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Abstract 

The method of least squares of the most commonly used methods for 

estimating the parameters of linear regression models,this method requires the 

availability of several assumptions for the capabilities more efficiently. So 

robust methods can be used to give better results than OLS when there are 

outliers. This research discussessome robust regression approach and 

inference for M-estimators. Empirical study illustrates that robust methods 

aremore efficiency compare the OLS, when the data contain outliers.  

Keywords:Bootstrap, Linear Regression, M- estimators, Outliers, Robust 

Inference, Statistical Inference.  
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(1) Introduction 

It is well known that, The linear regression model is one of the most widely 

used tools in statistical analysis and the least squares method is a very popular 

estimation technique for this model. In  this respect, the classical estimators 

for the regression coefficients and error scale are the well-known least squares 

estimators. These estimators are optimal under normal errors but extremely 

sensitive to outliers and unusual observations in the data set. This particularly 

the case for the residual scale estimators, and as a result many more robust 

estimators have been proposed as alternatives.  Much attention has been paid 

in statistical literature to  robust and efficient estimation of the regression 

parameters. In this paper is organized as follows: Section (2) we present some 

definition of robust inference. Section (3) we present some robust regression 

approach. Section (4)  we present  inference for M-estimators. Section (5) is 

mainly devoted to an empirical results. Finally, in section (6) we give 

summary and conclusions.  

(2)Robust Inference 

We introduce some basic concepts of robust statistics that will be used in this 

study: 

Definition 1: The Finite – Sample Breakdown Pointof the estimator of the  

observed sample X=( 1 2, , nX X X  ) is defined as 

( , ) min( ; ( ; , ) )n n

m
T x bais m T x

n
         (1) 

where 
( ; , )nbais m T x

 is the maximum bias that can be contaminated by the 

(presence of outliers), m is the number of original points replaced by arbitrary 
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values and 
( , )n nT x 

  is the smallest fraction of contamination that can 

cause the estimator T to take values arbitrarily far from nT
.  

The breakdown point usually does not depend on the sample value x, but 

depends only slightly on the sample size n. (pitselis. G, 2013) 

 

Definition 2: Outliers are defined to be observations which deviate from the 

pattern set defined by the majority of the data and are very dangerous of the 

data and many classical; statistical procedures.  (Hampel et al, 1986) 

Outliers in linear regression model are classified into: 

     Y- Outlier (Vertical Outlier); This is a point that is outlying only because its 

Y-coordinate is extreme and is called (Vertical Outliers). In this case, the 

presence of such values affects the LS – estimates, in particular the estimated 

intercept also, X – Outlier (Leverage Point); This type is outlying only in 

regard to the x- coordinate. Such apoint can cause some robust regression 

estimators to perform poorly, but the more modern robust estimators are not 

undermined by x- outliers. Also, they are called (Leverage Point) and X and 

Y-  Outlier; This type is outlying in both coordinates may be a regression 

outlier, or residual outlier (or both) or it may have a very small effect or even 

on effect on the regression equation.  (Ryan, 2009) 

 (3)The Robust Regression Approach 

Robust regression is an important method for  analyzing data that are 

contaminated with outliers. Robust regression analysis provides an alternative 

to least squares regression when fundamental assumptions are unfulfilled by 

the nature of the data. The properties of efficiency , breakdown and high 
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leverage points are used to define robust techniques performance in a 

theoretical sense. Efficiency shows that, how the robust technique performs 

well relative to LS in case of clean data (without outliers). High efficiency is 

mostly desired on estimation .BP is a measure for stability of the estimator 

when the sample contains a large portion of outliers. It gives the minimum 

portion of outliers which may produce an infinite bias. ( Alma, 2011) 

Generally, robust regression methods aim to justify the following goals: 

i. Consistency, asymptotic normality and high efficiency of the estimators if 

there are no model violations. 

ii. Methods for forming confidence intervals for the unknown parameters and for 

testing hypotheses about them.  

iii. Relative insensitivity of the properties in (i) and results in (ii) to slight 

violations of the model.  

iv. Simplicity of theory. 

v. Ease of computation, given a standard computer package ( staudte,  et al, 

1990). 

