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Abstract 

The present study aims to investigate the influence of the window size, the glazing 

properties and the shading overhang specifications on the energy consumption in 

smart buildings located in Alexandria, Egypt taking in account thermal and visual 

comfort. In this study, single objective and multi-objective optimizations are carried 

out on four objective functions, namely annual cooling, annual heating, annual 

lighting and annual total energy consumption using genetic algorithm. The 

simulations are performed using EnergyPlus through Openstudio to generate 

database that used to train an artificial neural network for the four objective 

functions. Results indicate the most significant factors are window wall ratio, 

glazing solar transmittance and glazing visible transmittance. Furthermore the 

increasing of window wall ratio and glazing solar transmittance produces an 

increase in cooling energy consumption and a decrease in heating energy 

consumption in addition window wall ratio and glazing visible transmittance have a 

high positive impact on lighting consumption in both cities. The multi objective 

optimization study is a powerful and useful tool that can save time while searching 

for the optimal solutions with conflicting objective functions. 

Keywords: Surrogate-Based Optimization, Openstudio, Matlab, Artificial 

Neural Network, Energy Consumption.  
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Introduction 

 

 

 

 

 

 

Energy is one of the secrets of life on this planet. The humanity realized the 

importance of energy and its function in the continuity of life. With the rise of 

welfare of life the building energy consumption increased extraordinary energy 

became the basic pivot for the most conflicts in the last decades. Moreover the 

pollution that results from energy consumption and its negative impact on 

environment and climate. Therefore these problems have attracted more attention in 

the field of energy saving and investigating the effective ways to decrease energy 

consumption.  

Buildings have played an important role in energy consumption. Furthermore 

buildings have a large impact on environment by increasing greenhouse gas 

emissions. Whereas Egyptian electricity holding company reported that the total 

generated energy was 189.5 TWh in year 2016/2017 [1]. Where the building sector 

(commercial and residential buildings) consumes about 54% of the total energy 

consumption. Figure (1) shows the total energy consumption by purpose. Figure (2) 

illustrates the average growth rate of energy consumption for the industrial purposes 

increased at a rate of 0.8% for the period from 2012/2013 till 2016/2017, while the 

average growth rate of sold energy for the residential purposes still fixed at 42.3% 

for the period from 2012/2013 till 2016/2017 [1]. 

 

 

 

 

 

                 Figure (1): Total electricity consumption by purpose [1] 

Residential 
42.3% 

Commercial& 
other 
12.3% 

Industry 
27.4% 

Agriculture 
4.4% 

Public Lighting 
3.4% 

Utilities 
4.2% 

Governmental 
Entities 5.7% 

Interconnection&
BOOTs 
0.2% 

Energy tangible 
exchange 

0.2% 

Nomenclature 

ANN Artificial Neural Network LHS Latin Hypercube Sampling Plan 

CFL Compact Fluorescent Lamp MOGA Multi Objective Genetic Algorithm 

DoE Design of experiments OD Overhang Depth 

GST Glazing Solar Transmittance OT Overhang Tilt Angle 

GVT Glazing Visible Transmittance PTHP Packaged Terminal Heat Pump 

HVAC Heating, Ventilation and Air Condition RBF Radial Basis Function 

IDHVAC Integrated Daylighting and HVAC WWR Window Wall Ratio 



Momtaz Fahmy Sedrak /et al /Engineering Research Journal 165 (March 2020) M1- M21  

  

 

M3 

 

 

Figure (2): The average growth rate of electricity consumption for the residential and 

industrial purposes [1] 

According to the U.S. energy information administration, energy consumption in 

buildings is dominated almost 57% by heating, ventilation and air conditioning 

(HVAC), and lighting [2]. Over the past years, many studies have been published 

on the factors that influence that energy consumption and human comfort levels. 

