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The problem of model selection in regression analysis is discusseq, ",

RRPERE

consider cases where we have more than one observation on the response var.

jable, y, for each observed value of the .variable x. In this case the basic

difficulty of specifying a suitable operating family, that we encounter, i

cases where we do not have more than one observation disappears. We cap

make assumptions about the form of the operating mean function such that &

becomes possible to estimate the expected discrepancy. The operating mode]

is then given by

sy i Y |
u(xi) + e im Ly 2y wcey .

1, 2, oy Jp ‘]i > 1,

S o
]

Mt 8

®; independently and for each i identically distributed, Eeij = 0, Var i of
2

Since at least 2l observations are available the parameters ui and oi can be

estimated.

In this paper we discuss selection methods based on the Gauss discrepanc
First, some definitions relating to discrepancies are discussed in section 2. 1
use of mean functions which are linear combinations of orthogonal functions |
discussed in section 3. Applications based on monthly data are available in

section 4.

2. SOME DEFINITIONS RELATING TO DISCREPANCIES

Suppose that we have n independent observations on k variables and that
»ach observation can be regarded as a realization of a k-dimensional random
vector having distribution function F. Let M be the set of all k-dime“Sional

. distribuj : .
stribution functions. Each member of M is a fully specified model.

B
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5 family of models, Gg )0 e®, is o

pess are identiﬁed bY e VaPtar: of pammem" Os (6 62 1esey 0 )T

1, G§ , is a memb
A fitted model, G§ , ember of a f,
mily of models Ge 0@,

pich has been selected by estimating the Parameters using the

A discrepancy is a funcnonal,A, on MxM which has the property

A(GF) > A (F,F) for GF € M, (2.1)

The discrepancy between a member Gy of an approximating family of models

and the operating F will be denoted by

A(6) =A (8, F) =A(G6,F). (2.2)

The discrepancy due to approximation between an approxxmatmg family,

Gy , 9 €@®, and an operating model, F, is given by A ( ¢ ), where

6 = arg min {A( 8):8 e@}' (2.3)

0

‘We will usually assume that 0, exists and is unique. The model Ge is called
| )

the best approximating model for the family Ge »0 e®, and the discrepancy /

-The discrepancy due to estimation is defined as ( GG , G o o). It
expresses the magnitude of the lack of fit due to sampling variation. The
overall discrepancy is a random variable defined as A(B) = A( G§ , F). Its
distribution under the operating model determines the quality of a given

procedure.

The expected discrepancy E A(8) depends on the operating model and its

8stimator is called a criterion.



A consistent estimator of A(8) is called an empirical discrepancy and i

denoted by A_ (8). A suitable A (6) for A(8) =A(6,F) is usually

A(® , Fn), where F_ is the empirical distribution function, Boos (1981,1982).

3. THE USE OF APPROXIMATING MEAN FUNCTIONS

We assume that ] observations are available for each value of x and that

the operating model is

yij =ui * eij ’ 1=1, 2, .., (3.1)
=8 2, %6 )
= By iy Ol
Eeij o and Eé‘. e].. ki

An important special case occurs if the el are uncorrelated. In such a case
cu'- 61 o / ], where 02 is the variance of e], Draper (1981).

The Gauss discrepancy is the square of a distance in Rl and there are

systems of functions which are orthogonal under the corresponding inner

product. A typical example are polynomials of degree 0, 1, 2

ted by Pl’ P

y eeey 1-1, deno-

21 sees Pl’ which are constructed so that

2 P(x)P(x) = ij’ (3.2)
r=1 ;

where the x are (equidistant) values of a variable x. For everv svnset of

P P s .oo”P

£ S : ion
10 Py ] 27 8pProximauing model can be constructed with mean function

h(x, 8% = 1 o P(X)s e 1Y)
: i€s
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tes a subs {
Here S deno et of-11, 2, .., l} With 1 <P <1 elements and 6%
- - s

jements 8. for i€ S and &
oy ; zero for .fs. For P=1 we shall use 6 for 6°

Hall (1983a) show how the most 3 '

» . appropriate approximating family (i.e., -

he mOSt appropriate set S) can be found by determining the contribution to ‘

the expected discrepancy®f the individual parameters separately. To find the
set S it is not necessary to calculate the criterion for each of the 2 - 1

different sets; 1t 1S sufficient to calculate the I contributions to the criterion
,bf the parameters ei' 5

