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Integer In this paper, a fully rough integer linear fractional programming
programming, o ) ) ] o )
Fractional problem is introduced, in which all coefficients and decision variables
programming, . v . . .

Integer linear in the objective function and the constraints are rough intervals. The
fractional . .. . . .

ractiona’ optimal value of decision rough variables is rough interval. In order to
programming,

Rough set theory, solve this problem, we will construct four crisp integer linear fractional
Rough integer

interval.

programming problems. Via these four crisp problems the rough

optimal integer solution is obtained. An illustrative numerical example

is given for the developed theory.

1. Introduction

The main interest in fractional programming
was generated by the fact that a lot of
optimization problem from engineering, natural
resources and economics require the
optimization between physical and / or
economic functions. The problems, where the
objective function is a ratio of two linear
functions subject to a set of linear constraints
and nonnegative integer variables constitute an

integer linear fractional programming problem.

The integer solution of fractional programming
problem is proposed [1]. Several methods were
suggested for solving integer linear fractional
programming problem such as variable
transformation method, as well as branch and
bound method [2].

Borza et al. [3]proposed the method to solve
linear fractional programming problem with

interval coefficients in objective function.

Jayalakshmi and Pandian, Proposed a new
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method namely, denominator objective
restriction method for finding an optimal
solution to linear fractional programming
problems [4]. Linear fractional programming
problem with interval coefficients in the
objective function is introduced [5], It is proved
that we can convert an IVLFP to an
optimization problem with interval valued
objective function which its bounds are linear
fractional functions. Rough Set Theory (RST)
was initiated by Pawlak [6] in 1982 as a
method for ambiguity management. Pandian et
al. [7] considered that the transportation
problem has all or some parameters as rough
integer intervals. Also, proposed a new method
named, a slice-sum method to solve Rough
Integer Interval Transportation Problem
(RIITP), where transportation cost, supply and
demand are rough integer intervals. Hamazehee
et al. [8] introduced a new class of Linear
Programming (LP) problems in which some or
all of the coefficients are rough intervals and
showed that each one of them can be
transformed into two LP problems with interval
and Muamer. [9]

coefficients. Ammar

introduced a rough linear fractional
programming problem. They are considered a
rough interval in the objective function
coefficient. Emam et al. [10] presented a
solution of fully rough three level large scaler
linear programming problem, in which all
decision parameters and decision variables in
the objective functions and the constraints are

rough intervals. Algorithm for solving fuzzy

rough linear fractional programming problems
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(FRLFP) is introduced, All the variables and
coefficients of the objective function and
constraints are fuzzy rough number [11]. A
Large-Scale three level fractional problem is
introduced with random rough coefficient in

the objective function in [12].

2. BASIC PRELIMINARIES

In this section a basic notions of interval
analysis are given [5]:

Definition 2.1. Suppose I is the set of all
compact intervals in the set of all real numbers

R. If A €1 then we write 4 = [a%, a"] with
a® < a”and the following holds:

i. A=0 iffabz=0

i. A<0 iff a¥ <0

2.1 Basic operations of intervals [5]
Let 4= [af,a"], B = [b%,bY] be two closed
intervals in 2. When 4 = 0 and B = 0 we

have:

- A+B = [d* + bt a¥ + Y]
2- A—B =[at —bY,a" — b1]

3- kA=k[ala"] =

{[ku", ku'l ifk=0
[ka, ka'] if k<0

4- Ax B = [al x bt a" x bY]

5- A+FE =[a* = b".a" = ']
Definition 2.2. Let A = [a*,a”], B = [b%, b"]
be two closed intervals in B . We write
A<z B iffa"*<btanda’ < bY . Also

AC,. B iffa=b"and a” £ bY it mean

that 4 is inferior to B or B is superior to A.

Definition 2.3. Let X be denote a compact set
of real numbers. A rough interval X% is defined
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as:
XF = [ x40, x(WAL] where X 040 gnd x V4D

are lower and upper approximation intervals of

X& | respectively with x(aD < x(UaD

Proposition 2.1. For the rough interval
AR £ IF the following holds:
i. AR =_ 0% iff A" >0 and
Alval = g
ii. A < 0F iff A" < D and
Alval = o,
Where % is the set of all rough intervals in R,
AR =AM ; 4U41] = [[au-_ a] : [aL-U’aUU]]J
att, a"t, a'¥and a"V € R.