Lee et al. [3] presented a parametric sensitivity analysis for the impact of different 

types and properties of window systems in a building envelope on energy 

consumption for five Asian cities and the various performance properties of window 

systems that can lead to energy saving buildings. Samaan et al. [4] provided 

heuristic optimization of cooling loads and daylighting levels in  deep halls of 

Egyptian universities by testing various alternatives of design parameters and found 

that optimizing windows shading of overhangs and louvers, low-transmittance 

characteristics of glazing, and ventilation system would provide from 26% to 31% 

reduction in the cooling loads compared to base case. Kim et al. [5] developed an 

integrated meta-model for a daylighting, heating, ventilating, and air conditioning 

(IDHVAC) system was developed to predict  building energy performance by 

artificial lighting regression models and artificial neural network (ANN) models 

with a database that was generated using the EnergyPlus model. Wright and 

Loosemore [6] presented the application of a multi-objective genetic algorithm 

search method in the identification of the optimum payoff characteristic between the 

energy cost of a building and the occupant thermal discomfort and found the 

MOGA was able to find the optimum pay-off characteristic between the daily 

energy cost and zone thermal comfort, but that the characteristic between the capital 

cost and energy cost was sub-optimal. Therefore Elbeltagi et al [7] developed a 

strategy to visualize parametric energy analysis in context of residential building in 

New Cairo, Egypt coupled with parametric analysis and energy modeling (Rhino 

(3D graphics), Grasshopper (parametric modeling)). They stated that such strategy 

helps architects and decision makers to see which design parameters would lead to 

more efficient designs prior to modeling the whole building simulation in a 
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comfortable format, discover integrated solutions, and test design alternatives to 

make data-based decisions.  Khoroshiltseva et al [8] provided a multi-objective 

optimization study based on Harmony search and Pareto front approaches to 

identify the set of optimal shading devices. The multi-objective approach was used 

to determine the shading devices to allow for thermal and lighting comfort for 

inhabitants. Scanferla and Motuziene [9] presented a parametric analysis for the a 

different properties of glazing for high rise office building in Italy and Lithuania 

using DesignBuilder and found in the coldest climate the main problem is the huge 

surface of relatively high glass U-value compared with standard walls, while in the 

warmer one the main efforts need to be done to avoid the summer overheating 

caused by incoming solar radiation. 

The present study aims to achieve sustainability goals in smart building. The study 

focuses on multi objective optimization based on five design variables, namely the 

window wall ratio, the glazing visible transmittance, glazing solar transmittance, the 

overhang tilt angle and overhang depth. A surrogate based optimization study has 

been conducted using artificial neural network with a database that was generated 

using the EnergyPlus model. 

 

Methodology 

In the following the methodology followed in this is explained 

1.1  Development building model 

A base case office space is located in Alexandria climatic region (31.2°N latitude; 

29.59°E longitude). The weather data used in this simulation is extracted from the 

international weather files for energy calculations 2.0 (ETMY) for the city of 

Alexandria, Egypt [10].The building geometry is modelled by SketchUp  3D 

modelling software package [11]. The office dimensions are (4.0 m×4.0 m×4.0 m). 

Only the northern external wall has external window and all opaque building 

components of the reference office are considered as adiabatic, with the exception 

of a wall that includes a window as shown in Fig. (3). 

With the advance in computing technology, computer simulation and modelling has 

been widely used for providing accurate and detailed appraisal of building energy 

performance [4]. The thermo-physical properties of the building envelope, shading 

overhang system, artificial lighting and its room controller daylight sensor, and 

HVAC system and its zone thermostat can be modelled by EnergyPlus [12] building 

energy simulation program. 
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The base case office has external walls consisting of 3 layers (cement plaster, 

concrete block, and cement plaster). A double clear glazed, air filled, window is 

chosen in this study. The thickness of glazing layer is 3 mm while the thickness of 

the air layer is 13 mm equipped with overhang. No window blind is used for the 

window. It is assumed that the building is equipped with a packaged terminal heat 

pump (PTHP) air conditioning system. The room is equipped with compact 

fluorescent lamp (CFL) lighting system. Moreover, the model has a daylighting 

controller sensor to dim the lighting automatically with the threshold of 500 Lux 

(46.45 FC). All those parameters are kept fixed through optimization are 

summarized in Table 1. 

 

 

 

 

 

 

 

 

 

Figure (3): Schematic of the used office room 

 

 

 

 

 



Momtaz Fahmy Sedrak /et al /Engineering Research Journal 165 (March 2020) M1- M21  

  

 

M6 

 

Table 1: Fixed parameters for building model 

Section Parameter value 

Site Orientation North (0 deg.) 

