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Abstract: The generalized structure of DNA recombination is based on the rules of rough Set. In 
this paper we are discussing the relationship between rough Set and DNA recombination. We 
construct a new recombination operator using the properties of DNA and RNA. Using the process 
of cutting and sticking of a sequence of genes, new types of topological structures are constructed 
and some of their properties and characterization are investigated. We studied recombination 
operators in the statement” The restriction enzyme cuts both molecules at the same sequence 
("Sticky" End)”. 
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1. Introduction and Preliminaries 

   The biological application of topology to the study of 
DNA structure and understanding protein–DNA 
interactions that involve alterations of DNA topology is 
an essential aspect of the existence of every living cell 
because of the extraordinary degree to which the 
genomes of free-living organisms are confined. 
Moreover, changes in DNA topology accompany a wide 
range of enzyme-mediated processes on DNA such as 
replication, recombination, and repair [31]. 

   DNA is often like a recipe or a code, since it contains 
the instructions needed to construct other components of 
cells, such as proteins and RNA molecules. The DNA 
segments that carry this genetic information are called 
genes. Within cells, DNA is organized into long 
structures called chromosomes [27]. 

   DNA is a long polymer made from repeating units 
called nucleotides [3,  917,2 ].Although each individual 
repeating unit is very small, DNA polymers can be very 
large molecules containing millions of nucleotides [20]. 

   Recombinant DNA are molecules constructed outside 
of living cells by joining natural or synthetic DNA 
segments to DNA molecules that can replicate in a living 
cell, or molecules that result from their replication. This 
technique involved in creating and purifying desired 
genes. 

   The process of recombination makes it possible to cut 
different strands of DNA, in with a restriction enzyme 
and join the DNA molecules together via complementary 
base pairing [4]. 

    In this study paper, we consider some methods for 
generating topologies by using rough set theory via one 
of biological applications (DNA recombination 
processes) and getting new results, finally exploring the 
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extent of matching between mathematical and biological 
results. 

 

1.2 DNA Recombination 

The following is a summary of the process of making 
recombinant DNA (see Figure 1): 

1. Treat the DNA taken from both sources with the 
same restriction end nuclease. 

2.     The restriction enzyme cuts both molecules at the 
same site, a sticky Ends for example ( EcoRI) (  )
GAATTC) and at blunt ends (Hpa 1) for 
example(GAATTC). 

3. The ends of the cut have an overhanging piece of 
single-stranded DNA called “sticky Ends.” 

4. These sticky ends are able to base pair with any 
DNA molecule that contains the Complementary 
sticky end. 

5. Complementary sticky ends can pair with each 
other when mixed. 

6. DNA ligase is used to covalently link the two 
strands into a molecule of recombinant DNA. 

7. In order to be useful, the recombinant DNA needs 
to be replicated many times (i.e. cloned). Cloning 
can be done in vitro, via the Polymerase Chain 
Reaction (PCR), or in Vivo (inside the cell) using 
unicellular prokaryotes (e.g. E. coli), unicellular 
eukaryotes (e.g. yeast), or mammalian tissue 
culture cells. Some examples of the therapeutic 
products made by recombinant DNA techniques 
include: 

a. Blood proteins: Erythropoietin; Factors VII, VIII, 
IX; Tissue plasminogen activator; Urokinase. 

b. Human Hormones: Epidermal growth factor; 
Follicle stimulating hormone; Insulin; Nerve 
growth factor; Relaxing; Somatotropin 

   Figure (1) A pictorial representation of the 
recombinant DNA process 

   A new mathematical representation is proposed for the 
configuration space structure induced by recombination 
which is called '' P-structure ''. It consists of mapping of 
pairs of objects to power set of all objects in the search 
space. The mapping assigns to each pair of parental 
''genotypes'' the set of all recombinant genotypes 
obtainable from the parental ones. P.F.stadler conclude 
spaces that the algebraic approach to fitness landscape 
analysis can be extended to recombination spaces and 
provides an effective way to analyze the relative 

hardness of a landscape for a given recombination 
operator. 

 

1.3 The DNA Recombination Operator 

Definition1.3.1[7,8,9,11,12] Let X be any set which 
represents the set of *types* that it may be strings of 
bites, vectors, DNA, RNA sequence .etc. A definition of 
a recombination operator on X defined by. 