To conclude, if the errors having  a non –normal distribution, we might 

consider a robust regression method, particularly in cases where the error 

distribution is heavier-tailed  distribution and generate more errors than the 

normal. ALS analysis weights each observation equally in getting parameter 

estimates. Robust methods enable the observation to be weighted unequally 

.Essentially, observations that produce large residuals are down-weighted by a 

robust estimation method. 

         In this section, we introduce some methods of robust regression 

estimators as follows:  
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(3.1) Least Median of Squares: Rousseeuuw ( 1984),  proposed the Least 

Median of Squares (LMS) has the highest possible BP of 50% , by minimizing 

the median of squared error as follows: 

2

1
min ( ),LMS i

i n
median e 



 


  (2) 

where 


 is an estimate of  . The LMS estimator has 50% breakdown 

point. A robust analysis with LMS may be conducted as follows: 

 First step is to obtain the standardized residuals from LMS analysis, 

 Then remove the observation corresponding to large outliers, (a above 2.5 

standard deviations), 

 Then run the OLS on the remaining data. (Onder and Ozet, 2001) 

 Instead of taking the median of the ordered squared residuals, consider thh  

order statistic, where    / 2 ( 1) / 2 ,h n p   n denotes the sample size, and p 

is the number of regression parameters. The symbol    mean " integer portion 

of ". LMS estimator has BP equal  ( ) / 2 1) /n p n  .  

Apart from the regression coefficients, the scale parameter S  (the dispersion 

of errors ie  ) has also to be estimated  in a robust way. 

As an initial estimate we use the following  

0 25
1.4826(1 ) ( ),i is med e

n p
 

 n ≠ p     (3)              



[7] 
 

Where n is the sample size,  p is the regression parameters, and the factor 

1

1
1.426

(0.75) 
  , and  ∅ is the standard normal cumulative function . 

The initial scale estimate  
0s  is then used to determine a weight  iw  for the 

thi  observation as follows :  

0
1

2.5

0

i

i

e
if

w s

oterwise




 



(4)The outliers points are considered 

when their 
0

2.5,ie

s


where ie  is computed based on the final fit .  

Then the final scale estimate S for LMS regression is give by : 

2

1

1

n

i i

i

n

i

i

w e

S

w p












    (5)   

The a above estimator is very robust with respect to outliers in Y as well as 

outlier in  x . Unfortunately,  the LMS performs poorly from the point of view 

of asymptotic efficiency. (pitselis, 2013). 

(3.2) Least Trimmed Squares: The LTS estimate is defined as follows:  

2

1

min ( ),
n

LTS i

i

imize e







  i=1,2,……,h .                   (6) 
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Where 
2 2 2

1 2( ) ( ) ....... ( )i i i ne e e    are  the ordered squared residuals sorted 

from smallest to largest and h  is the number of these terms which are included 

in the summation called the coverage of the estimator. ( Rousseeuw,1984) 

          LTS is calculated by minimizing the h  ordered squares residuals, where 

   / 2 ( 1) / 2h n p    , with n  and p being sample size and number of 

parameters, respectively .The largest squared residual are excluded from the 

summation in this method, which allows those outlier data points to be 

excluded completely. Depending on the value of h  and the outlier data 

configuration,  LTS can be very efficient. In fact, if the exact numbers of 

outlying data points are trimmed , this method is computationally equivalent 

to LS . However, if there are more outlying data points that are trimmed, LTS 

is not as efficient. 

     In LTS, the objective is to minimize the sum of the smallest 50% squared 

residuals. LTS is a robust estimator with 50%  breakdown point, which means 

that the estimator is insensitive to corruption due to outliers, provided that the 

outliers represent less than 50% of the data set. LTS has the advantage of 

being statistically more efficient than LMS. (Angela Y.Wu et al, 2007) 

(3.3) M- Estimators: The most common general method of robust regression 

is M-estimation, introduced by Huber (1964), the method of M-estimation as a  

generalization to maximum likelihood estimation in context of location 

models. In simple terms, the M-estimator minimizes some functions of the 

residuals. As in the case of M-estimation  of  location, the robustness of the 

estimator is determine by the choice of weight function. 