2.2 Basic Operations of Rough Intervals
For any two rough intervals A% = 0 and

E® = 0 we can define the operations on rough

intervals [7, 9, 10] as follows:

1.  Addition:
AR $BR — [ [ALA{ + BL-:—'.{] : [AE-"A{ + BUA{] ]
Such that

{ [A.Lq.f +B.L4.{:| — [al..[-_l_ bLL,ﬂ-LTL + bLTI.-]’
[HUAE _|_ HL’A{] — [ﬂ-LU—l' bLU’aUU _|_ bLTU]

2. Subtraction:
Aﬁ'egﬁz [[ALAE_ELA{] . [AUAE_BUAE']]
Such that

{ [ALAl _ pLAI =[glL _
[AVAT — BUAI] = [aw _

pUL qUL _ pil] |

bUU s CI,UU _ bL-U]

3. Multiplication:
AR {:L}BR — [ [ALA{ % BL:—H] : [AUA{ % BUA{]]
Such that

Author et al (2018)

[AL4] x BLAI] = [ x BEE avt % BULY,
{ [AV4T 5 BUA] = [atV x BLU, Q¥ x HUY]
4. Division:

AR @ BR = [ [aM! /BM] « [474 / BUA] ]
Such that

{ [AL-A{ / BL-A{] — [aL-L-!.r bL’L- ..CIUL !.r bL-L- ]
[AUA{ ,.f'rgyﬂ] — [ﬂ,L'U ,."r bUU, chU ,.f'r bL-U]

Definition 2.4. [7] Let

AR =[[a",a" ] : [a*,a"V]] be in I%. Then,
AR is said to be rough integer if

att, a't, o'V and a"Y are integers.

2.3 Integer Linear Fractional Programming
Problem

The general form of integer linear fractional
programming (ILFP) problem [1, 2] is
discussed as follows:

N(x) _ 27=1 6% + 64

D(x) o dixtdy

=177

Max Z(x)=

Subject to:

Tl —
Z}':l ﬂ-i}-x}- = bi , L= 1, e wea p TH

x; 20 and integers , j = 1, ......,n
(1)
where, ¢;d;, cg, dy,ay; and b; € R,

Z‘ ) d;x; +d, #0.

=1

2.4 Variable Transformation Method
A method is obtained, for solving the linear

fractional programming problem with integer

variables, through the change of variable
1
}r}.—x}-t , t=0, Wheret—m.

The integer linear fractional programming
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problem (1) is transformed into the following

problem [2, 11]:

T
Max Z(y,t) = Z c;¥; + ot

=1
Subject to:
E} 1rxuv}—bt =0, i=1.....,m

(Z dx; +dy)t=1
j=1

y;=0,t= ﬂand{iinteger, j=1,...,n

)
Firstly we solve the problem (2) neglecting the

condition that 3: are integers and obtain the

If the solution :}

solution. have all

components integer, then it is the optimal
solution of the integer linear fractional
programming problem (1) except that use the
branch and bound method to get the integer
solution.

Theorem 2.1. [2] a) If there is an optimal

solution of problem (1), then (y*t*) is an

optimal solution of problem (2), where

1

i el *
Ej.z,_n!_l-a pldn

vi=rt'x"and t* =

b) Conversely, if there is an optimal solution
(y*,t*) of problem (2), then t* =0, x* =Lr- is

an optimal solution of problem (1).
The proof of this theorem is similar with that of

theorem (3.4.1) given in [2].
3. Problem Formulation

3.1 Fully rough integer linear fractional
programming (FRILFP) problem
The fully rough integer linear fractional

programming problem is defined as follows:
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NF(x (ORI Al

Max Z8(x) = E(j= ‘11‘1& 2
NE(x) _, dF xF + dF

=1
Subject to:
n
R_R R
S ater < 5
J=1

x}-R = 0 and rough integer interval
=12, .n, i=12, ... m

3)

Where cF,dF, cf and df are positive n-vector

rough interval defined as:

cf = [cl : CU] R d8 = [d;— : d}y] R

7 7 7 7

R I T

¢g — e = <o , dg — [dg = dg].