𝑇: 𝑋 × 𝑋 → 𝑃(𝑋) 

The recombination operator maps every pair of X to a 
subset of X (i.e. .an element of the power set P(𝑋) such 
that ∀𝑠, 𝑡 ∈ 𝑋, the following condition holds∶ 

(𝑖)𝑇(𝑠, 𝑡) = 𝑇(𝑡, 𝑠) 

(𝑖𝑖)𝑇(𝑠, 𝑠) = {𝑠} 

(𝑖𝑖𝑖){𝑠, 𝑡} ⊆ 𝑇(𝑠, 𝑡) 

(𝑖𝑣)‖𝑇(𝑠, 𝑢)‖ ≤ ‖𝑇(𝑠, 𝑡)‖𝑓𝑜𝑟∀𝑢 ∈ 𝑇(𝑠, 𝑡). 

Definition 1.3.2[17] 

Let X be a set of possible genotypes and A is a 
set of realized genotypes, a fixed collection of 
genetic operators such as mutation, recombination, 
gene-rearrangement and crossover, then k(A) is the 
genotypes accessible from A which satisfies  the 
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following properties. 

(i). No spontaneous creation (i.e.) k (∅) =∅. 

(ii). A more diverse population produces more diverse off

springs: (i.e.) A ⊂ B implies k (A) ⊂ k (B);  A, B ⊂ X. 

(iii). All parental genotypes are also accessible in the 
next time step. (i.e.) A ⊂ k(A). 

(iv). Diversity of offspring depends only on the parent. 
(i.e.) k (A) =⋃ K(A), ∈  s. t. A ⊆ X. 

 

1.4Rough set theory 

    Rough set theory [38] is a recent approach for 
reasoning about data. It has achieved a large amount of 
applications in various real-life fields, like medicine, 
pharmacology, banking, market research, engineering, 
speech recognition, material science, information 
analysis, data analysis, data mining, control and 
linguistics (see the bibliography of [39]) and The main 
idea of rough sets corresponds to the lower and upper set 
approximations. These two approximations are exactly 
the interior and the closure of the set with respect to a 
certain topology τ on a collection U of imprecise data 
acquired from any real-life field. The base of the 
topology τ is formed by equivalence classes of an 
equivalence relation E defined on U using the available 
information about data. Following the connection 
between rough set concepts and topological notions, we 
investigate new definitions of the lower and upper 
approximation operators for similarity relation R. The 
equivalence class may be replaced by an element of the 
base {< p > R|p ∈ U} of the topology τ. It generalizes 
Pawlak’s approach and other extensions [10, 13, 30, 33, 
34, 35, 36, 73 ]. It can be also compared with other 
similarity-based generalizations of rough sets. 
    The notion of approximation spaces is one of the 
fundamental concepts in the theory of rough sets. This 
section presents a review of the Pawlak approximation 
space constructed from an equivalence relation and its 
generalization using any binary relations. 
 Suppose U is a finite and nonempty set called the 
universe. Let E ⊂ U ×U be an equivalence relation on 
U. The pair (U, E) is called an approximation space [38, 
39]. Let [x]E denote the class of x such that [x]E = {y ∈ 
U : x E y}. Then the lower and upper approximation of a 
subset X of U are defined as 
𝐸(𝑋) = {x ∈U: [x]E ⊂ X} 

𝐸(X) = {x ∈ U: [x]E  ∩ X ≠ ∅} 
 
A rough set is the pair (𝐸(𝑋), 𝐸(X)). Obviously, we have 

𝐸(𝑋)   ⊂  X ⊂𝐸 (X). The lower approximation of X 
contains the elements x such that all the elements that are 
indistinguishable from x are in X. The upper 
approximation of X contains the elements x such that at 

least one element that is indistinguishable from x belongs 
to X. This definition can be extended to any relation R, 
leading to the notion of generalized approximate space 
[32]. let xR be the right neighborhoods defined as 
xR = {y ∈ U : xRy} 
 
The lower and upper approximations of X according to R 
are then defined as 
𝑅(𝑋) = {x ∈ U: xR ⊂ X} 

𝑅(X)= {x ∈ U: xR ∩ X≠ ∅} 
 
Obviously, if R is an equivalence relation,       xR = [x]R  
and these definitions are equivalent to the original 
Pawlak’s definitions. We list the properties that are of 
interest in the theory of rough sets. 
L1. 𝑅(𝑋)  = [𝑅(X )] , where X  denotes the 
complementation of X in U. 
L2. 𝑅 (U) = U. 
L3. 𝑅 (X ∩ Y ) = 𝑅 (X) ∩𝑅 (Y ). 
L4. 𝑅 (X ∪ Y ) ⊃𝑅 (X) ∪𝑅 (Y ). 
L5. X ⊂ Y ⇒𝑅 (X) ⊂𝑅 (Y ). 
L6. 𝑅 (∅) = ∅. 
L7. 𝑅(𝑋) ⊂ X. 

L8. X ⊂𝑅 (𝑅 (X)). 

