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Abstract. In the present paper, the exact vibration characteristics of multi-span pipe 

conveying fluid has been studied. A mathematical model and a computer program 

are used to obtain the results. Results of typical cases have been obtained using the 

current model and compared with the relevant published results.  The effect of 

intermediate support location on the vibration characteristics of clamped-pinned-

pinned pipe carrying concentrated masses is evaluated. Natural frequencies and the 

critical flow velocity of the selected pipe are determined for different locations of 

both the intermediate support and the concentrated masses. Nodal and anti-nodal 

points of the mode shape are investigated due to the change of the intermediate 

support location for accepted observability and controllability aspects. 
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1. Introduction 

    Pipes conveying fluid are main components in several industrial fields, including 

hydraulics, water transporting, petroleum and biological engineering, nuclear 

industry, fuel feeding lines in aerospace and even daily life applications. The 

transverse free vibration of a pipe-mass system has been investigated to show the 
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effect of the concentrated masses and intermediate support location on pipe dynamic 

behaviors. 

    Ashley and Haviland [1] investigated the early substantial contribution concerned 

with a simply supported (pinned-pinned) span pipe. The mode shape was 

approximately represented by a polynomial made to satisfy the equation of motion 

and the system boundary conditions. Housner [2], derived the governing equation of 

motion for a fluid-conveying pipe. Blevins [6], provided an introduction to the 

analytical tools used to study the vibrations of structures exposed to a fluid flow. He 

also presented models used to analyze vortex-induced vibrations, oscillating flow 

vibrations and turbulence vibrations. Farghaly et al. [9], presented a fully coupled 

fluid-structure interaction model. They carried out the dynamic analysis of the piping 

structure using finite element analysis. They constructed the coupled equation of 

motion of the piping system by using the continuity and pressure constraints at each 

pressure discontinuity and velocity. El-Sayed et al. [10] investigated the exact natural 

frequencies and their associated modal shapes for an axially loaded Timoshenko 

stepped multi-span shaft or beam system.  Farghaly et al. [11], investigated the 

changes in the magnitude of natural frequencies and their associated modal shapes of 

Timoshenko beam with respect to different system design parameters. Kang [12], 

studied the effects of rotary inertia of concentrated masses on the natural vibrations 

of a fluid-conveying pipe using theoretical modeling and numerical calculations for 

a clamped–supported pipe. Païdoussis [13], dealt with the dynamics of cylindrical or 

quasi-cylindrical, bodies in contact with axial flow-such that the structure either 

contains the flow or is immersed in it, or both. Kesimli et al. [14] investigated linear 

vibrations of a pipe carrying fluid. They study a clamped-clamped pipe with 

intermediated-support located in the middle section. Chellapilla et al. [15], studied 

free vibrations of fluid-conveying pipes resting on Pasternak-Winkler model. They 

investigated: pinned-pinned, clamped-pinned and clamped-clamped pipes boundary 

conditions. From a practical point of view, different components of a piping system, 

can be modelled with a simple mathematical model elements. For example there are 

a fluid velocity sensor, pressure sensor, temperature sensor and valves to control flow 

rate or any joining elements. These elements can be represented by a concentrated 

masses. Also, the suspension element as an elastic elements. From this point of view. 

The proposed mathematical model is implemented to get the following targets, (a) to 

study the effect of support's location and the concentrated masses carried by the pipe 

on the natural frequencies and associated mode shapes and (b) to estimate the critical 

fluid velocities which affect the stability of the system at different operating 

parameters. 
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2. Methodology 

2.1 Model assumptions  

     The present model is developed considering the following assumptions [3, 4 and 

8], as: (1) all displacement have been considered small so that only linear terms are 

considered. (2) the pipe is straight, horizontal and the flow steady, (3) the velocity 

profile through the constant cross-section of the pipe is neglected, (4) the fluid 

velocity and pressure are constants, (5) the effect of gravity on the flow through the 

pipe is neglected. (6) the pipe is modeled as a thin beam, the shear deformation and 

rotary inertia are neglected, (Bernoulli–Euler beam), (7) the material, frictional and 

viscous damping are not considered due to the linear limit and (8) the mass density 

are uniform and the pipe is inextensible. 