Wall specifications 

 

 

Thickness (m) 

Roughness 

Conductivity (W\m K) 

Density (kg\m
3
) 

specific heat (J\kg K) 

thermal absorptance 

solar absorptance 

visible absorptance 

Cement 

plaster 

Concrete 

block 
0.02 

Smooth 

0.727 

1602 

840 

0.9 

0.4 

0.4 

0.2 

Med. Rough 

0.571 

609 

840 

0.9 

0.5 

0.5 

Glazing 

specifications 

Front side solar reflectance 

Back side solar reflectance 

Front side visible reflectance 

Back side visible reflectance 

Infrared transmittance 

Front side infrared hemispherical emissivity 

Back side infrared hemispherical emissivity 

0.075 

0 

0.081 

0 

0 

0.84 

0.84 

Schedule 
Working days 

Working hours 

Weekly days except Friday 

07:00 – 19:00 

HVAC 

 

 

Cooling set-point 

 

Heating set-point 

 

Ventilation flow rate 

Air changes per hour 

 

21 °C (Working hours) & 

15.6 °C (off  hours) 

24 °C (Working hours) & 

26.7 °C (off  hours) 

0.00944 m
3
/s person 

1/h 

Thermal loads 

 

 

Occupancy density 

Artificial lighting system 

 

Equipment 

 

Infiltration flow rate 

 

1 person  (Working hours) 

10.7W/m
2
(Working hours) 

& 0 (off  hours) 

6.9 W/m
2
(Working hours) 

& 0.69 (off  hours) 

0.075 L/s-m
2
 (Working 

hours) & 0.3 (off  hours) 
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Table 2: Design variables for building model 

 

1.2 Objective functions and design variables 

This study aims to investigate the influence of five design variables (window wall 

ratio, glazing visible transmittance, glazing solar transmittance, overhang tilt angle 

and overhang depth) on the energy performance in our case study. Where the 

previous founds [3-4] show the importance of building window in heat gain or heat 

loss of buildings that has a great effect on cooling and heating consumption. 

Furthermore it has another important effect on lighting consumption by allowing 

entrance of natural light into buildings. Table 2 shows the list of design variables 

used in this study within the range of variation. The optimization problem consists 

of four objective functions (annual cooling consumption, annual heating 

consumption, annual lighting consumption and annual electricity consumption). The 

goal is to minimize the four objective functions and study the interactions between 

the cost functions.  

1.3 Description of the numerical simulations and validation 

1.3.1 Development surrogate model based optimization 

As shown in Fig. (4), a surrogate model was developed to optimize the design 

variables, using a genetic algorithm. The first stage is creating the sampling plan 

and conducting the simulations. The second stage is building the artificial neural 

network model by using the database generated by the EnergyPlus model in training 

model and test model. The third stage is the optimization process by minimizing the 

energy consumption in building in terms of the design input variables, while 

satisfying the constraints for indoor thermal and visual comfort. All calculations 

were conducted using an in-house Matlab code. 

Design variable Unit Baseline Range 

Window wall ratio(WWR) 

Glazing solar transmittance(GST) 

Glazing visible transmittance(GVT) 

overhang tilt angle(OT) 

overhang depth(OD) 

- 

- 

- 

degree 

m 

0.5 

0.5 

0.5 

90 

0.25 

(0,1) 

(0,1) 

(0,1) 

(0,180) 

[0,0.5] 
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1.3.2 Design of experiment 

Design of experiments (DoE) is a statistical approach to study the effect of several 

factors on a certain process using a limited number of experiments [13]. The latin 

hypercube sampling plan (LHS) is one of the most widely used plans. The training 

dataset for five design variables as listed in Table (3) which exhibits  a uniformly 

distributed points in the domain as shown in Fig. (5). 