L9. 𝑅 (X) ⊂𝑅 (𝑅 (X)). 

U1𝑅 (X) = [𝑅(X )] . 

U2. 𝑅 (∅) = ∅. 
U3. 𝑅 (X ∪ Y ) = 𝑅(X) ∪𝑅(Y ). 

U4. 𝑅(X ∩ Y ) ⊂𝑅 (X) ∩𝑅(Y ). 

U5. X ⊂ Y ⇒𝑅(X) ⊂𝑅 (Y ). 

U6. 𝑅(U) = U. 
U7. X ⊂𝑅 (X). 

U8. 𝑅 (𝑅 (X)) ⊂ X. 

U9. 𝑅 (𝑅 (X)) ⊂𝑅(X). 

U10. 𝑅 (𝑅 (X)) ⊂𝑅 (X). 
K. 𝑅 (X  ∪ Y ) ⊂ 𝑅(X) ∪𝑅 (Y ). 

LU. 𝑅(X) ⊂𝑅 (X). 
Definition 1.41. [2] Let R be any binary relation on U, a 
set < p > R is the intersection of all right neighborhoods 
containing p, i.e.,     < p > R =⋂ (xR)∈   
Definition 1.4.2[1]. Let R be any binary relation on U, 
The lower and upper approximations 
of X according to R are then defined as 
𝑅 (X) = {x ∈ U :< x > R ⊂ X} 

𝑅 (X) = {x ∈ U :< x > R∩ X ≠ ∅ } 
Proposition 1.4.1[1] For any binary relation R on a 
nonempty set U the following 
conditions hold for every X ⊂ U. 
(i) 𝑅(𝑋) = [𝑅(X )] . 
(ii) 𝑅 (U) = U. 
(iii) 𝑅 (X ∩ Y ) = 𝑅 (X) ∩𝑅 (Y ). 
(iv) X ⊂ Y ⇒𝑅 (X) ⊂𝑅 (Y ). 
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(v) 𝑅 (X ∪ Y ) ⊃𝑅 (X) ∪𝑅 (Y ). 
(vi) 𝑅 (X) ⊂𝑅 (𝑅 (X)  
Definition 1.4.3[20]  Let X is a non-empty set and a 

closure operatorcl : ( )P X  ( )P X  such that: 

       𝑲𝟎∶ CL(∅) = ∅ 

        K   : 𝐼𝑓 𝐴 ⊆ 𝐵 ⇒ CL(𝐴) ⊆ CL(𝐵) (𝐼𝑠𝑜𝑡onic) 

K   : 𝐴 ⊆ CL(𝐴)                                                              

(Expanding) 

K   : CL(𝐴 ∪ 𝐵) = CL(𝐴) ∪ CL(𝐵)                             

(Sub-additive) 

K  : CL CL(𝐴) = CL(𝐴)                                         

(Idempotent) 

K  : ⋃ CL(𝐴 )∈ = CL(⋃ (𝐴 )∈ )                          (additive) 

1.5 Generalized DNA Recombination Topological 
Space[19] 

    We aimed in this work is to use the topological 
concepts in constructing flexible mathematical models in 
the field of biomathematics. We constructed two new 
recombination operators using the properties of DNA and 
RNA. We study topological properties of the constructed 
operators and the associated topological spaces of DNA 
and RNA. Several examples are discussed to illustrate 
the new concepts. *Cut and Sticks * for sequence of 
genotypes new types of topological structures are 
constructed and some of their properties and 
characterization are investigated.   

    The definition of process recombination 
mathematically using a matrix can be   cut and the 
integration of two types. We have been made a definition 
of the process of recombination with two ways: first, we 
take the first sequence needed only and ignore the rest 
.The other way we take all parts and as a result of 
improved optimization of this trace reappeared in the 
form of the space and that he began the installation 
process is described in a more accurate.               

 Well the way recombination between genes and we have 
greater accuracy and better place, and how cutting 
separation from the rest of the injured part. 

Definition 1.5. 1 general topological DNA 
recombination operator[19]   

Let X set of   “types”, which may be strings of bits, 
vectors, DNA or RNA sequences etc. And 𝑠𝑝𝑎𝑛 𝑜𝑓 𝑋 
contains all the linear combination elements of a X  the 

outputs as well as recombination. 

We define the recombination function 

𝑅 ∶ X × X → 𝑠𝑝𝑎𝑛 {X}. 

Such that  

𝑅 (𝑥, 𝑦) = ⋃ 𝑐∗𝑥 + 𝑐∗𝑥 , 𝑐∗ 𝑦 + 𝑐∗ 𝑦 , the 

mapping represents a general mapping. 