The orthogonal functions generate orthogonal base vectors (Linhart,1984a)

P, = (P (x;) ooy Pr(xl))', Een 1, Bpsa ki (3.4)

which define a new coordinate system in Rl‘ If T denotes the coordinates of

a point in the new system and z the coordinates of the point in the old

system, we have

e = P.(x.). (3.5)
Z -Zr ;r Pr(xi) and Ci Zr z, :("r)
.3.1— The Discrepancy. Due to Approximation §
Each '
c me:n vector ) 95))' (3.6)
h( ¢°) = (h(x,, © ), ey N(Xps
defines a point in R, and since
(3.7)

h(xi’ es) = ¥ el’ Pr(xi)
IES
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this point has the coordinates 6% in the new system. It follows immediately
that this point is in the p-dimensional subspace spanned by the P Vectors
iPi : isS} .

The coordinates of the operating mean in the new system are denoteq by

'
8, = (8,35 Bgreenr 8P

o ol’ 0

W =hlx, 8) =_Zr %or Prx)s |
(3.8)

.eoi = Zr Hp Pi(xr)'

Since the discrepancy used here is the squared Euclidean distance, the "best"
6, denoted by 92 , is the projection of 00 into the subspace spanned by
{Pi i€ S} , that is, the elements of 62 are eoi for i € S and zero for |

i f‘ S. The squared distance between 86 and 6(8) is then the discrepapcy due

to approximation:

AR 2T R | o (39)

l#S 01

[f an element r is added to S the discrepancy due to approximation decreases

2 e
by eor. The contribution of each parameter to the discrepancy due to app-

roximation can be indiviually assessed (Linhart, 1984b).

3.2 The Empirical Discrepancy and the Discrepancy due to estimation:

The discrepancy used here is the squared distance between the operatiné

«.d approximating mean points in RI:

£ (. - hix, 6%)% =3 - 0.)? £ on



b
f

i -9,

The vector y = (y. .. &' .
) 1, ™% yl.) SStimates u, A empirical discrepancy is t
he squared distance between Y and h(65)

If the coordinates Vv i
N of y in the ne
system are denoted by § » With elements

D>

. = ¥ v !
i = % Y R, (3.11)

the empirical discrepancy can be expressed as

2
. z (61‘61)21- z ’é..
1 €5 i g5 !

b A N N oo 2

It can be seen that this is minimized by Gi = ei for i € S (Sahler,1970). -
The minimum discrepancy estimator 6 5 has elements 55 for i € S and zero
for i f S. In other words, 6° is the projection of 8 into the space spanned b
{Pi t 1€ S} .

The discrepancy due to estimation is the squared distance between e‘s)‘ and
S -
6 and is given by

A 2
€

1 €Es

(Robertson, 1972).

33 The Expected Discrepancy:

i ; d 8%:
The overall discrepancy is the squared dxstance between 60 an.
52 (3.12)
" 2
A 2 e .
oleg)= z(ei"eoi)q-ifsm

i €S
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d is the sum of the discrepancies due to estimation and due to approxima-
nd 1s the

jon. The expected discrepancy is

a 2
gA(8%) = I Var(8)+ I G (3.13)
i €S

3y adding an element I 0 S the expected discrepancy changes by

a2 2 yze pyed
E( eor- er) = B Var 6 oy
5 oo POx) PX) - O (3.14)
RS | E it W or

1)

fhe best set S contains all elements corresponding to parameters which lead

‘0 negative contributions.

.4 The Criterion:

The contribution to the expected discrepancy of a parameter 6 P that is

Var 8 . 63‘ o is estimated without bias by

/N A A2
2 Var er - er,
where
\ . n
\Y 2P B _ ] .
| ar § =L Y% P (x;) Pl’(x])’ (3.15)

Fal
and Uij is an unbiased estimator of oij' Only those parameters whose estima-

ted contributions are negative should be fitted. So, we use a paiameter 6

only if

(3.16)




» 11 =

When the ®jj a1® uncoirelated then:

2
”n a.
Var & =5 () Py,
b ey (3.17)
N\ A 9;
Var er = Zi ( j‘— ) Pf(xi)'

where 0; is_&stimated by the sample variance of the observations Yiis §= 1, 2

ey J

= \2
- Ei (Yij = Yi.)
O, =

i J -1 (3.18) .