BE=[BE: BY] are m column and
R —ral . aU ; :
AL =[A5: A51= 0 is an n X m constraint

matrix.
The problem (3) can be written as the form:
Max Z8(x) =

_Tl_;l +C[I;']

n_ dY x o dy]

[ } 10}3: +Cu :
[ Ildjxl+di :

Subject to:

n

D [ttt <

=1

[8;: B/]

[xf :

3 x}’] = 0 and rough integer interval

=12, ...n, i =12, ..,m
4)

Using the above operations of the rough

interval we have:

Max Z8(x) =
L L L n o U
} =1 0 % + g . =10 X; + r"

Z’F_ldjx +df X li}”x”+d”

Subject to:
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T 1
Z;f;,.xj': Z Alx| = [Bf: BY]
i i
[x}: x”]= 0and rough integer interval

6))

The fully rough integer linear fractional
programming problem (5) can be written as two
integer linear fractional programming problems
with interval coefficients [7,8] as follows:
UILFP(1):

T _l_ CE,
Max ZU(x) = ‘J =t ‘J

y d}” x” +dl¥
Subject to:
Z}_ A xF = BY

x/ =0 and integer interval

(6)
LILFP(1):
L. L L
¢; xi + ¢
Max Z%(x) = ‘1 1
} -1 ij L+ dI'
Subject to:
!
Z Afxf < B}
;
x; =0 and integer interval
j=12,..n , i=12, ... m
(7
Now we know that:
L _ [.LL UL U _ [.LU UU
&G = [c}- ] ] > & = [C}' : 65 ]’
Cé = [Cu rcnl] ) CEI; =[c é'y- ng]a
di — [d}LL’ d}ui] , d-;..p — [d}Lu" d}uu]’

dk=[aidft] . df = [d¥,a8V)

Author et al (2018)

BE = [b, b . BY = [b¥,bP7],

A= (ol alf] = [olf ol

Zlixj — [ZL-L- ’ZU.I_-] s EU(xj — [ZLU _.ZUU] ‘

x}- X X

LL L’L-] _
' 7

= [ xftxf

U_ [ L UU]
The problems (6) and (7) can be written as
follows:

UILFP(2):

Max [ZH,200] =

o o | S Bl it

. [df‘”, d}’”] [xf‘”,x}’”] +[di¥, d¥v]

Subject to:
T
D [af a1, xv] < 2, b
=1
[xfY,xfY] = 0 and integer interval
=12, ....n, i=172,..,m
(®)
LILFP(2):
Max [ZH,Z7F] =
el ] [ ] + et ]
IL JUL|| IL UL
leld}. ,d; J[x} JX; | + [dEE, 48]
Subject to:
T
D e el [t ] < B b
=1
[xj‘i', x}i”i'] = 0 and integer interval
j=12,..n, i=12,.,m
)

Now using the arithmetic operations, we
decompose the above two problems (8) and (9)

as the follows model:
UILFP(3):

Max [Z*,Z297] =
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N nj N T
n - [cwxu_i_cw’ cUU L’L’+ C_IU]
j= g f]
} ;| d}“", Ly d”" dL’L’ UU 4 aL’L’]

Subject to:
[Z LU 10 ””x}’”] < [BH, BUY]
[xj‘”,x}"”] = 0 and integer interval
j=12,..,n, i=12,..,m

(10)
LILFP(3):

Max [z ,ZV] =

[En . L-L- L{- LL- En . CULxUI_l_CUL-:

[ dllxlf +dLL n dL’L U"+fiUL]

Subject to:

[Z LL LI_ ﬂl }L’L] = [bELL’ bL’L]

[}, xPE] = 0 and integer interval

j=12,..,n, i=12,..,m

(11)
We can write (10) and (11) as:
UILFP®4):
Max [Z% ,2%7] =
[ ;zl-JLUIU_i_cLU fl;UUUU+C ]

Ty ci}‘?"” }."’” +dg¥ T X ld}“’ xFY 4 di

Subject to:
[Z LU LU aﬂﬂ'x}UU] [be;bEUU]
[x x, ‘C}UU] = 0 and integer interval
j=12,..,n, i=12,..,m