Sin𝑐𝑒 𝐶∗ =
𝐼 ⋯ 𝑂
⋮ ⋱ 𝐼 ⋮
𝑂 ⋯ 𝑂

            𝐼. 𝐸. 

𝐶∗ =

⎝

⎜⎜
⎛

1 0 0 0 …
0 1 0 0 …

0 0 0 …
0 0 0 …

⋮    ⋮
0 0 0

⋮
0 0 0 

… 1
⋮
…

⋮   ⋮
0 0 0

⋮
0 0 0 

…
⋮
…⎠

⎟⎟
⎞

 

Where the matrix represent the unity of level i× n, O a 
zero matrix, c∗  is called Matrix Hacking and  c∗ ∈

M (f)[Boolean matrix],for all i∈ {2,4,6,8}. 

We Will run the new Topological study on DNA 
recombination where recombination between types x, y 
since x first gene and y plasmid is the same between the 
x, y, this is called general topological recombination 
operator. 

Proposition 1.5.1[19]  

Let recombination operator 

𝑅 ∶ X × X → 𝑠𝑝𝑎𝑛 {X} Be an operator, 

𝑅 (𝑥, 𝑦) = ⋃ 𝑐∗𝑥 + 𝑐∗𝑥 , 𝑐∗ 𝑦 + 𝑐∗ 𝑦 , 

R (x, y)Consists of all recombination products can be 
done or (offspring) can be obtained induced by x, y and 
satisfied: 

(𝑖){x, y} ⊂ R (x, y): That is recombination between 
“types”, x and y forms a recombination set   R (x, y) 

(𝑖𝑖)𝑅 (𝑥, 𝑦) = 𝑅 (𝑦, 𝑥) 

(𝑖𝑖𝑖)∀𝑧 ∈  𝑅 (𝑥, 𝑦) ⇒ ‖𝑅 (𝑥, 𝑧)‖ ≤ ‖𝑅 (𝑥, 𝑦)‖, ∀𝑥, 𝑦, 𝑧 ∈

𝐵. 

(𝑖𝑣)𝑅 (𝑥, 𝑥) = 2𝑥(Duplication of genes) 

(𝑣)𝑅 (𝑥, 𝑦) ⊆Span{𝑥, 𝑦},[with change the enzymes ], 
where span 

 𝐴={𝑧 ∈ 𝐵: ∀𝑖: ∃𝑥 ∈ 𝐴: 𝑧 = 𝑥 }Is the linear span . 

         A related study on the structure of the genotype 
spaces that is introduced by so-called unequal crossover 
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(or no homologous recombination) show that isotonic 
spaces are adequate for mutation spaces but behave 
somewhat ‘un nature’ for certain recombination 
spaces[19]. 

In this section, we present a definition of closure 
recombination space by using recombination function  

Definition 1.5.2 closure recombination operator[19] 

 Let a subset A of X. We take T∗ (A) represents the 

closure operator since 

T∗ (A) =⋃ R (x, y),  s. t. A ⊆ X.We work in standard 

topological recombination operator. The resultant 
closure-space from the recombination operator R(x, y) is 
denoted by (X, T∗ ). 

Theorem 1.5.1[19] 

The closure space (c (n), T∗ (A) ) arising from 

recombination function satisfies 

(i)T∗ (∅) = ∅ 

(ii)If 𝐴 is a set of genes, then A⊆ T∗ (A). 

(iii)If 𝐴 ⊆ B ⟶ T∗  (A)  ⊆ T∗ (B) 

(iv)T∗ (A)∪ T∗ (B) ⊆  T∗  (A∪B)and 

           T∗ (A∩B)⊆  T∗ (A)∩T∗  (B). 

Resulting in a space (X,T∗ ), who will we call 𝑅  DNA 

recombination achieve some topological properties 
which are useful for process a recombination of DNA. In 
the table a space is constructed Neighborhood space. 

2. Upper and Lower Approximation on DNA 
Recombination 
Following the connection between rough set concepts 
and DNA recombination, we investigate new definitions 
of the class of element depend on definitions of 
recombination set which resulting  
from the definition of recombination function which  
identifier as follows 

R ∶ X × X → span {X}. 

Such that  

R (x, y) = ⋃ c∗x + c∗x , c∗ y + c∗ y , 

Definition Let R (x, y)be the recombination set 
consists of all recombination products can be done or 
(offspring) can be obtained induced by x, y .  

Definition  Let  R (x, y) be a recombination set.  Then 

the recombination class of x can be defined as  [x]  = {y 

∈ U : y ∈ R(x, y)}. 
Then the lower and upper approximation of a subset X of 
U are defined as 
R (𝑋) = {x ∈U: [x]  ⊂ X} 

R (X) = {x ∈ U: [x] ∩ X ≠ φ}. 