    The pipe can be modeled as a beam carrying concentrated masses with elastically 

intermediate support, [7, 12]. In the present model, the pipe is modelled as a multi-

span beam carrying four concentrated masses which represent the pipe attached 

devices such as; valves, flow meters,... etc. Each span is supported elastically by a 

linear translational and rotational springs. The present mathematical model shown in 

Fig. 1a, is reduced to a case study as illustrated in Fig. (1b).   

                    (a)  

(b)  

                            (c)                

Fig. 1. Present model for a pipe conveying fluid with concentrated masses with 

intermediate support [7, 12], (a) generalized mathematical model (b) the reduced model 

and (c) the directions and signs of section slope, bending moment and shear force.  

 



S. H. Farghaly /et al/ Engineering Research Journal 160 (December 8102) M82 – M41 

 

82M 

 

 

   The model is reduced using the following values of linear springs, rotational springs 

and concentrated masses. For point (1), 𝑘1 = 𝑣𝑙, 𝜙1 = 𝑣𝑙 and 𝑚1 = 𝑣𝑠. For points 

(2& 7), 𝑘2,7 = 𝑣𝑙, 𝜙2,7 = 𝑣𝑠 and 𝑚2,7 = 𝑣𝑠. For points (3, 4, 5 & 6), 𝑘𝑖 = 𝜙𝑖 = 𝑣𝑠 

and 𝑚𝑖 = 0.1 − 0.4, where 𝑖 = 3, 4, 5 and 6. 

 

2.2 Equation of motion and solution 

     Applied mathematical model for a pipe conveying fluid with length L and fluid 

velocity 𝑣𝑓 is illustrated in Fig. 1. The equation of motion for an Euler-Bernoulli pipe 

conveying fluid, [12 and 13] can be written as follows 

𝐸𝐼
𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
+ (𝑚𝑓𝑣𝑓

2)
𝜕2𝑦(𝑥,𝑡)

𝜕𝑥2
+ 2𝑚𝑓𝑣𝑓

𝜕2𝑦(𝑥,𝑡)

𝜕𝑥𝜕𝑡
+ (𝑚𝑝 + 𝑚𝑓)

𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2
= 0               (1)                       

Where: 𝐸 =  Young's modulus, 𝐼 =  second moment of inertia, 𝑦 =  lateral 

displacement, 𝑚𝑓 =  fluid mass per unit length, 𝑚𝑝 =  pipe mass per unit length. 

Equation (1) contains four terms defined as follows: 

𝐸𝐼
𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
= flexural restoring force, (𝑚𝑓𝑣𝑓

2)
𝜕2𝑦(𝑥,𝑡)

𝜕𝑥2
= compressive axial load due to 

fluid motion, 2𝑚𝑓𝑣𝑓
𝜕2𝑦(𝑥,𝑡)

𝜕𝑥𝜕𝑡
= Coriolis term and (𝑚𝑝 + 𝑚𝑓)

𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2
= inertia term 

due to mass of fluid, pipe and concentrated mass together.  

    In order to simplify the problem, the Coriolis term is neglected [8]. The effect of 

this simplification is investigated by comparing the results with another relevant 

publication as illustrated in Table (2). 

 The non-dimensional harmonic solution for this equation is 

𝑦𝑖(𝑥, 𝑡) = 𝑌𝑖(𝑥) 𝑒𝑖𝜔𝑡                                                                                                 (2) 

After variables separation, the equation of motion governing each pipe span can be 

written in terms of mode shape displacement 𝑌𝑖(𝑥) by substituting eq. (2) into eq. (1) 

𝐸𝐼 𝑌𝑖
′′′′(𝑥) + (𝑚𝑓𝑣𝑓

2)𝑌𝑖
′′(𝑥) − ((𝑚𝑝 + 𝑚𝑓)𝜔2) 𝑌𝑖(𝑥) = 0                                    (3)   

Eq. (3) can be written in non-dimensional form as; 

𝐸𝐼

𝐿𝑖
4  𝑌𝑖

′′′′(𝜉) +
(𝑚𝑓𝑣𝑓

2)