 

 

 

 

 

 

Figure (4):  A flowchart of the surrogate-based optimization approach 

 

 

 

 

 

 

 

 

Figure (5): Latin hypercube sampling plan 
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1.3.3 Artificial neural network building 

Radial basis function (RBF) artificial neural networks are composed of three 

functionally distinct layers. The input layer is simply a set of sensory units. The 

second layer is a hidden layer of sufficient dimension which performs a non-linear 

transformation of the input space to a hidden-unit space. The third and final layer 

performs a linear transformation from the hidden-unit space to the output space 

[14]. The (RBF) transfer function is included in MATLAB. The newrb function was 

used in building neural network. It is called in the following way:  

net = newrb (P, T, goal, spread, MN, DF) 

where P and T are matrices of input parameters and target values as illustrated in 

Table 3, spread is the radius of the basis function and it default spread value is one, 

goal is the specified mean squared error and its value 1e
-4

, MN is the maximum 

number of neurons, DF is the number of neurons to add between displays. Figure 

(6) presents a qualitative estimation of the accuracy of the fitted artificial neural 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6) Agreement between the given data and ANN prediction 
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Table 3: Training database for the surrogate model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Results and discussion 

1.4 Screening of parameters 

It is the importance to minimize the number of parameters that influence the 

objective function; Screening process was conducted using Morris’s method. 

Morris’s method aims to estimate the parameters of the distribution of elementary 

effects associated with each variable, the principle being that a large measure of 

central tendency indicates a variable with an important influence on the objective 

totallightingheatingcoolingODOTGVTGSTWWR

4.340.840.081.650.48590.410.010.53

5.790.420.023.840.245174.60.490.670.71

5.191.780.061.570.42588.20.850.190.07

4.731.010.051.890.315270.430.250.43

3.90.370.081.680.14566.60.910.450.27

4.481.210.071.440.195138.60.630.050.13

5.881.930.042.120.30523.40.010.530.25

3.830.280.11.690.235990.930.150.45

4.70.390.032.470.455163.80.610.570.47

5.270.260.023.140.445145.80.970.710.59

5.011.270.061.910.15552.20.310.090.49

5.811.450.042.520.495630.270.350.63

4.410.330.042.250.0751350.950.790.29

5.120.290.042.950.035167.40.670.410.87

5.341.930.061.570.06534.20.170.070.03

4.680.30.042.520.21512.60.750.490.61

4.780.340.032.590.02530.60.730.730.41

4.340.270.062.30.47570.20.890.390.65

4.991.190.031.980.37595.40.650.930.17

5.731.760.032.150.0051170.290.630.19

8.91.880.015.030.085810.070.950.73

6.381.850.052.660.125178.20.090.110.93

5.811.850.042.130.055106.20.130.210.37

6.560.790.013.860.36573.80.370.830.69

4.710.260.062.570.13584.60.830.310.85

4.690.420.062.390.465113.40.470.170.99

5.431.860.051.760.265124.20.510.910.05

5.251.790.061.620.39555.80.790.290.11

5.971.880.032.270.3855.40.190.810.23

6.750.60.014.210.41548.60.390.750.91

5.361.690.041.850.185120.60.590.850.09

4.910.270.032.780.22537.80.990.650.57

6.890.330.014.590.345127.80.570.770.95

6.461.910.032.690.10519.80.050.370.55

4.460.280.062.310.20559.40.770.270.77

6.261.430.022.980.285142.20.330.870.35

4.720.270.052.590.01541.40.810.430.67

7.480.470.015.030.275109.80.450.970.83

5.311.910.061.560.17591.80.870.690.01

5.530.280.033.350.3551530.710.590.79

4.50.340.082.280.11577.40.550.130.97

8.291.460.014.860.4051.80.230.990.75

5.991.840.032.320.255131.40.150.470.31

6.791.280.023.60.095156.60.250.550.81

5.721.90.0420.335149.40.110.330.21

5.771.620.042.30.2951710.210.230.51

7.790.720.015.080.04516.20.350.890.89

4.160.420.061.890.165450.690.510.33

3.960.580.091.520.325102.60.530.030.39

5.811.930.042.060.435160.20.030.610.15

Energyplus SimulationsResults from DOE



Momtaz Fahmy Sedrak /et al /Engineering Research Journal 165 (March 2020) M1- M21  

  

 