Example 1  Let the recombination process consists of 
three key pillars are: genes, plasmids and enzymes  i.e. U 
= {g , e,  p},  the recombination class of gene [G]R = 
{E},[P]R = {E,G} and              [E]R = {∅} (see , Table , 
No 1) 

 

A 𝑹 (𝑨) 𝑹 (𝑨) 𝑹 (𝑹 (𝑨)) 𝑹 (𝑹 (𝑨)) 𝑨𝐜 𝑹 (𝑨𝐜) [𝑹 (𝑨𝐜)]𝒄 𝑹 (𝑨𝐜) [𝑹 (𝑨𝐜)]𝒄 𝑹 𝑹 (𝑨) 𝑹 𝑹 (𝑨) 

{G} {E} {P} {E} {G,E} {P,E} {G,P} {E} {G,E} {P} {G,P} ∅ 

{P} {E} ∅ ∅ {G,E} {G,E} {G,P} {E} U ∅ {G,P} ∅ 

{E} {G,E} {G,P} {E} U {G,P} {P} {G,E} {E} {G,P} {G,P} {P} 

{G,P} {E} {P} {E} {G,E} {E} {G,P} {E} {G,E} {P} {G,P} ∅ 

{G,E} U {G,P} {E} U {P} ∅ U {E} {G,P} {G,P} {P} 

{P,E} {G,E} {G,P} {E} U {G} {P} {G,E} {E} {G,P} {G,P} {P} 

U U {G, P} {E} U ∅ ∅ U ∅ U {G,P} {P} 

∅ ∅ ∅ ∅ ∅ U {G,P} {E} U ∅ ∅ ∅ 

 

(Table , No 1) 
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Proposition 2.1 For any recombination class 
[x]  on nonempty set U the following 
conditions hold for every X, Y ∈ U. 

 (i) 𝑅(U) = U,  𝑅(∅) = ∅ , 𝑅 (∅) = ∅ ,          

𝑅(U) ⊆ U  
(ii) 𝑅 (X ∩ Y ) = 𝑅 (X) ∩ 𝑅(Y ). 

(iii) X ∈ Y ⇒ 𝑅 (X) ∈ 𝑅(Y )., R (X) ∈ 𝑅(Y )  
(iv) 𝑅 (X ∪  Y ) ∈ 𝑅 (X) ∪  𝑅(Y ). 

(v) 𝑅(X) ∈ [𝑅(X )] . 

(vi) 𝑅(𝑅(X))∈ 𝑅X)). 

(vii) 𝑅(X))∈ 𝑅(𝑅(X)) 

(viii) 𝑅(X)∈ [𝑅(X )]  

(ix) 𝑅(X )∈ 𝑅(𝑅(X)) 
Proof. (i) Since for every x ∈ U, [x] ⊂ U 
hence, x ∈ 𝑅(U). Then U ⊂ 𝑅(U). Also since    
𝑅(U) ⊂ U. Thus, 𝑅(U) = U., also there is no x 
∈ U such that [x] ⊂ φ hence 𝑅(φ) = φ. 
(ii) 𝑅 (X ∩ Y) = {x ∈ U : [x] ⊂ X ∩ Y } 
        =  {𝑥 ∈  𝑈 ∶  [𝑥]  ⊂  𝑋 ∧  [𝑥]  ⊂  𝑌 } 

        =  {𝑥 ∈  𝑈 ∶  [𝑥]  ⊂  𝑋}  ∩ {𝑥 ∈  𝑈

∶  [𝑥]  ⊂  𝑌 } 

        =  𝑅 (𝑋)  ∩ 𝑅 (𝑌 ). 

(𝑖𝑖𝑖)𝐿𝑒𝑡 𝑋 ⊂  𝑌 𝑎𝑛𝑑 𝑥 ∈  𝑅 (𝑋), 𝑡ℎ𝑒𝑛 [𝑥] ⊂

 𝑋 and so  [𝑥] ⊂ Y , hence 𝑥 ∈  𝑅(𝑌 ). Thus 
         𝑅(𝑋)  ⊂  𝑅(𝑌 ). 
(𝑖𝑣) 𝑆𝑖𝑛𝑐𝑒 𝑋 ⊂  𝑋 ∪  𝑌 𝑡ℎ𝑒𝑛 𝑅 (𝑋)

⊂  𝑅 (𝑋 ∪  𝑌 )𝑎𝑙𝑠𝑜, 𝑌 

⊂  𝑋 ∪  𝑌 𝑡ℎ𝑒𝑛  
 
         𝑅(𝑌 )  ⊂ 𝑅 (𝑋 ∪  𝑌 ), ℎ𝑒𝑛𝑐𝑒 𝑅(𝑋 ∪  𝑌 )  

⊃  𝑅 (𝑋)  ∪  𝑅 (𝑌 ). 