(12)
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LILFP(4):
Maox [ZLL,ZUL] —

m_ cHgll 4 (L n_, cUbxUl 4 U ]
UL, UL I dP L
_EJ.-=1 d}. x; +dFt E} 1,:iJ1 +dU
Subject to:
Z Lt Z UL L’L] [BEE, bUL]
[xf‘,x}?’i'] = 0and integer interval
j=12 ..n, i=12 .. m
(13)

From the above UILFP(4) and LILFP(4)
decomposition problem we construct the
following four crisp integer linear fractional
programming problems named, Upper Upper
integer linear fractional programming problem
(UUILFP), Upper Lower integer linear
fractional programming problem (ULILFP),
Lower Lower integer linear fractional
programming problem (LLILFP) and Lower
Upper integer linear fractional programming

problem (LUILFP), as follows:

Model(1): (TIITLFP)

n UUUU+C

Uy .i' =1 6
MaxZ - ATy I”-l-ri"y
.i' =177

Subject to:

n  UU UU o~ LU0
i=1 @i X = b

n_ LU, LU o pLU
=1 Zij X b;

Lr . uw
=
x} ,x}

i=12,..,n

0 and integer

, L=12,...m

Model(2): (ULILFP)
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n JL L’L_l_CUL

Maxz UL = .i' =1 5
yl 1dL.L L..L_l_dLL

Subject to:
§o UL UL,

: { (ZL'Ujs

n L’L LU_- UL
=1 G‘z_;l = bz’

n LL LL LL
E' @5 Xj b

xPE < (1P
xft, x ' = 0 and integer

j=12,..n, i=12,..,m

Model(3): (LLILFP)

T vl
Maxz™ = m 1d;m x UL+ qut
Subjectto:

Z _, et +r:j ‘i(EUL'j*

it

n_ qUlxUL < pUL

LL ULy«
X" = [x}. )

xji,xjm = 0 and integer

=12, .., {—1,2,..,m

Model(4): (LUILFP)
n LU LU 4 LU
Maz L — } -1 G x5 + 6
U, w
S e dyv

Subject to:
3, oY jm+cn“ s
E‘l Lu LILI |dul.l — (E j

j=1 i X

n oo, uw o
E.:"=1 B:; Xj = bf

n_ LU, L-L' < pLU
L

xfY < ()"

xfY,xY = 0 and integer

Author et al (2018)

j=12,..,n, i=12,...m
Definition 3.1. A set of rough interval
(¥7)* € I® is said to be an integer optimal
solution of the rough integer linear fractional
programming (FRILFP) problem if there does
not exist X7 € I® such that Z(xF)* < z(xF).
Theorem 3.1. [4, 11] Let
[x5y] = {xfw: x5y € UU} be an optimal
solution of (UUILFP) problem,
[x7] = {x;;: x5,y € LUY be an optimal solution
of (LUILFP) problem,
[x5.] = {x5,: x5, E UL} be an optimal
solution of (ULILFP) problem, and
[x;,] = {x;.: x;, € LL]} be an optimal solution
of (LLILFP) problem, where UU, LU, UL and
LL are sets of decision variable in the
(UUILFP), (LUILFP), (ULILFP) and (LLILFP)

problems respectively. Then the set of rough

integer intervals

(9 = [ ) (2 572 isan
optimal solution for the given (FRILFP)
problem .

Proof: Let

{(57) =[5 97%) = (7%, 37%) N forall j €
7}

be a feasible solution to the (FRILFP) problem.
Clearly, [yyy], [vig]> [Vy,] and [y, ] are
feasible solution to the problems (UUILFP),
(LUILFP), (ULILFP) and (LLILFP)
respectively.

Now, since [x5,,,], [x; ] [x5, ], and[x;; ] are

optimal solution for the problems (UUILFP),
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(LUILFP), (ULILFP) and (LLILFP)

respectively, we have
Z ([ = Z% (gD
ZM([xg D) = 2 (w])

Z9([xg,]) < 29 ([yy,]) and

ZH ([xg D = Z9 (D)

This implies that Z(XF*] < Z(¥), for all

feasible solution of the (FRILFP) problem.
Therefore, the set of rough integer intervals
(5 =[G 27):

[xj’”*, x}-UU*) ],fm“ all j Ej}
is an optimal solution for the ( FRILFP)

problem. Hence, the theorem is proved.