𝐿𝑖
2 𝑌𝑖

′′(𝜉) − ((𝑚𝑝 + 𝑚𝑓)𝜔2) 𝑌𝑖(𝜉) = 0                                       (4) 

𝑌𝑖
′′′′(𝜉) + �̅�𝑓

2𝑌𝑖
′′(𝜉) + 𝜆4𝑌𝑖(𝜉) =                                                                              (5)                                       

Where 𝜉 = 𝑥/𝐿, �̅�𝑓
2 = (𝑚𝑓𝑣𝑓

2𝐿2) 𝐸𝐼⁄  and 𝜆4 = ((𝑚𝑝 + 𝑚𝑓)𝜔2𝐿4) 𝐸𝐼⁄ .  

The solution of the 4th, order differential equation (5) is; 



S. H. Farghaly /et al/ Engineering Research Journal 160 (December 8102) M82 – M41 

 

82M 

 

𝑌 = ∑ 𝐶𝑗
4
𝑗=1  𝑒𝑖𝜅𝑗𝜉                                                                                                     (6) 

Where 𝐶𝑗 = are the imaginary term constants, 𝜅𝑗 = the wave numbers. 

Substitute Eq. (6) into Eq. (5), we get  

𝜅𝑗
4 + �̅�𝑓

2𝜅𝑗
2 + 𝜆𝑖

4 = 0                                                                                                 (7) 

to solve Eq. (7), applying 𝜅1,2
2 = −

𝑏

2
± √(

𝑏2−4𝑎𝑐

2𝑎
)                                                  (8) 

The coefficients 𝑎 = 1, 𝑏 = �̅�𝑓
2  and 𝑐 = 𝜆𝑖

4, then substituting into Eq. (8), the roots 

are 

𝜅1,2 = −
�̅�𝑓

2

2
+ (

(�̅�𝑓
2)

2

2
− 2𝜆𝑖

4)

1 2⁄

 ,    𝜅3,4 = −
�̅�𝑓

2

2
− (

(�̅�𝑓
2)

2

2
− 2𝜆𝑖

4)

1 2⁄

                 (9a, b) 

The roots 𝜅𝑗 of Eq. (7), can be presented as a function of the frequency parameter 𝜆𝑖 

and fluid velocity �̅�𝑓  substituting into Eq. (9a, b), the solution of the ordinary 

differential equation (5) becomes; 

𝑌𝑖(𝜉) = 𝐴1𝑒𝑖𝜅1𝜉 + 𝐴2𝑒𝑖𝜅2𝜉 + 𝐴3𝑒𝑖𝜅3𝜉 + 𝐴4𝑒𝑖𝜅4𝜉   

The end conditions can be written for pipe start, intermediate and end locations as 

follows: 

Start point 1; 

Bending moment balance becomes 

(𝐸𝐼)1

𝜕𝑦1
2(𝑥, 𝑡)

𝜕𝑥2
− 𝜙1

𝜕𝑦1(𝑥, 𝑡)

𝜕𝑥
= 0 

((𝐸𝐼)1 𝐿1
2⁄ )𝑌1

′′(0) − (𝜙1 𝐿1⁄ )𝑌1
′(0) = 0    or    𝑌1

′′(0) − 𝛷1𝑌1
′(0) = 0           (10a-c)                                                                            

Shear force balance becomes 

(𝐸𝐼)1

𝜕𝑦1
3(𝑥, 𝑡)

𝜕𝑥3
− 𝑚𝑖𝜔2𝑦1(𝑥, 𝑡) − 𝑘1𝑦1(𝑥, 𝑡) = 0 

((𝐸𝐼)1 𝐿1
3⁄ )𝑌1

′′′(0) − 𝑚1𝐿1𝜔2𝑌1(0) − 𝑘1𝑌1(0) = 0 

or    𝑌1
′′′(0) − (𝑚1

∗ × 𝜆1
4 + 𝑍1)𝑌1(0) = 0                                                          (11a-c) 

Where   𝛷1 = (𝜙1𝐿 𝐸𝐼⁄ ), 𝑍1 =
𝑘1𝐿3

𝐸𝐼
,  𝜆1

4 =
(𝑚1𝐿1

4𝜔2)

(𝐸𝐼)1
,  𝑚1

∗ = 𝑚1 𝐿(𝑚𝑝 + 𝑚𝑓)⁄ . 