M11 

 

function across the design space and a large measure of spread indicates a variable 

involved in interactions and/or in terms of which f is nonlinear [15]. Figure (7) 

illustrates the impact of design variables on the objective function. It is clear that the 

window wall ratio (WWR) has the largest negative  impact on the annual cooling 

energy consumption whereas the glazing solar transmittance (GST) and the glazing 

visible transmittance (GVT) are less significant and involved interactions whereas 

the overhang tilt (OT) and the overhang depth (OD) have negligible effect. But for 

the annual heating energy consumption, GST have the largest tendency furthermore 

GVT, GST and WWR have less significant tendency and having negative effect but 

OD has the lowest positive impact. For annual lighting energy consumption GVT 

and WWR having the largest impact and involved interactions and OT, GST and 

OD are less importance. For annual total energy consumption the most significant 

factor is GST furthermore the negative effect of increasing WWR and GVT on 

annual total energy consumption whereas OD have less importance and positive 

trend and OT have negligible effect.  

 

 

 

 

                 (a) Cooling                                                             (b) Heating 

 

 

 

(c) Lighting                                                    (d) Total 

Figure (7) Elementary effect distribution 
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Figure (8) Main effect plots 

1.4.1 Effect of single parameter 

Figure (8) presents the effect of varying each parameter within keeping the other 

parameters at their (1) maximum values, (2) middle values and (3) minimum values 

(cf. Table 2). For instance, the effect of changing WWR on the annual cooling 

energy consumption when the other parameters have minimum values, the annual 

cooling energy consumption has approximately a fixed value but when the other 

parameters are kept at middle values, the annual cooling energy consumption  

increases from 0.5 to 3.85. While keeping them at maximum values the annual 

cooling energy consumption increases from 2 to 2.5. Moreover, the effect of 

changing WWR on the annual heating energy consumption when the other 

parameters have minimum values, the annual heating energy consumption increases 

slightly from 0.1 GJ to 0.14 GJ but when the other parameters are kept at middle 
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values, the annual heating energy consumption decreases from 0.05 GJ to 0.001 GJ. 

While keeping them at maximum values the annual heating energy consumption 

decreases within the increasing of WWR till 0.4 then increase. In addition the 

annual lighting consumption still fixed at lower bounds but within the increasing of 

WWR the lighting consumption decreases to 0.1 at middle bounds while at the 

maximum bounds the lighting consumption decreases from 1.6 to 1.2 and then 

increases to the same value. Finally, the effect of changing WWR on annual total 

energy consumption when the other parameters have minimum values, the annual 

total energy consumption has approximately a fixed value but when the other 

parameters are kept at middle values, the annual total energy consumption  

decreases from 5.2 GJ to 4.6 GJ then  increases to 6 GJ. While keeping them at 

maximum values the annual total energy consumption increases from 5 GJ to 6 GJ. 

The GST changing increases the annual cooling and total consumption at middle 

values within contrary to annual heating consumption while it hasn't any impact on 

annual lighting consumption whereas, GVT has the great impact on annual lighting 

consumption at middle values. It is obvious that the varying parameters within 

keeping the other parameters at their minimum values haven't enough influence on 

the objective functions. This can be referred to the interaction between the design 

variables.     

1.5 Optimization geometry 

There are many definitions for optimization. The simplest definition is “the art of 

making things the best.” Interestingly, many people do not like that definition as it 

may not be reasonable, or even possible, to do something in the very best possible 

way. In practice, doing something as well as possible within practical constraints is 

very desirable [16]. Furthermore the mathematical definition is the process of 

maximizing and/or minimizing one or more objectives without violating specified 

design constraints, by regulating a set of variable parameters that influence both the 

objectives and the design constraints [7]. Three optimization studies have been 

conducted; the first is single objective optimization, the second is two- objective 

optimization, the last is multi-objective optimization. There are many used 

algorithms for the optimization of building energy design, the most frequently used 

algorithms are annealing, tabu search, ant colony, differential evolution, particle 

swarm and genetic algorithms (GAs) [17] . Throughout this paper a genetic 

algorithm (GA) is used for conducting the three optimization studies. Figure (9) 

presents a flow chart for the genetic algorithm process. 
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Figure (9) Flow chart for the genetic algorithms technique 

1.5.1 Single-objective approach 

This technique is used to minimize the four objective functions independently. 