Consider the following linear model: 
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Y = xβ + iu  , where Y is the vector of response variable, x is an nxp matrix 

of independent variables,   is a 1p  vector of unknown parameters, and 

iu  is random error with expectation zero and variance  
2  . 

Fox (2002) described The general M-estimator as follows: 

1 1

min ( ) min ( )
n n

i i i

i i

e y X  


 

  
                

(7) 

Or 
1 1

( )
min ( ) min ( )

n n
i i i

i i

e y X

s s


 



 


                  (8) 

Where  s   is the estimated scale of residuals and a popular choice for  s  is, 

( ) / 0.6745i iS median e median e 
                                 (9) 

The constant 0.6745 makes  s  an approximately unbiased estimate of  σ  if  n  

is large and the distribution is normal, ρ is a symmetric, positive definite 

function gives the contribution if each residual to the objective function (7). 

(3.4) MM-estimator: MM estimation is a special type of M- estimation 

developed by Yohai (1987). Some properties of MM- estimator are follows as; 

They are highly efficient when the errors have normal distribution and  Their 

BP is 0.5.  

The three stages of computing MM-estimator can be illustrated in detail as 

follows:  
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1) Computing an initial consistent estimate  


 with high BP but not 

necessarily efficient. The S- estimator can be used as the initial part of an 

overall MM- estimate computational strategy.  

2) Computing a robust scale  


 of the residuals  ( )s   . 

3) The final step is using M- estimate the regression parameters.  

(3.5) S- Estimators: The S – estimators introduced by Rousseeuw and Yohai 

(1984) from another class of high BP, are a generalization of LMS and LTS  

and have the same asymptotic properties corresponding to M- estimators and 

also handle 50% of the outliers appearing in the data. They are the first high 

BP regression to achieve the usual  
1/2n 

 consistency under appropriate 

regularity conditions. They are defined by a minimization of the dispersion of 

the residuals:  

1min ( ( ),...... ( ))nS e e


 
                      (10) 

With the final scale estimate  

 1( ( ),...... ( ))nS e e  
  

         (11) 

The scale estimator can be obtained through the following dispersion 

minimization problem  

1

( )1 n
i

i

e
K

n s






 
 

 
                   (12) 
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K is often put equal to  E  , where ∅ is the standard normal. The value of  

β  defined as  

 1arg min ( ),...... ( )j nS e e  


                 (13) 

Subject to  

1

( )1

( )

n
i

j

i

e
k

n s


 







 
  

 
                 (14) 

S- estimators are more robustly than the LTS estimator, because S- estimators 

have smaller asymptotic bias and smaller asymptotic variance in the case 

contaminated data. ( Rousseeuw and Leroy, 1987), and Pitselis, 2013)) 

(4)Inference for M-Estimators 

Birkes and Dodge (1993) pointed out that, the distribution of the M- estimate  

cannot be specified exactly, but for large sample size, they suggested that,  

asymptotic normality for M- estimators with normal distribution.  

The offer variance- covariance matrix for robust regression is:  

         (15) 

where 

       (16) 

M


 
 

2 2
1

/

2
/

( )

( )

E Z
X X

E Z

 



  

 
 

/

i
i

i i i i

e
Z

s

e Y X 




 
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Staudte and Sheather (1990), illustrated a reasonable approximation of the 

covariance matrix of  as:  

i= 1,2,……n            (17) 

And multiplying the previous equation in the correction factor  n/(n-k) , it 

becomes as follows:  

       (18) 

Hogg (1979), has shown that, the distribution of the robust estimators is 

approximately normal if the sample size is large as:  

       ~  N(0,1)               (19) 

so, the usual statistical inferences about the unknown parameters can be made. 

