat -0.6 lead power factor load
with PID and NN-MPC controller with 20% increaseX; and X;. Furthermore, the
maximum overshoot (MP) , settling timeY ind steady state error Jeare calculated
in table 1 at different operating point.

Table 1; Thetime settling and step- characteristic of different controller

Vt=1 pu. , Pf=0.8 Vt=1 pu. , Pf=-0.5
Lag power factor load Lead power factor load
With PID _ With PID _
With NN-MPC With NN-MPC
control control

MP 0.029 0.008 0.028 0.012
T, 9.0 10 9.0 0.9
ess 0 0 0 0
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Where; MP is the maximum peakIis the settling timegeg is the steady state error

It is clear that from the above figures that ¢tlvershoot, undershoot with less
time settling of the time response system in cdsbe proposed NNMPC controller
are shorter and smaller than the case of PID cikertré-rom table 1, the settling time
with PID controller is 9 Sec. but with the propo¢NMPC is 1 Sec. Moreover, the
steady state error is zero in both PID and NNMP@rcdiers.

0.03

0.02

0.01

-0.01

Rotor speed dev. in p.u.
o

-0.02

-0.03
0

time (sec)

Fig. 6: Rotor speed deviation response due to Ostpp disturbance at 0.5 lag power
factor load with PID and NN-MPC controller.

7. CONCLUSIONS

The scope of this paper is to investigate the p@teimprovements that can be
achieved using neural network predictive controlthodologies for the design of
power system stabilizer. To validate the effectass of the proposed controller, a
comparison among the PID controller and the progosN-MPC controller is
obtained. Both the proposed NN-MPC and PID with sgle synchronous machine
connected to infinite bus power system is evaluatbdn both load and parameters
changed. From the simulations results, it is skahthe proposed controller is robust
and gives good transient as well as steady -stfermances. The digital simulation
results validate the effectiveness and powerfuthef proposed NN-MPC controller
compared with the PID stabilizer in terms of fastvpr system mechanical oscillation
damping over a wide range of operating conditiomsl a variations in system
parameters. The time settling with the proposedNRE stabilizer is smaller than the
corresponding value with PID stabilizer. The maximaver and under shoot with the
proposed NN-MPC stabilizer is less than the coordmg value with PID controller.
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--==='PID
NNMPC

0.03
0.02| -
0.01| -

S

‘d u1 “Aap paads JoloY

time (sec)

NNMPC

-====-PID

factor load with PID and NN-MPC controller.

0.03
0.02----
0.01F----

'n'd Ul paads Jo1oH

Fig. 7: Rotor speed deviation response due to Ogtpp disturbance at -0.5 lead power

10

time (sec)

Fig. 8: Rotor speed deviation response due to Ositpp disturbance at 0.8 lag power

factor load with PID and NN-MPC controller.
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-====-PID

NNMPC

10

time (sec)

Fig. 11: Rotor speed deviation response due tauOsitpp disturbance at - 0.8 lead
power factor load with PID and NN-MPC controllertvivith 20% increase inpand

--===-PID
NNMPC

X

—n——
~
~

0.03

'n°d ul paads Joj04
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Fig. 12: Rotor speed deviation response due tau0dtpp disturbance at -0.6 lead
power factor load with PID and NN-MPC controllerthwvivith 20% increase inpand

X
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