If we assume that Oiz = 02, then Var 6: = 02/,] and we use the parameter 0,

only if
F : Qf E 63 2 (3.19)
= poy = G > ° .l
52 MSE

In analysis of variance ] 63 is known as the sum of squares for 8, and

J 6 sse
F= 5= WM ' (3.20)

-~

is the statistic used to test the hypothesis that Br = 0. Here we test a
different hypothesis with the same statistic and we therefore require other

critical values,



the monthly gross evaporation at Mata-

1986). The season begins

We represent these

data using the operating model

i = 1, 2, ceny 12, ' (4.1)

y..= ui + eij )
j = l, 2" eoey 20’

ij

:n month i of year j (where j=1

: : :
where ¥;; IS the gross evaporation (mm)

represents 1937/38), and U,

is the mean gross evaporation in month i. We

2
1 i 1 s = d v e0-=00.
assume that the oy 218 independently dxstnbuted with Eelj o and Var &;=0;

However,

We can estimate the mean monthly gross evaporation M, by ¥, -

with this type of data we can often improve the estimates by making use of

ern. It is

the knowledge that the M, follow an approximately sinusoidal patt

known that in such situations truncated Fourier series often lead to gOOd

approximation models.

We begin by representing the y. in terms of their Fourier series (chat-

field 1982):

5
u e Pl(l) - 21( o P (1) + B Pzr l(l) ) +0t6 12(1) (4'2)

] 1
s R A
‘where a” and B~ are the Fourier coefficients and

\

PNV P, s
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P,(i) = (—Z)I/2
P, (i) = (5% cos w_i,
Py @ = (Y sinw i, 11,2, .., (4.3)
P, = ()2 (-1,

(4.4)

Where the pairs of parameters (ar’ Br)’ r =1, 2,.., 5, are considered jointly

because they are coefficients belonging to the same frequency.

The pair (a, 8 ) should be retained in the model if



J rt J : TS % (4.5)

_](d? + %3)

()] &

> 2’ : (406) 5
2. 2
E:i[ P2r(l) s p2r+1

where ] is the number of observations in each month; here J = 20.

3 ° 2 . 2 . 2 . . b .
5 o that the d
Since PZI(l) + Py 1 @) = ) for all i, j, it follows that the denominator

is twice the residual mean square

R T o v3
MSE =355, 6} = mzﬁ (v = Vi)~ (4.7)

The pair (ar, 8 r) should thus be retained in the approximating model if

2 -2
gt JGI +Bl’)/2 & Msat’ B

s MSE L w2 (4.8)

The parameters e and Gg have to dealt with separately. There is usually no
question of omitting g from the approximating model. On the other hand,

o 6 should be retained if

Al :
Jag  MSag ! (4.9)

F =g = ™M 2

The estimates of the parameter in the operating model are given by



=154

§ = 464.348, f

o = 6.406, §1 = 133,728,

:2 = 7.583, B, = 1714,

,‘3 = 7.001, §3 = -10.043, (4.10;
8, = 4421, B 4= 199,

iis = -8.692, 35 = 1.145,

O = 2.52.

The basic analysis of variance .results in MSE = 319.32,

Table 4.1. The analysis of the Criterion, with MSE = 319.32,

Parameter d.f. SS F
oy 1 4,312,381.302 13,504.889
o,B 2 358,484.296 561,325
a8, 2 1,847,586 2.893
a8, 2 2,997.517 4.694
048, 2 470.745 737
0g, 8 2 1,537.238 2.407
o 1 127.614 -399:

" : | hould be
According to the criterion shown in Table 4.1 only.(a4, B 4) and o sho

omitted from the approximating ,‘.“°de"

The selected model is complex. In particular, the inclusion pf the high-
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" H .
requency component COH'GSPOPdmg to (asv 85) is unexpected. owever, since

he data consist of monthly totals and the number of days in each month
e data

it is probable that this high-frequency oscillation is present in the
aries, 1

o model. To correct for the effect of different numbers of days in
perating .

h month we can divide each observation by the number of days in the
»ac

esponding month and select a model for the mean gross evaporation per
Jorr

lay in each month. So, we get the estimators

&O = 15.277,

6, = 0.082, B = 4.429,

&2 = 9.367, B, = -0.018, _

6, = 0.212, B = -0.122, | (4.11)
8, = 0.062, By = -0.148,

6 = 0.047, B = 0.017,

8 = -0.023.