4. Algorithm: Solution for FRILFP problem

The propose algorithm to solve (FRILFP)

problem can be summarized in the following

steps:

Step 1. Use the given problem to construct four
crisp integer linear fractional
programming problem namely Upper
Upper integer linear fractional
programming problem, Upper Lower
integer linear fractional programming
problem, Lower Lower integer linear
fractional programming problem and
Lower Upper integer linear fractional
programming problem.

Step 2. Find the integer optimal solution (x}%mj *
for (UUILFP) problem with the
objective value (Z YY), by the variable

transformation method.
Step 3. Solve the (ULILFP) problem by the

variable transformation method to
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obtain the integer optimal solution
(x[*)* with the objective value
( 7 L’L-j *

Step 4. Solve the (LLILFP) problem by the
variable transformation method to
obtain the integer optimal solution
(x;*)" with the objective value (Z**)".

Step 5. Solve the (LUILFP) problem by the
variable transformation method to
obtain the integer optimal solution
(xfY)* with the objective value
( 7 L-Uj *

Step 6. The set of rough integer interval

) = [ 1)
foLUs . UU

] 5 xj 3) ]

is an integer optimal solution to the
given problem (FRILFP) with the
objective value

2%y = [z, 27

i TITE &

I“-Z.LU ’zUU ) :|

by the theorem (3.1).

5. Numerical example
Consider the following (FRILFP) problem:
MaxZ®(x) =

([36]: [2,81)x] + ([6,8]: [411])xF
(T4.71:1380 X7 + (3.51:[2.6D0X% + ([6,20: [£,131)

([1,3]: [1,4])XF + ([2,5]:[1,6])xF

=< ([20,30]:[18,55])
([4.71: [2,8])%F + ([1,3]:[1,4])xF

< ([25,27]:[20,50]]

X%, X% =0 and rough integer intervals
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Where

X7 = [x]:x7] = [G®,x0") = (217, %77) ]
X7 =[x1:x7] = [(g" 23" = (7, %7) ]
Solution: Firstly we can write the problem on
the form

MaxZ®(x) =

i361%F +[e8ixd: 28ixF + [4i1jx¥
3,

1

!
=1
441

ijﬂa?]fé + 3S]¥E+(6,10]: [3,A17F + [261%7 + [413
Subject to:
[[1,3]xF + [2,5]x% : [1,4]xY + [16]X7]

= ([20,30]:[18,35])
[[4.7]xE + [1,3]x% : [2,8]x7 + [14]x7]

= ([25,27]:[20,50])
[xf: x{].[x%: x3] = 0 and rough integer

Using the arithmetic operations we have

MaxZ®(x) =

I M w1l 3 e olwri Mralvld o Taaalwld I
| LAbjAy T o)A LAy T [T A, |
I EIR TR T ool :|-|n|"U o - lwald s eIl
[L17]X7 + 135X + |K10]  [3.B]XT + |261X; + |413]]
Subject to:

[[1,3]%7 + [2,5]xF : [1,4]%] + [L8]x7]
< ([20,30]:[18,55])
[[4.7]x7 + [1,3]x5 : [2,8]x] + [L4]x7]
= ([25,27]:[20,50])
[x1: 2y{],[x7 : 23] = 0 and rough integer
Now we will divide this problem into two
integer interval linear fractional programming
problems [7,8] as the following:
UILFP(1):  MaxZ"(x)=
[2.8][0f", %771 + [411] [x77, x7Y]
[3.8][XE0, X771 + [2,6][¥57,x57] + [4,13]

Subject to:
[1,4][XE, xVY] + [1,6][x%7,x¥Y] < [18,55]

Author et al (2018)

[2,8][XEY xPV] + [1,4][%2Y, xEY] < [20,50]

[xiY, x7Y], [x4Y, x¥Y] = 0 and integer

LILFP(1):  MaxZ%(x) =
[3,6] (x5, x V4] + [6,8][X5E, x4

[4,71KE, X9 + [3,5] (X2, X¥¥] + [6,10]

Subject to:

[13][x%{5,x 7] + [2,5] (3%, %3] < [20,30]

[4,7][x{5,x74] +[1,3][x3%, %3] < [25,27]
[x1%, x7*] [X5%. X37*] = 0 and integer

The problems UILFP(1)and LILFP(1) can be

written as:

UILFP(2Z): Maxz"(x) =

[2XEY + 4xLV gxVV + 11x0V ]
[3x{7 + 2% + 408%]" + 6XJ" +13 ]

Subject to:
(1Y +x37,4x7Y + 6x5Y] < [1855]
[2x1Y + xIV,8x7Y + 4x7Y] =[20,50]

[xiY, x7Y], [x3Y, x¥7] = 0 and integer

LILFP(2): MaxZ*(x) =

[3XE + 6XH, 6XUE + 83XV
[4XiE + 3XE + 67X + 5X5L + 10]

Subject to:
¥t + 2135, 3x7F + 5x0*] < [20,30]
|4XEE + XEE 7XVE 4+ 3XYE] < [25,27
[xgf, 7%, [x35, x37*] = 0and integer
Using the arithmetic operation of interval we
get four crisp integer linear fractional
programming problem as the following:
Model(1): UUILFP

axiv +11xdv
3XY 42XV + 4

MeaxZ"(x) =
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Subject to:

XY +x3¥ <18, 2x1¥ +x37 < 20

4x7Y +6x7 = 55, 8x7"Y +4x5¥ = 50
X9, x7Y, %37, xFY = 0 and integers

Solving the (UUILFP) problem by variable
transformation method ignoring the integrality
condition we have
xW=0x7"=25x¥=0,xI" =75and
ZUY(¢*) = 25.625, Since the decision

variables are not all integer, then Apply branch
and bound method to get an integer optimal
solution:

xY=0,x"=0,x; =0,x" =9,
ZU(x*)= 2475

Model(2): ULILFP
6Xx7" +8x5"

M E_UL- _
axZ (%) AXE 1 3xE 1 6

Subject to:

sx“L+sx“

X+ zxg* <20 , 4xtt+xit =25
3xVE +5x¥ <30 , 7XVE+3xF < 27
x"=o0, xf* <9

X xU ¥ X7 = 0 and integers
Now, Using the variable transformation method
to solve the (ULILFP) problem without integer
condition to get the following results:

xtt=0, xi*=o0, x"=0, x*=6
and Z¥E(x*)=8.

Since the decision variables are all integer, then
the integer optimal solution is:
xft=0, x*=o0 x{*=0, x7'=6
and zY(x*)=8.

Model(3): LLILFP

55

3xt + exgt

MaxZ™(x) =
(=) 7XI + 5xlt + 10

Subject to:

3xt + exgt
7X" + 57" + 10 T

Xtr+ext<20 , ax4xit <25
3xUt syt = 30 , 7xVL L3xUt < 27
¥t=o0, xit=e
X ULyt xUL > pand integers
Now, substituting X1 =0, Xt =0,
x =0, XxJ* =6 inthe (LLILFP)
problem, the integer optimal solution is
Xt =0, X¥=0 Xx{*=0, x¥=6

and ZU:(x*) = 0.

Model(4): LUILFP
2x1Y + axs?
8XVYU + 6xYY + 13

MaxZ' (x) =

Subject to:
2x7Y + axi” <0
BXYY +6X¥V +13 ~

¥ x =18, 2xtY 1 x =20

4x{" +e6x]" =55 , 8x7Y +4x7V <50
<0, x¥<o

x19, x7Y, x37, xFY = 0 and integers
Now, substituting ¥ =0, %Y =0,

x" =0, ¥ =9  in the (LUILFP)
problem, the integer optimal solution is
xW=0x"=0 xfY=0, xJ7=9 and
ZUn(x*)=0.

Therefore, by theorem (3.1) the rough integer
optimal solution for the given (FRILFP)

problem is (x§)* = |[0,0]:[0,0]],
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(x5)* = [[0,5]:[0,9]] with the maximum

objective value Z 7 (x*} — [[0,8]:[0,24.75]].

6. Conclusion
In this paper, we focused on the solution of the
fully rough integer linear fractional
programming (FRILFP) problem, where all
decision variables and coefficients are rough
intervals. The proposed approach was based on
operations of intervals, operations of rough
interval, variable transformation method and
brunch and bound method to get an integer
optimal solution. Finally, a numerical example
is given for the sake of illustration.
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