          The asymptotic  95%  confidence interval for the parameter  β  is now 

given by  

1.96Se 
  
  

 
                                                       (20) 

mit Se
n


 


  

 
 

 

M


 
2

1
2 /

2
/

( )

( )

i

i

Z
ns X X

Z







  






 

2 /

2 2
1

/

2

/ /

/

[( ) /

ii i

ii i

Y X s

n s
X X

n k
Y X s

 

 







 
  

 
 

  
  





var( )

j j

i

j

Z
 









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where 


 is equal to the function (8), analogous to the one that is derived 

from the Z-test. For finite sample sizes, this asymptotic approximation can be 

insufficient. To better align the actual coverage probability with its nominal 

value (=95%), substitute the value 1.96 with the quintile value of the 

corresponding t distribution (i.e., we take into account that the standard 

deviation  σ must be estimated).  

 

 (5) Empirical Results 

I generated random samples using the following multiple linear regression 

model of order p=3: 0 1 1 2 2i i i iY x x e  


     ,  i=1,2,……,n , I set the 

coefficients values are  β0 = 0.5, β1 = 1, β2 = 1.5, Obtain the error term using 

five possibilities, (i) normal distribution N (0,1), (ii) Chi-square distribution 

with (DF=4), and (iii) Cauchy distribution(0,1) where the values 0, 1 are the 

location and scale parameters for Cauchy distribution, The values  X1i , X2iare 

drawn from uniform distribution on interval (0, 1), I select a sample size of n 

= 50 and100 and consider that the sample may contain outliers , finallyto 

investigate the robustness of the methods against outliers, we randomly 

generated different percentages of outliers (P0= 0%, 10%, and 30%).  

All empirical results are based on 1000 replications. We compare six 

estimators in this case: (1) Least Squares Estimators (OLS), (2) M- Huber 

(MH), (3) M-Hampel (MHP), (4) MM- Estimator (MM), (5) Least Median of 

Squares (LMS), (6) Least Trimmed Squares (LTS)and S- Estimators (S). All 

computations are obtained based on the R language. 
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The empirical methods are compared using the criteria of estimation 

parameters, bias, mean square errors (MSE) and relative efficiency. When 

comparing to the MSE of the ordinary least squares estimate (OLS) for each 

robust methods. Relative efficiency is calculated by: 

( )
.

( )

MSE OLS
R E

MSE RobustMethod
  

Where 
1

1 R

i

MSE
R

 




 
  

 
 , Where 



 is the estimated value of  , 

  is the true value and R denotes the number of replications. When R.E is 

greater than 1, the robust method is considered more efficient than 

OLS.(Koller and Stahel, 2011) 

The empirical results are presented in tables (1) to (5) displaying the 

properties of different robust estimation methods for different distributions of 

errors with different  percentages of outliers and different sample sizes. Tables 

(1 and 2) presents the empirical results for normal distribution. While table 

(3and 4) present the empirical results for chi-square distribution, and Cauchy 

distribution. In addition, the tables in this section present the parameter 

estimates, bias, MSE and RE.  
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Table (1): The Results of Estimation parameters, Bias, MSE and RE for 

Outliers Generating for The Normal Distribution :Norm(50,0,1) 

Some Robust Methods OLS Criteri

a 

Out. 

Per. S LMS LTS MM MHP MH 

0.225 0.278 0.391 0.354 0.398 0.336 0.435 
0
  

 

 

 

 

 

 

 

P0=0

% 

 

-0.275 -0.222 -0.109 -0.146 -0.102 -0.164 -0.065 Bias 

0.079 0.054 0.0122 0.0212 0.0104 0.027 0.0043 MSE 

0.054 0.080 0.352 0.203 0.413 0.159 1.00 RE 

0.744 0.783 0.734 0.781 0.812 0.783 0.836 
1


 

-0.256 -0.217 -0.266 -0.219 -0.188 -0.217 -0.164 Bias 

0.066 0.048 0.071 0.048 0.035 0.047 0.027 MSE 

0.409 0.563 0.380 0.563 0.771 0.574 1.00 RE 

1.729 1.676 1.698 1.727 1.717 1.728 1.711 
2


 