Table 4 lists the used settings for optimization studies using Matlab 2017a. Table 5 

lists the optimized values of the design variables for the best values of the four 

objective functions.  The optimized dataset demonstrates that the criteria behave 

contrary to each other. It can be seen that the lowest possible value for the annual 

cooling energy consumption is 1.208 GJ takes place by selecting the optimum value 

of window wall ratio as 0.001, the optimum values of glazing solar and visible 

transmittance are 0.272 and 0.817 respectively and the optimum values of overhang 

tilt angle and depth are 54.551 and 0.096 respectively. On the other hand the lowest 

possible value for the annual heating energy consumption is 0.026 GJ takes place by 

selecting the optimum value of window wall ratio is 0.713, the optimum values of 

glazing solar and visible transmittance are 0.798 and 0.379 respectively and the 
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optimum values of overhang tilt angle and depth are 56.229 and 0.109 respectively. 

In addition the annual lighting energy of the optimization model is 0.483 GJ takes 

place by selecting the optimum value of window wall ratio is 0.568, the optimum 

values of glazing solar and visible transmittance are 0.587 and 0.810 respectively 

and the optimum values of overhang tilt angle and depth are 111.177 and 0.119 

respectively. Eventually, the optimum design values that used to minimize the 

annual total energy consumption to 3.6197 GJ are 0.372 (window wall ratio), 0.301 

(glazing solar transmittance), 0.856 (glazing visible transmittance), 87.27 (overhang 

tilt angle) and 0.11(overhang depth). 

These results revealed that increasing the window wall ratio will increase the 

cooling consumption and thus the total consumption but it will decrease the heating 

and the lighting consumption. On the other hand, the increasing of GVT has an 

obvious positive impact on the lighting consumption and the increasing of GST has 

an obvious positive impact on the heating consumption and negative impact on the 

cooling consumption. 

Table 4: Genetic setting for single objective optimization 

Population type Double vector 

Population size: 200 

Elite count 2 

Crossover fraction: 0.8 (default) 

Crossover operation: Intermediate crossover 

Selection operation: Tournament (tournament size equals 4) 

Mutation operation: Adaptive Feasible 

Hybrid function Pattern search 

Maximum number of generations 1000 

 

Table 5: Results of the single objective optimization  

Objective WWR GST GVT OT OD Value(GJ) 

Annual cooling 0.001 0.272 0.817 54.551 0.096 1.20757 

Annual heating 0.713 0.798 0.379 56.229 0.109 0.0263146 

Annual lighting 0.568 0.587 0.810 111.177 0.119 0.482798 

Total annual 0.372 0.301 0.856 87.27 0.11 3.6197 
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Table 6: Genetic setting for multi objective optimization 

Population type Double vector 

Population size: 200 

Crowding distance fraction 0.35 

Crossover fraction: 0.8 (default) 

Crossover operation: Intermediate crossover 

Selection operation: Tournament (tournament size equals 2) 

Maximum number of generations 1000 

 

Table 7: Pareto front points using MOGA 

No. WWR GST GVT OT OD Cooling(GJ) Heating(GJ) Lighting(GJ) Total(GJ) 

