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I. INTRODUCTION 

RAIN tumor is an epidemic causes of cancer death. In 

USA, 700.000 people are diagnosed with brain 

tumors (80% benign and 20% malignant) [1]. In 

2020, the American Cancer Society (ACS) for brain tumor 

estimated about 23,890 malignant tumors of the brain and 

around 18,020 deaths from malignant brain tumors [2]. 

Accurate segmentation and quantitative analysis of brain 

tumor is critical for tumor diagnosis and treatment planning.  

Magnetic resonance imaging (MRI) is usually used for 

brain tumor segmentation and classification. Since manual 

segmentation is a difficult and a time consuming task, the 
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automated segmentation using Computer Aided Diagnostic 

(CAD) systems, to assist the radiologists for brain tumor 

segmentation, is a widely investigated open research problem. 

Throughout literature, different methodologies have been 

investigated for brain tumor segmentation. These methods can 

be categorized as traditional methods (discriminative or 

generative) and deep learning methods. Below, the related 

work of each of these categories will be described 

Discriminative methods attempt to extract discriminative 

features followed by a classifier in order to perform 

classification [3]. For example, Dandil et al. [4] used a spatial-

Fuzzy C-Means (FCM) classifier based on the image intensity 

feature to achieve an accuracy of 0.91, a sensitivity of 0.91 

sensitivity, and a specificity of 0.95 for “WT” segmentation. 

Tustison et al. [5] investigated different features, including the 

intensity, the geometry, and the asymmetry features, extracted 

form multiple MRI modalities. A random forest classifier, 

based on the asymmetry-related features, achieved the best 

performance on BraTS 2013 database [6], i.e., DSCs of 0.87, 

0.78, and 0.74 for “WT”, “TC”, and “ET” components, 

respectively. However, the discriminative methods rely on the 

quality of the extracted features, which may not represent well 

the tumor segmentation problem. 

Generative methods use atlases of healthy tissues to 

MRI Brain Tumor Segmentation Using        

Deep Learning  

Shaimaa E. Nassar, Mohamed A. El-Azim and Ahmed Elnakib  

KEYWORDS: 

Tumor Segmentation, 

Deep Learning, Brain 

MRI 

 Abstract—This work presents a method for classification and segmentation 

of brain tumors based on deep learning analysis of brain contrast T1 (T1c) MR 

images. To achieve this goal, three different deep learning networks are 

investigated i.e., U-Net, VGG16-Segnet, and DeepLabv3+ models. In addition, 

the integration of the 3D narrow-band information of the MRI volumes is 

imported to the input of the Convolutional Neural Network (CNN) to describe 

more accurately the tumor anatomy. Experimentations are performed on the 

MICCAI’2018 High Grade Glioma (HGG) subset of the Brain Tumor 

Segmentation (BraTS) Challenge, composed of 210 brain T1c MRI volumes, 

each of 155 cross-sections. Among the three investigated CNNs, DeepLabv3+ 

network achieves the highest Dice Similarity Coefficients (DSC) of 91.2%, 

92.5%, 94.6% for the segmentation of the Enhancing Tumor (ET), the Tumor 

Core (TC), and the Whole Tumor (WT), respectively. Comparison with the 

related work confirms the advantages of the proposed system. 
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extract the unknown tumor compartments on test images, by 

the aiding of prior knowledge, e.g., location and the spatial 

extent of healthy tissues. For example, Kuwon et al. [7] used 

an atlas generation method for the segmentation of multifocal 

tumors, using the BraTS 2013 database. They have achieved 

accuracies of 0.86, 0.79, and 0.59 for “WT”, “TC”, and “ET” 

components, respectively. However, these methods required a 

high quality registration of the test images to the atlas, which 

is a complicated and a computationally expensive task.    

Deep learning methods use Convolutional Neural 

Networks (CNN), arranged in convolutional layers to extract 

deep learning features, followed by classification layers in 

order to output the segmentation labels. These methods have 

shown ability to segment and classify the brain tumor with 

high accuracies. For example, Shaocheng et al. [8] used a 10-

layer U-Net architecture, trained on 2-D slices, extracted from 

patient volumes, using the BraTS 2018 dataset [9]. They 

achieved DSC coefficients of 0.91, 0.83, and 0.80 for “WT”, 

“TC”, and “ET” components, respectively. Mohammad et al. 