(𝑣) [𝑅 (𝑋 )] =  {𝑥 ∈  𝑈 ∶  [𝑥] ∩ 𝑋  

≠  𝜑}  
        =  𝑥 ∈  𝑈 ∶  [𝑥] ∩ 𝑋  =  𝜑 ⊃ {𝑥 ∈  𝑈 ∶

 [𝑥] ⊂  𝑋} ⊃  𝑅 (𝑋). 

(vi) , (vii) , (viii) , (ix) ,and (x) The proof is the 

same as previous.  

The set of all open recombination sets = 

{U, ∅, } consist of a space called indiscrete 

recombination space satisfies the following:  

      Proposition 2.2.let (U,E) be an indiscrete 

recombination space, A⊂ U then the limit 

point of A 

A =
∅                                                                         , if A = ∅
U − {p}                                            , if A =  {p}          
U            , if A contains more then one element

 

     Proof : Obviously  

 These results  means :  

1- That there are  always an end point of the 

process , 

2-there are an output of the process of 

recombination and this applicable with the 

biological concept. 

Remark 2.1 . Every subset of an indiscrete 

recombination space is dense. 

The sense that it produces a very large 

number of plasma carrying the gene 

   The aim of the following Preposition is 

described can be separated any item in the 

recombination process. 

Preposition 2.3. Every indiscrete 

recombination space is regular space  

Note: Since we use in recombination 

process {gene, plasmids, enzymes} i.e. 

1. Gene +Enzyme=G-h since h The lump 

of gene. 

2. Plasmid+ Enzyme=P-h. 

3. 1+2=P+G. 

Example 2.2.If the use of plasmid as an aid 
since U ={g ,e, p},hence the class of [G]R 
={P},[P]R ={∅}   and[E]R = {𝐺, 𝑃} , 

 R (𝑋)  = {x ∈U: [x] ⊂ X} 
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R (X) = {x ∈ U: [x] ∩ X ≠ φ}. (see , Table , 
No 2) 

 
 

 

(Table , No, 2) 
 

The set of all open recombination sets = 
{U, ∅, } consist of a space called indiscrete 
recombination space 
 

Proposition 2.4. For any (U,R) be an indiscrete 
recombination space a nonempty set U the 
following conditions hold for every X, Y ⊂ U. 
 (i) 𝑅(U) = U, 𝑅(∅) = ∅ , 𝑅(∅) = ∅ , 𝑅(U)⊆ U  
 (ii) 𝑅 (X ∩ Y ) = 𝑅 (X) ∩ 𝑅 (Y ). 

(iii) X ⊂ Y ⇒ 𝑅 (X) ⊂ 𝑅 (Y )., 𝑅(X) ⊂ 𝑅(Y )  
 (iv) 𝑅 (X ∪ Y ) ⊃ 𝑅 (X) ∪ 𝑅 (Y ). 

(vi) 𝑅 (X) ⊂ [𝑅(X )] . 

(vii) 𝑅(𝑅(X))⊂ 𝑅(X)). 

(viii) 𝑅(X))⊂ 𝑅(𝑅(X)) 
 

 

(ix) 𝑅(X))⊂ [𝑅(X )]  

(x) 𝑅(X )⊂ 𝑅(𝑅(X)) 
Proof. The proof is the same as for proposition 2.1 

The set of all open sets = {U , ∅ } 

The set of all closed sets = {U , ∅, {G},{G,P} } 

3. Rough Set Theory for DNA 
recombination 

In the following part we use the lower and 

upper approximation as: 

R (𝑋) =X∩ {x ∈U: [x]  ⊂ X} 

R (X) =X U {x ∈ U: [x] ∩ X ≠ φ}, R (𝑋) ≡

𝑅(𝑋) and  
The recombination process consists of three 
key pillars are: genes, plasmids and enzymes 
i.e.U = {g ,e, p},the recombination class of 
gene [G]R = {E},[P]R = {E,G} and[E]R 
={∅}(see, Table , No 3) 
 

A 𝑹 (𝑨) 𝑹 (𝑨) 𝑹 (𝑹 (𝑨)) 𝑹 (𝑹 (𝑨)) 𝑨𝐜 𝑹 (𝑨𝐜) [𝑹 (𝑨𝐜)]𝒄 𝑹 (𝑨𝐜) [𝑹 (𝑨𝐜)]𝒄 𝑹 𝑹 (𝑨) 𝑹 𝑹 (𝑨) 