0.229 0.176 0.198 0.227 0.217 0.228 0.211 Bias 

0.053 0.034 0.039 0.0517 0.047 0.052 0.044 MSE 

0.830 1.294 1.128 0.851 0.936 0.846 1.00 RE 

0.208 0.264 0.313 0.379 0.410 0.578 5.256 
0


  

 

 

 

 

 

P0=10

-0.292 -0.236 -0.187 -0.121 -0.899 0.078 4.756 Bias 

0.093 0.059 0.043 0.017 0.011 0.025 26.57 MSE 

285.7 450.3 617.9 1562.9 2415.5 1063 1.00 RE 

0.733 0.801 0.741 0.801 0.817 0.810 0.759 
1


 

-0.267 -0.199 -0.259 -0.199 -0.183 -0.190 -0.241 Bias 

0.074 0.043 0.069 0.409 0.0344 0.039 1.246 MSE 
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44.50 28.98 18.06 3.046 36.22 31.95 1.00 RE % 

 1.738 1.731 1.706 1.722 1.717 1.716 1.459 
2


 

0.238 0.231 0.206 0.222 0.217 0.216 -0.041 Bias 

0.059 0.056 0.045 0.0499 0.048 0.050 1.594 MSE 

27.02 28.46 35.42 31.94 33.21 31.88 1.00 RE 

0.454 0.221 0.359 0.566 0.556 10.309 15.19 
0
  

 

 

 

 

 

 

P0=30

% 

 

-0.046 -0.279 -0.141 0.066 0.056 9.809 14.69 Bias 

5.605 2.483 6.798 3.82 3.201 154.2 226.4 MSE 

40.39 91.18 33.30 59.27 70.73 1.468 1.00 RE 

0.759 0.724 0.716 0.822 0.833 0.680 0.549 
1


 

-0.241 -0.276 -0.284 -0.178 -0.167 -0.320 -0.451 Bias 

0.292 0.087 0.129 0.070 0.0542 2.259 3.038 MSE 

10.40 34.92 23.55 43.40 56.05 1.345 1.00 RE 

1.749 1.756 1.741 1.718 1.712 1.465 1.205 
2


 

0.249 0.256 0.241 0.218 0.212 -0.035 -0.295 Bias 

0.282 0.080 0.106 0.113 0.090 2.860 3.689 MSE 

31.08 46.113 34.80 32.65 40.99 1.290 1.00 RE 
 

Table (2): The Results of Estimation parameters, Bias, MSE and RE for 

Outliers Generating for The Normal Distribution :Norm(100,0,1) 
 

Some Robust Methods OLS Criter

ia 

Out. 

Per. S LMS LTS MM MHP MH 

0.539 0.465 0.407 0.544 0.542 0.550 0.536 
0


  

 0.039 -0.035 -0.093 0.044 0.042 0.050 0.036 Bias 



[17] 
 

0.0116 0.0037 0.0087 0.0019 0.0017 0.003 0.0013 MSE  

 

 

 

 

 

P0=0

% 

 

0.112 0.351 0.149 0.684 0.765 0.433 1.00 RE 

0.979 1.071 1.058 1.006 1.009 1.003 1.009 
1


 

-0.021 0.071 0.058 0.006 0.009 0.003 0.009 Bias 

0.0014 0.005 0.0035 0.0000

3 

0.0000

8 

0.0000

1 

0.0000

9 

MSE 

0.064 0.018 0.026 3.00 1.125 9.00 1.00 RE 

1.472 1.479 1.514 1.459 1.455 1.464 1.447 
2


 

-0.028 -0.021 0.014 -0.041 -0.045 -0.036 -0.053 Bias 

0.002 0.001 0.0003 0.002 0.002 0.001 0.003 MSE 

1.50 3.00 10.00 1.50 1.50 3.00 1.00 RE 

0.560 0.457 0.459 0.543 0.538 0.739 5.458 
0


  

 