[10] used two pathway CNN architecture with two streams: 

local pathway and the global pathway. They have achieved 

0.88, 0.79, and 0.73 for “WT”, “TC”, and “ET” components, 

respectively. The main limitation of the previous work are: 

 Current discriminative methods suffer from insufficient 

features that can represent the brain cancer problem, 

leading to lower accuracies 

 Current generative methods suffer from the 

computationally expensive registration tasks. In addition, 

the built atlas may not represent well the image 

population. 

 Current Deep learning methods suffer from the 

computationally expensive cost for training the CNN 

layers. In addition, the selection of the best number of 

layers and the best number of neurons per each layer is 

still an open research problem.  

To overcome these limitations, A CAD system for brain tumor 

segmentation based on deep transfer learning is proposed, 

as shown in Fig. (1). The proposed system shows an 

ability to accurately segment the brain tumors, evidenced 

by the obtained high DSC metrics. The main contributions 

of this work are as follows: 

 Applying transfer learning of well-known architectures, 

where the convolutional layers are transferred from 

pertained models and only the classification layers are 

trained with the new data (BraTs), minimizing the training 

overhead 

 Investigating different recent CNN architectures for brain 

tumor segmentation, i.e., U-Net, VGG16-Segnet, and 

DeepLabv3+.  

 Utilization of a “3D narrow-band” information of MRI 

data to more accurately describe the tumor anatomy. 

 Performance evaluation using the challenging 

MICCAI’2018 BraTS database 

This manuscript is organized as follows. Section II 

illustrates in detail the proposed system for brain tumor 

segmentation and classification. Section III summarizes the 

proposed system results as well as the comparative results to 

the current state-of-the-art techniques. Finally, section IV 

concludes the manuscript. 

II. MATERIALS AND METHODS 

The proposed framework, shown in Fig. (1), consists of 

three processing stages. First, 3D narrow-band volume is 

selected, around the target image. Second, the features are 

extracted using the CNN model. Finally, a pixel-wise 

classifier is used to classify each pixel to one of four labels: 

edema (ED), tumor core (TC), enhancing tumor (ET), and 

background (BG). 

 

 Fig.1: Proposed framework for Brain tumor segmentation composed of three stages: 3D narrow-band selection, feature extraction, and classification. 

A. Collected Database (BraTS’2018) 

BraTS’2018 [9] is used throughout this study. This data is 

composed of 210 high-grade glioma (HGG) and 75 low-grade 

glioma (LGG) patient datasets. Each dataset contains T1, T1 

post contrast (T1c), T2, and Fluid Attenuated Inverse 

Recovery (FLAIR) MR volumes, alone with an expert tumor 

segmentation. Each scan is a continuous 3D volume of 155 2D 

slices of size 240x240. Each brain tumor is manually 

delineated into 4 classes: background, edema (ED), 

necrotic/non-enhancing core (NCR/NET), and enhancing 

tumor core (ET). For tumor segmentation, we consider only 
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the post T1c contrast HGG MRI data to identify the WT (ED 

+ NCR/NET + ET), TC (NCR/NET + ET) and the ET of the 

high-grade brain tumor. The tumor is more clear in the post 

T1c contrast data, therefore, T1c MR  images are popular used 

for brain tumor segmentation [11],[12]. More details can be 

found in [9]. 

 

B. 3D Narrow-Band Selection 

Since the proposed system aims to segment and classify 

tumors, only images that contain tumors are selected, to avoid 

redundant training operations. In most cases, the tumor 

appears in around 66% of the volume cross-sections. Each 

image is normalized between 0-1 and resized to the standard 

size of the CNN model. A “3D narrow-band” filter is applied 

to each input image, by the insertion of the target image at the 

centralized input channel, with its previous and next slices 

inserted to each side channel, as shown in Fig. (2)' 

 

 
Fig.2: 3D narrow band selection. 