{G} ∅ {G,P} ∅ ∅ {P,E} U ∅ {E} {G,P} ∅ {G,P} 

{P} ∅ {P} ∅ ∅ {G,E} U ∅ {G, E} {P} ∅ {P} 

{E} { E} U U { E} {G,P} U ∅ ∅ U U U 

{G,P} ∅ {G,P} ∅ ∅ {E} U ∅ { E} {G,P} ∅ {G,P} 

{G,E} {G,E} U U {G,E} {P} {P} {G,E} ∅ U U U 

{P,E} {E} U U { E} {G} {G,P} { E} ∅ U U U 

U U U U U ∅ ∅ U ∅ U U U 

∅ ∅ ∅ ∅ ∅ U U ∅ U ∅ ∅ ∅ 

(Table , No 3) 

A 𝑹 (𝑨) 𝑹 (𝑨) 𝑹 (𝑹 (𝑨)) 𝑹 (𝑹 (𝑨)) 𝑨𝐜 𝑹 (𝑨𝐜) [𝑹 (𝑨𝐜)]𝒄 𝑹 (𝑹 (𝑨)) 𝑹 (𝑨𝐜) [𝑹 (𝑨𝐜)]𝒄 𝑹 𝑹 (𝑨) 

{G} {P} {E} {P} {G,P} {P,E} {G,E} {P} {G,E} {G,P} {E} ∅ 

{P} 
{G,P} 

 
{G,E} {{P}} U {G,E} {E} {G,P} {G,E} {P} {G,E} {E} 

{E} {P} ∅ ∅ {G,P} {G,P} {G,E} {P} {G,E} U ∅ ∅ 

{G,P} U {G,E} {P} U {E} ∅ U {G,E} {P} {G,E} {E} 

{G,E} {P} {E} {P} {G,P} {P} {G,E} {P} {G,E} {G,P} {E} ∅ 

{P,E} {G,P} {G,E} {P} {G,P} {G} {E} {G,P} {G,E} {P} {G,E} {E} 

U U {G,E} {P} U ∅ ∅ U {G,E} U ∅ {E} 

∅ ∅ ∅ ∅ ∅ U {G,E} {P} ∅ ∅ U ∅ 



𝐌. 𝐌. 𝐄𝐥𝐬𝐡𝐚𝐫𝐤𝐚𝐬𝐲∗                                                                    Applying Rough Set Theory on DNA Recombination 
 

70 
 

Proposition 3.1. For any [x]  is a 
recombination class on nonempty set U the 
following conditions hold for every X, Y ⊂ U. 
L1. 𝑅 (X ∩ Y ) = 𝑅 (X) ∩𝑅 (Y ). 
L2. 𝑅 (X ∪ Y ) ⊃𝑅 (X) ∪𝑅 (Y ). 
L3. X ⊂ Y ⇒𝑅 (X) ⊂𝑅 (Y ). 
L4. 𝑅 (φ) = φ. 
L5. 𝑅(𝑋) ⊂ X. 

U1𝑅 (X) = [𝑅(X )] . 

U2. 𝑅 (φ) = φ. 
U3. 𝑅 (X ∪ Y ) = 𝑅(X) ∪𝑅(Y ). 
U4. 𝑅(X ∩ Y ) ⊂𝑅 (X) ∩𝑅(Y ). 
U5. X ⊂ Y ⇒𝑅(X) ⊂𝑅 (Y ). 
U6. 𝑅(U) = U. 
U7. X ⊂𝑅 (X). 
U8. 𝑅 (𝑅 (X)) =𝑅(X). 
LU. 𝑅(X) ⊂𝑅 (X). 
 

 

Proof. The proof is the same as for proposition 2.1 

4. General rough Set theory for DNA 
recombination 

 The recombination process consists of 
three key pillars are: genes, plasmids and 
enzymes. In this way we infer mathematical 
relationships between the components of the 
process of recombination the process and the 
formation of the class of elements by  𝑥𝑅 =

[𝑥]𝑅 = {𝑦 ∈ 𝑈: 𝑥𝐸 𝑦} 

Example 4.1 Let U = {G ,E, P} and                   
R = {(G,G), (E,E), (P,P), (G,E), (P,E), (G,P) }. 
Then:  g R= {U} , p R ={P ,E}   ,    e R = {E } 

,𝑅(𝐴) = {𝑥: 𝑅 ∩ 𝐴 ≠ ∅ },𝑅(𝐴) = {𝑥: 𝑅 ⊂ 𝐴} 
(see ,Table , No 4 )

 

A 𝑹 (𝑨) 𝑹 (𝑨) 𝑹 (𝑹 (𝑨)) 𝑹 (𝑹 (𝑨)) 𝑹 (𝑹 (𝑨)) 
{G} {G} ∅ ∅ ∅ ∅ 
{P} {G,P} ∅ ∅ ∅ ∅ 
{E} {E} {E} {E} {E} {E} 

{G,P} {G,P} ∅ ∅ ∅ ∅ 
{G,E} U {E} {E} U {E} 
{P,E} U {P,E} {P,E} U U 

U U U U U U 
∅ ∅ ∅ ∅ ∅ ∅ 

 
(Table, No 4 )

Proposition 4.1 If a binary relation R on U is 
a reflexive relation, and then the following 
conditions hold. 
 