 

 

 

 

P0=10

% 

 

0.060 -0.043 -0.041 0.043 0.038 0.239 4.958 Bias 

0.017 0.024 0.0154 0.0029 0.003 0.064 26.93 MSE 

1584 1122 1749 8977 8977 420.8 1.00 RE 

0.979 1.039 1.040 1.006 1.009 1.008 0.901 
1


 

-0.021 0.039 0.040 0.006 0.009 0.008 -0.099 Bias 

0.002 0.004 0.003 0.0003 0.0004 0.002 0.562 MSE 

281.0 140.5 187.3 1873 1405 281.0 1.00 RE 

1.483 1.437 1.453 1.457 1.451 1.458 1.279 
2


 

-0.017 -0.063 -0.047 -0.043 -0.049 -0.042 -0.221 Bias 

0.002 0.006 0.0066 0.002 0.0026 0.003 0.524 MSE 

262.0 87.33 79.39 262.0 201.5 174.7 1.00 RE 

0.594 0.744 0.605 0.561 0.558 9.967 15.30 
0

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0.094 0.244 0.105 0.061 0.058 9.467 14.80 Bias  

 

 

 

 

P0=30

% 

 

0.827 2.573 2.465 0.671 0.665 138.2 224.4 MSE 

271.3 87.21 91.03 334.4 337.4 1.624 1.00 RE 

0.978 0.990 0.993 1.006 1.007 0.896 0.732 
1


 

-0.022 -0.010 -0.007 0.006 0.007 -0.104 -0.268 Bias 

0.115 0.007 0.008 0.003 0.003 1.039 1.416 MSE 

12.31 202.3 177.0 472.0 472.0 1.363 1.00 RE 

1.501 1.484 1.454 1.451 1.447 1.272 0.997 
2


 

0.001 -0.016 -0.046 -0.049 -0.053 -0.228 -0.503 Bias 

0.044 0.007 0.009 0.003 0.004 0.965 1.306 MSE 

29.68 186.6 145.1 435.3 326.5 1.353 1.00 RE 

 

Table (3): The Results of Estimation parameters, Bias, MSE and RE for The 

Chi-Square Distribution : Chisq (50,4) and  Chisq (100,4) 

Some Robust Methods OLS Criteria Out. 

Per. S LMS LTS MM MHP MH 

3.364 3.263 3.272 4.113 4.383 4.231 4.528 
0


  

 

 

 

 

n=50 

 

2.864 2.763 2.772 3.613 3.883 3.731 4.028 Bias 

8.571 8.307 8.330 13.24 15.25 14.09 16.40 MSE 

1.913 1.974 1.969 1.239 1.075 1.164 1.00 RE 

0.997 1.003 1.005 0.991 0.990 0.990 0.986 
1


 

-0.003 0.003 0.005 -0.009 -0.010 -0.010 -0.014 Bias 

0.094 0.156 0.160 0.043 0.047 0.042 0.054 MSE 

0.574 0.346 0.338 1.236 1.149 1.286 1.00 RE 
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1.505 1.497 1.484 1.504 1.505 1.504 1.508 
2


 

0.005 -0.003 -0.016 0.004 0.005 0.004 0.008 Bias 

0.063 0.115 0.107 0.029 0.030 0.028 0.036 MSE 

0.571 0.313 0.336 1.241 1.200 1.286 1.00 RE 

3.233 3.059 3.036 4.070 4.358 4.194 4.496 
0


 
 

 

 

 

 

n=100 

 

2.733 2.559 2.536 3.570 3.858 3.694 3.996 Bias 

7.630 6.863 6.755 12.85 14.97 13.73 16.06 MSE 

2.105 2.340 2.377 1.250 1.073 1.170 1.00 RE 

1.007 1.020 1.013 0.996 0.992 0.995 0.992 
1


 

0.007 0.020 0.013 -0.004 -0.008 -0.005 -0.008 Bias 

0.036 0.060 0.068 0.016 0.017 0.016 0.021 MSE 

0.583 0.350 0.309 1.313 1.235 1.313 1.00 RE 

1.503 1.503 1.497 1.499 1.495 1.497 1.492 
2


 