 

C. Feature extraction 

Three pre-trained CNN models are investigated to extract 

tumor features, i.e., U-Net [13], Visual Geometry Group 

Segmentation Network (VGG16-Segnet [14]) and 

DeepLabV3+ [15]. U-Net consists of a contracting path and an 

expanding path and yields a u-shaped architecture, as shown 

in Fig. (3). 

The contracting path made feature extraction and 

downsampling, and expanding path made decoding. VGG16-

SegNet consists of an encoder network, a corresponding 

decoder network followed by a pixel-wise classification layer. 

The architecture of the encoder network is topologically 

identical to the 13 convolutional layers in the VGG16 network 

[14], as shown in Fig. (4). The role of the decoder network is 

to map the low resolution (up sampling) encoder feature maps 

to full input resolution feature maps for pixel-wise 

classification. All the encoder’s weights are initialized by 

transfer all the pertained weights of the VGG16 model in [16] 

and ResNet101 in [17], respectively. In the training phase, all 

the encoder layers and decoder layers are fine trained using 

the BRaTS data. 

On the other hand, the deepLabv3+ [15] model combines 

two techniques: 

 An encoder-decoder pathway 

 Atrous Spatial Pyramid Pooling (ASPP) to obtain 

accurate delineation of object boundaries, as shown in Fig. (5). 

The encoder-decoder pathway consists of (i) the pretrained 

Resnet-101 encoder [17], to extract image features, and (ii) a 

decoder, to decode the output of the appropriate dimensions. 

The Atrous convolutions are used to capture the information at 

different scales. To control the convolution effective field of 

view, the Atrous used the controlling rate parameter,     . 

The generalized form of Atrous convolutions is given as:  

     ∑                                           (1) 

where   is the location in the output feature map  ,   is a 

convolution filter, and      is the atrous rate,      that 

determines the stride in which the input signal is sampled 

The normal convolution is a special case of atrous 

convolutions with      = 1, as shown in Fig. (6). 

 

DeepLab V3+ uses aligned Xception[18], which has the 

main feature extractor, with the following modifications: 

 All max pooling operations are replaced by depthwise 

separable convolution with striding. 

 After each       depthwise convolution, extra batch 

normalization and Rectified Linear Unit (ReLU) activation are 

added. 

  The model depth is increased without changing the 

entry flow network structure. 

The three models are applied (U-Net, VGG16-Segnet, and 

DeepLabv3+) in the proposed system, since their decoders 

produce outputs that are of the same dimensions as the input 

image, which suits the task of segmentation. In addition, they 

have repeatedly used in similar medical image segmentation 

tasks, such as skin lesion segmentation [19], Liver lesion 

segmentation [20], [21], lung segmentation [22],[23], and 

pathological lymph node segmentation [24]. 

 

D. Classification: 

A pixel-wise classifier is applied after VGG16-Segnet and 

DeepLabv3+ models to label the segmented output image. The 

pixel-wise classifier is composed of two layers: a layer of the 

softmax function and a layer of the pixel-wise classification. 

The softmax layer is consisted of four softmax nodes per each 

image pixel, providing the probabilities of the four labels: WT, 

TC, ET or background, as follows: 

 (  )  
   

∑    
 

          

where    denotes the input at the softmax node    and 

     denotes the output probability of the softmax node. The 

pixel classification layer weights are trained using the BraTS 

database. Relies on the largest probability of softmax, the 

pixel-wise classification layer provides the final output label 

for each pixel to be either WT, TC, ET or background. The 

algorithmic steps of the proposed system is summarized in 

algorithm 1. 
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Algorithm 1: Proposed Segmentation method 

Input: 

Output: 

Original Image,  

Labeled Image, BG, ED, ET, and TC 

Steps: 

Step-1  

 

 

 

 

Preprocess the original image as follows: 

 Each image is normalized between 0-1 

 Apply a 3D narrow-band, as shown in Fig. 2. 