Table 4.2. The analysis of the Criterion, with MSE = 0.343.

Parameter d.f. SS F

o 1 4667.735 13,608.556
058y 2 392.455 572.092
0,8, 2 2.700 3.936
o8 2 1.197 1.744
OBy 2 518 754
@185 . 2 049 073
U

(O 1 011 031
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The selected model as shown in Table 4.2 has no high-frequency component

4nd contains the five parameters %0 %, Bl’ %y, and Bz. The observed and

firted means are given below and are jll ustrated in Figure 4.1.

Observed Fitted

Oct 5.19 5.41
Nov 5.86 5.91
Dec 6.16 6.07
Jan 5.89 - 5.89
Feb 5.38 5.35
Mar. 4.44 4,53
Apr 3.55 3.54
May 2.86 2,75
Jun 2.43 2.45
Jul 2.65 2.79
Aug 3.69 3.62
Sep 4.72 4.59

<<
1 1

1

1

1

Eve-poration
W s " O N o
L

Figure 6.1. Monthly average evaporation per day at Matatiele, October (monthi

1937 to 1957, .and approximating mean function.
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5. CONCLUTION

An approach to model selection methods for monthly data is Presented ip
his paper, which uses operating model with mean fungtions follow an approxi.
nately sinusoidal pattern, and the method of least squares to estimate the
‘ourier coefficients. Only those parameters whose estimated contributjons to

he expected discrepancy are negative should be fitted.

According to the analysis of the criterion of the model using mean mon-

hly gross evaporatior, the high-frequency componen.t'corresponding to (@ S’B s)

hould be included, shich is unexpected. It is probable that this high-fre-

uency oscillation is present in the operating model since the data consist

f monthly totals and the number of days in each month varies.

To correct for the effect of different numbers of days in each month we
livide each observation by the number of days in the corresponding month.

The selected model for the mean gross evaporation per day in each month has

no high-frequency component and contains the five parameters o

o’u'l’Bl’ 0‘2’

and Bz- and the fitted means are

The observed and fitted means are given,

very close to the observed ones, The appioximating mean function is illust-

rated and it seems to follow an approximately sinusoidal pattern.
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APPENDIX

Table A.1. Monthly Gross Evaporation (mm) at Matatiele

eai—

Seeson  OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
1937/38 185 212 169 191 159 152 120 100 63 88 118 165
1938/39 165 199 192 170 129 140 133 98 69 62 123 122
1939/40 162 154 189 194 175 137 114 103 86 97 122 131
1940/41 172 187 177 189 146 141 126 144 97 96 123 184
1941/42 170 181 246 168 152 139 108 85 95 % 99 122
1942/43 133 151 170 165 157 124 102 70 85 99 96 136
1943/44 172 164 * 160 197 136 139 123 104 79 100 152 135
1944/45 168 209 242 191 158 133 102 97 91 109 137 147
1945/46 173 214 222 157 156 132 110 73 70 ® 124 163
1946/47 171 1B9 211 185 162 153 91 77 49 B4 121 129
1947/48 170 162 164 144 136 106 81 60 66-61 112 164
1948/49 171 181 207 208 136 137 126 91 71 87 132 137
1949/50 157 162 195 178 156 137 88 67 72 74 81 141
1950/51 178 171 187 167 192 144 112 94 80 83 97 134
1951/52 155 220 214 220 150 153 95 92 54 56 107 141
1952/53 172 151 182 176 129 157 99 84 73 66 91 128
1953/54 144 160 165 170 146 138 100 86 52 84 110 163
1954/55 173 153 223 184 141 137 95 70 71 69 120 133
1955/56 140 162 157 218 144 128 109 86 69 76 121 129
1956/57 149 135 150 182 154 128 97 91 67 73 106 128

S ——
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