0.003 0.003 -0.003 -0.001 -0.005 -0.003 -0.008 Bias 

0.040 0.066 0.071 0.018 0.019 0.018 0.023 MSE 

0.575 0.348 0.324 1.278 1.211 1.278 1.00 RE 

 

Table (4): The Results of Estimation parameters, Bias, MSE and RE for The 

Cauchy Distribution : Cauchy (50,0,1) and Cauchy (100,0,1) 

Some Robust Methods OLS Crite

ria 

Out. 

Per. S LMS LTS MM MHP MH 

0.492 0.506 0.495 0.496 0.499 0.499 -0.089 
0


  

 
-0.008 0.006 -0.005 -0.004 -0.001 -0.001 -0.589 Bias 
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0.067 0.115 0.091 0.064 0.084 0.081 478.5 MSE  

 

 

 

n=50 

 

7141.8 4160.9 5258.2 7476.6 5696.4 5907.4 1.00 RE 

1.004 1.000 1.005 0.997 0.994 0.995 0.964 
1


 

0.004 0.000 0.005 -0.003 -0.006 -0.005 -0.036 Bias 

0.016 0.025 0.023 0.014 0.019 0.018 65.37 MSE 

4085.6 2614.8 2842.2 4669.3 3660.5 3631.7 1.00 RE 

1.500 1.502 1.505 1.502 1.502 1.504 1.812 
2


 

0.000 0.002 0.005 0.002 0.002 0.004 0.312 Bias 

0.021 0.036 0.032 0.021 0.031 0.029 89.34 MSE 

4254.3 2481.7 2791.9 4254.3 2881.9 3080.7 1.00 RE 

0.495 0.492 0.498 0.490 0.491 0.494 2.213 
0


  

 

 

 

 

 

n=100 

 

-0.005 -0.008 -0.002 -0.010 -0.009 -0.006 1.713 Bias 

0.033 0.064 0.044 0.031 0.039 0.037 1925.0 MSE 

58333 30078 43750 62096 49359 52027 1.00 RE 

0.997 0.992 0.992 1.004 1.005 1.006 1.750 
1


 

-0.003 -0.008 -0.008 0.004 0.005 0.006 0.750 Bias 

0.009 0.018 0.013 0.009 0.013 0.012 277.8 MSE 

30867 15433 21369 30867 21369 23150 1.00 RE 

1.499 1.501 1.503 1.497 1.496 1.499 2.302 
2


 

-0.001 0.001 0.003 -0.003 -0.004 -0.001 0.802 Bias 

0.009 0.016 0.012 0.009 0.011 0.011 514.6 MSE 

57178 32163 42883 57178 46782 46782 1.00 RE 
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(6)Summary and Conclusions 

- According to our empirical study results there are some conclusions 

which can presented as; For all sample sizes, MSE decreases with increasing 

sample size for all estimation methods under all error distributions as shown in 

the tables in appendix (B) for sample sizes 50 and 100. In the case of normal 

errors distribution, S is the most efficiency compared other methods, but MM 

is the more efficiency compared S method and is much better in outlier 

generating error distribution. Although robust methods are efficiency 

compared OLS but The performance of  MM method is high efficiency in the 

case of Normal errors distribution.Efficiency at 10% contamination is higher 

than 30% contamination for small sample sizes. 

- In the case of Chi-square errors distribution, MSE decreases with 

increasing sample size, MH is the most efficiency compared other methods 

when the sample size is small, but the greater the sample size to be MM is the 

most efficiency. RE for all methods increase as sample sizes increases.  

- In the case of Cauchy errors distribution, MSE decreases with 

increasing sample size, RE increase as sample size increases. MM gives better 

efficiency of all parameter estimates than other methods then S is the most 

efficiency.  

- The performance of  MM method is high efficiency in the case of 

Cauchy errors distribution, and can be used S method Where it also gives high 

efficiency. 
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