1 0.365 0.326 0.875 83.168 0.096 1.734 0.085 0.046 3.625 

2 0.002 0.224 0.839 53.197 0.120 1.214 0.120 1.562 4.539 

3 0.188 0.179 0.918 48.388 0.082 1.315 0.131 0.955 4.012 

4 0.055 0.324 0.905 42.261 0.433 1.693 0.071 2.158 5.641 

5 0.032 0.268 0.783 51.217 0.196 1.269 0.103 1.642 4.717 

6 0.048 0.405 0.901 41.987 0.461 1.751 0.069 2.189 5.712 

7 0.230 0.313 0.845 60.485 0.121 1.419 0.102 0.587 3.822 

8 0.089 0.486 0.579 53.348 0.123 1.399 0.075 1.451 4.660 

9 0.643 0.749 0.304 74.766 0.173 4.499 0.015 0.924 7.428 

10 0.524 0.538 0.288 88.95 0.102 3.286 0.0005 1.159 6.401 

11 0.081 0.294 0.780 55.214 0.121 1.244 0.108 1.254 4.292 

12 0.361 0.387 0.812 80.781 0.100 1.822 0.070 0.010 3.675 

13 0.780 0.911 0.128 79.35 0.105 5.287 0.00002 1.593 8.910 

14 0.413 0.563 0.655 80.435 0.115 2.450 0.024 0.001 4.358 

15 0.333 0.340 0.860 65.915 0.108 1.645 0.090 0.187 3.666 

16 0.453 0.754 0.383 62.918 0.170 3.388 0.0009 0.934 6.260 

17 0.688 0.778 0.507 57.916 0.141 4.567 0.022 0.123 6.730 

18 0.740 0.906 0.149 79.055 0.143 5.242 0.003 1.516 8.788 

19 0.044 0.352 0.712 53.271 0.121 1.244 0.100 1.464 4.503 

20 0.775 0.909 0.133 79.106 0.107 5.294 0.001 1.574 8.901 
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1.5.2 Multi-objective approach   

The Pareto front concept is applied and a bi-objective optimization is performed by 

running genetic algorithm using Matlab 2017a in order to determine building 

energy performance by a trade-off between pairs of the objective functions. Figure 

(10) illustrates the Pareto optimal curve between the annual cooling energy 

consumption and the annual heating energy consumption. It is clear that any 

improvement in one objective will result in the worsening of at least one other 

objective. In addition the multi-objective optimization study has been conducted 

using the settings given in Table 6. Table 7 lists the Pareto optimal point for the 

four objective functions. Therefore, Fig. (11) shows the optimum results for the four 

objective minimization in the form of three-dimensional Pareto fronts. Once the 

optimization is completed and a Pareto-optimum solution set is obtained, the multi-

criteria decision-making is required, which is affected by the importance that is 

given to each objective function. Decision making depends on stakeholders’ needs 

and wills. In this study, the most remarkable objective function to emerge from the 

quart-objective optimization study is the annual total energy consumption because 

this study focuses on minimization energy consumption generally. So the annual 

total energy consumption represents a valuable alternative to energy optimization in 

smart building. From Table 8, the case 1 has the lowest value for the annual total 

energy consumption, which is 3.625 GJ. Furthermore the optimum design values for 

case 1 are WWR is 0.365, GST is 0.326, GVT is 0.875, OT is 83.168 and OD is 

0.096 m. 

 

 

 

 

 

 

Figure (10) Pareto front for the bi-objective optimization 
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Figure (11) Pareto fronts of the triple-objective optimization 
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Conclusions  

The present study investigated the impact of the size and the properties of glazing 

for windows and overhang tilt and depth on the building energy consumption in the 

city of Alexandria, Egypt. Sampling plan is created by Latin hyper cube using 

Matlab and simulated using EnergyPlus through Openstudio (building energy 

modeling). A surrogate model is created by building an artificial neural network 

using Matlab. The artificial neural network was applied in the optimization study 

using genetic algorithms. Single objective and multi-objective optimization were 

applied on four objective functions those are annual heating, annual cooling, annual 

lighting and annual total consumption. The obtained results can be summarized as 

follows: 

 The most significant factors on building energy consumption are the window 

wall ratio, the glazing solar transmittance and the glazing visible 

transmittance. 

 WWR and GST have a high negative impact on the cooling consumption and 

the opposite with heating consumption. In addition WWR and GVT have a 

high positive impact on lighting consumption. 

 The four objective functions have interactions and a trade-off between pairs 

of the objective functions. So the multi-objective optimization approach was 

applied. 

 The annual total consumption function presents the major function in 

minimization energy consumption in this study. For minimum total 

consumption value, the optimum design values are WWR is 0.365, GST is 

0.326, GVT is 0.875, OT is 83.168 and OD is 0.096 m. 

 The multi-criteria decision-making depends on designers' needs and wills to 

select the Pareto front design points that are resulted from the multi-objective 

optimization study. 

Future studies on energy optimization of smart buildings might extend building 

integrated photovoltaic (BIPV) that uses photovoltaic materials instead of 

conventional building materials such as roof, glazing and façade to exploit panels 

interfaces for electricity generation at the same time to minimize the cooling loads 

taking in consideration the architectural esthetic elements.  
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