 

Step-2 Extract features using the investigated CNN models ( U-Net, VGG16-Segnet, and DeepLabv3+)  

Step-3 Apply pixel-wise neural network to output the image labels (ED, ET, TC, BG)  

 

 

Fig.3: U-Net architecture 

 

 

Fig.4: SegNet architecture 

 

Fig5: Deeplabv3+ architecture 
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Fig6: Atrous convolutions with different rates, atrous convolutions are able to capture information from a larger effective field of view 
during the use of the same number of parameters and computational complexity. 

    

III. RESULTS AND DISCUSSION 

This section illustrates, in details, the experimental setup, 

results, and related discussions. 

A. Performance Metrics 

The accuracy of proposed system evaluated for utilizing U-

Net, VGG16-Segnet, and Deeplabv3+ models using the Dice 

Similarity Coefficient (   ), the            , and the 

            metrics. 

    
    

          
             

            
  

     
                  

            
  

     
                   

 

B. Experimentation Setting 

The CNN models U-Net, VGG16-SegNet, and 

DeepLabV3+ were trained using the dataset of  BRaTS 2018 

challenge. The proposed system used 13,181 images of all the 

210 scans containing tumor areas of T1c MR modality of  

HGG (i.e., 10,545 training images (80% of the images) and 

2,636 test images (20% of images)). ADAM [25] optimizer is 

used for U-Net training, where the other two models use the 

stochastic gradient descent with momentum (SGDM) 

optimizer. Table II summarizes the training options of the 

utilized CNN models. All training phases are implemented 

using Matlab© 2019b. 

 
TABLE II 

TRAINING OPTIONS FOR U-NET, VGG16-SEGNET& DEEPLABV3+ 

 

CNN 

model 

Input 

image 

#Epoch Learnin

g Rate 

Optimi

zer 

#batch 

size 

Unet 96    100 10-4 ADAM 16 

Vgg16-segnet 96      50 10-4 SGDM 8 

deeplabv3+ 224       50 10-4 SGDM 8 

 

 

C. Qualitative Results 

To compare between the efficiency of the three 

investigated models for brain tumor segmentation, Figure 7 

carries visual comparison results for a sample test image. As 

shown in Fig. 7, deeplabv3+ has achieved the best 

segmentation results, because of the added value of the 

embedded Atrous Spatial Pyramid Pooling (ASPP) within the 

deeplabv3+ model. In addition, adding the 3D narrow band 

information has further improved the segmentation quality of 

the deeplabv3+ model. Figure 8 represents confusion matrices 

of U-Net, VGG16-Segnet, Deeplabv3+ and Deeplabv3+ with 

narrow-band.   

 

D. Quantitative Results 

To quantify the proposed system, Table III provides 

detailed brain tumor segmentation results for each utilized 

deep learning model (U-Net, VGG16-Segnet, and 

DeepLabv3+). Compatible with the visual results (Fig. 7), the 

DeepLabv3+ model provides the highest segmentation 

accuracies. In addition, adding the 3D narrow-band 

information is able to improve further the accuracies for all 

segmentation labels. This highlight the advantages of the 

proposed system using the 3D narrow band information.  

 

E. Comparative Results 

To highlight the advantages and benefits of the proposed 

system, Table IV compares the achieved results to the related 

state-of-the-art methods on the BRaTS 2018 challenge 

database. The proposed system achieves superior performance 

for tumor segmentation. More specifically, it achieves the 

highest DSC among all the compared methods for all 

segmentation labels.  
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Fig.7. Results of visual segmentation for a sample test MR image, and its Ground Truth (GT) segmentation. 
 