(i) R(U) = U,  R(∅) = ∅, R(∅) = ∅ ,  R(U) = U 

(ii)  R(X) ⊂ X ⊂  R(X).               

(iii)R R(X) ⊂  R(X) , R(X) ⊂ R(R(A)),  

(iv) X⊂ R(R(A)). 

(v) R (X ∪ Y ) ⊃ R(X) ∪ ∪ R (Y ). 
(vi) X ∈ Y ⇒ R(X) ⊂ R(Y), R(X) ⊂ R(Y)  

(vii) R (X ∩ Y ) = R (X) ∩R (Y ).,, R (X ∩ Y ) 

⊂ R(X) ∩R(Y) . 
Proof. The proof is the same as for proposition 2.1   

The set of all open recombination sets = 
{U,  ∅, {E},{P,E} },The set of all closed 
recombination sets = {U,  ∅, {G},{G,P} } 

Example 4.2. In this way we infer 
mathematical relationships between the 
components of the process of recombination the 
process ,change with working steps and the 
formation of the class of elements by 
xR=[x]R={y∈U: xE y} ,since set U = {g ,e, p} 

R = {(G,G), (E,E), (P,P), (E,G), (E,P), (G,P) } 

g R= {G,P}               P R ={P }       e R = {U} 
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A 𝑹 (𝑨) 𝑹 (𝑨) 

{G} {G,E} ∅ 

{P} U {P} 
{E} {E} ∅ 

{G,P} U {G,P} 
{G,E} {G,E} ∅ 

{P,E} U {P} 

U U U 
             ∅ ∅ ∅ 

The set of all open recombination sets = 
{U , ∅, {P},{G,P} }is T0 space  

The set of all closed recombination sets = 
{U , ∅, {E},{G,E} } 

Example 4.3. In this way we infer 
mathematical relationships between the 
components of the process of recombination the 
process ,change with working steps and the 
formation of the class of elements by [x]R= 
Rg= {x: xRg}  since set U = {G ,E, P}  

R = {(G,G), (E,E), (P,P), (E,G), (E,P), (G,P) } 

Rg= {G,E}               Rp ={U }       Re = {E} 

A 𝑹 (𝑨) 𝑹 (𝑨) 
{G} {G,P} ∅ 
{P} {P} ∅ 
{E} U {E} 

{G,P} {G,P} ∅ 
{G,E} U {G,E} 
{P,E} U {E} 

U U U 
∅ ∅ ∅ 

The set of all open recombination sets = 
{U , ∅, {e},{g,e} } 

The set of all closed recombination sets = 
{U,  ∅, {p},{g,p} } 

    We can conclude that results of both 
example (4.2) and (4.3) are equivalent to that 
example (4.1). Where sets of all open 

recombination sets in this group only two item 
of the three appear. 

Conclusions 

       And the process of recombination  is 
appear in the industrialization pharmaceutical 
and gene therapy, and we are working on a plan 
(draft) for a work program to help the 
biologists, the program consists of three phases 
(operations). The first process is the 
recombination, the second is determine 
mutation and third process of reform or 
Simulation, on the occasion the finished of the 
recombination process, this article talks about 
the process characterization and conformity 
mathematical results of biological results. Some 
of the suggestions to use rough set in future 
work. 
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 الملخص العربي
" ) تعتبر نواة  "DNA recombinationالشكل المعمم لعملية إعادة التركيب ( اعادة تركيب الحمض النووي ناقص الاوكسجين  

  ).(rough setلدراسة المحموعات الاستقرابية 
في هذه البحث نناقش العلاقة بين المجموعة الاستقرابية وعملية إعادة التركيب . واستخدام المجموعة الاستقرابية في التاكد من     

  صحة داله عملية اعادة التركيب ( بيولوجيا ) .
مفهوم عملية التركيب والمجموعة الاستقرابية امكن ايجاد خواص رياضية جديدة ومطابقة للمعني البيولوجي لعملية وباستخدام      

  .  اعادة التركيب
 