 

                                           U-Net                                                                      VGG-16 Segnet         

                                     Deeplabv3+                                                            Proposed System                           

Fig.8. Confusion matrices of U-Net, VGG16-Segnet, Deeplabv3+ and the proposed system 
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TABLE III 

 DICE, SENSITIVITY AND SPECIFICITY FOR EACH UTILIZED DEEP LEARNING MODELS: UNET, VGG16-SEGNET AND DEEPLABV3+ 

 

Model 
DSC Sensitivity Specificity 

WT TC ET WT TC ET WT TC ET 

U-Net 89% 83.3% 76.6% 89.4% 83.1% 75.8% 98.3% 98.1% 97.8% 

VGG16-Segnet 89.4% 85.7% 83.8% 89.8% 85.4% 82.1% 98.2% 98.1% 98.5% 

Deeplabv3+ 

 
91.4% 90.6% 82.1% 91.7% 90.2% 81.7% 98.84 % 98.48% 98.85% 

Proposed System 

3D narrow-band & Deeplabv3+  

 

94.6% 92.5% 91.2% 95.1% 92.1% 90.8% 98.76% 98.89% 98.78% 

 
 

TABLE IV 

COMPARISON BETWEEN THE PROPOSED SYSTEM AND THE RELATED STATE-OF-THE-ART METHODS ON THE SAME BRATS 2018 DATA. 

 

Paper Experimental setup Method description DSC 

WT TC ET 

Roy et al. [26]  Train size=80% 

Test  size=20% 
DeepLabv3+ 90.6% 80.2% 81.5% 

Rui et al. [27]  Train size=80% 

Test  size=20% 
Cascaded V-Net 86.5% 80.1% 72.1% 

Ujjwal  et al.[28]  Train size= 163 
Test size=54 

modified version of 3D U-net 93.2% 92.0% 80.0% 

Raghav et al. [29]  5 cross-validation fold 

57 patient dataset each such that each fold contains 

42 high-grade patients and 15 low-grade patients 

modified version of 3D U-net 90.9% 82.5% 78.8% 

Elodie et al. [30] HGG and LGG 

Train size=90% 

Test size=10% 

(VGG-16 pseudo-3D concept( 78% NA NA  

Proposed system Train size= 80% 

Test size=20% 

3D narrow band and Deeplabv3+ 94.6% 

 

92.5% 

 

91.2% 

 
 

IV. CONCLUSION 

In this paper, the proposed system for brain tumor 

segmentation is based on deep learning experimentations. T1c 

modality of MR images of BraTS 2018 database are used to 

evaluate the performance. Practical experiments show that 

DeepLabv3+ with addition of 3D narrow-band information of 

the tumor can achieve superior performance over the 

literature. In the future, other databases will be investigated to 

check the system robustness. Also more features will be tested 

to further improve the segmentation accuracy. 
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Title in Arabic: 

 تمسيى أوساو انًخ نصىس أشؼة انشَيٍ انًغُاطيسً تاستخذاو انتؼهيى انؼًيك

 

Abstract in Arabic: 
يمذو هزا انثحج طشيمة نتصُيف أوساو انًخ وتجضئتها تُاءً ػهً تحهيم انتؼهى انؼًيك 

انهذف، تى استخذاو حلاث أَىاع نصىس انشَيٍ انًغُاطيسي نصىس انتثايٍ. نتحميك هزا 

يختهفة يٍ تُيات انتؼهى انؼًيك تالإضافة إنً رنك، يتى ديج تكايم يؼهىيات انُطاق انضيك 

حلاحية الأتؼاد  نصىس انشَيٍ انًغُاطيسي نًذخلات انشثكة انؼصثية انتلافيفية نىصف 

نذتمي ػاني تجضئة انىسو تشكم أفضم. يتى إجشاء انتجاسب ػهً يجًىػة يٍ صىس انىسو ا

حلاحية الأتؼاد  يٍ صىس انتثايٍ  801، وتتكىٌ يٍ 8102انذسجة نتحذي أوساو انًخ 

يمطغ ػشضي. يٍ تيٍ انشثكات انخلاحة  011انتصىيش تانشَيٍ انًغُاطيسي، كم لسى يٍ 

%, 20.8انتي تى انتحميك فيها، حمك انُظاو انًمتشح أػهً يؼايلات تشاته انُشد تميى 

ضئة انىسو انًؼضص  ونة انىسو  وانىسو انكايم ، ػهً انتىاني. % نتج9..%2, 28.1

  انًماسَة يغ الأػًال رات انصهة تؤكذ يضايا انُظاو انًمتشح.

 

 

 

 