Intermediate condition point; 

Displacement continuity                  𝑌𝑖(1) − 𝑌(𝑖+1)(0) = 0                                    (12) 
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Slope continuity      𝐿(𝑖+1)𝑖𝑌𝑖
′(1) − 𝑌(𝑖+1)

′ (0) = 0                                                  (13) 

Where    𝐿(𝑖+1)𝑖 = 𝐿(𝑖+1) 𝐿𝑖⁄  

Bending moment balance:      𝑊1𝑖 × (𝑌𝑖
′′(1) + 𝛷(𝑖+1)𝑌𝑖

′(1)) − 𝑌(𝑖+1)
′′ (0) = 0                         

Where 𝑊1𝑖 = (𝐸𝐼)𝑖(𝑖+1) × 𝐿(𝑖+1)𝑖
2 , (𝐸𝐼)𝑖(𝑖+1) =

(𝐸𝐼)(𝑖+1)

(𝐸𝐼)𝑖
  and  𝐿(𝑖+1)𝑖

2 = 𝐿(𝑖+1)
2 𝐿𝑖

2⁄   

(14a- d)             

Shear force balance 𝑊2𝑖 × (𝑌𝑖
′′′(1) − (𝑚(𝑖+1)

∗ × 𝜆𝑖
4 + 𝑍(𝑖+1))𝑌𝑖(1)) − 𝑌(𝑖+1)

′′′ (0) = 0               

Where    𝑊2𝑖 = ((𝐸𝐼)𝑖(𝑖+1) × 𝐿(𝑖+1)𝑖
3 ), 𝜆𝑖

4 = (ρA𝐿𝑖
4𝜔2 𝐸𝑖𝐼𝑖⁄ )  and  𝐿(𝑖+1)𝑖

3 = 𝐿(𝑖+1)
3 𝐿𝑖

3⁄                      

   (15a-c) 

End location (n+1) 

Bending moment balance:                          𝑌𝑛
′′(1) + 𝛷(𝑛+1)𝑌𝑛

′(1) = 0                  (16) 

Shear force balance:       𝑌𝑛
′′′(1) − (𝑚𝑛+1

∗ × 𝜆𝑛
4 + 𝑍𝑛+1)𝑌𝑛(1) = 0                      (17) 

    The values of spring stiffness determines the support type such as; the clamped 

support, 𝑍 and 𝛷 tends to infinity. The pinned support, 𝑍 tends to infinity, 𝛷 tends to 

zero and for the free support, 𝑍 and 𝛷 tends to zero. For harmonic solution and from 

the above equations, a generalized matrix (4SNx4SN) for multi-span pipe can be 

obtained. The obtained matrix, can represents the characteristic equation, from which 

we can get the natural frequencies of the system, figure 2.  
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Fig. 2. Suggested matrix trend for elements of a multi-span pipe conveying fluid. 

The elements of the matrix can be written as follows: 

Start elements of the system, with span (1): 

𝑎11 = 𝜅11
2 − 𝛷1𝜅11 𝑎12 = 𝜅21

2 − 𝛷1𝜅21 𝑎13 = 𝜅31
2 − 𝛷1𝜅31 𝑎14 = 𝜅41

2 − 𝛷1𝜅41 

𝑎21 = 𝜅11
3 − (𝑚1

∗𝜆1
4 + 𝑍1) 𝑎22 = 𝜅21

3 − (𝑚1
∗𝜆1

4 + 𝑍1) 

𝑎23 = 𝜅31
3 − (𝑚1

∗𝜆1
4 + 𝑍1) 𝑎24 = 𝜅41

3 − (𝑚1
∗𝜆1

4 + 𝑍1) 

Generalized intermediate elements of the system, start with span (2) to span (n+1):- 

Where 𝑆𝑁 is the span number  ⟹  𝑖 =  𝑛𝑛 − 1, 𝑛𝑛 is the node number  

𝑎((4𝑖−1),(4𝑖−3)) 𝑎((4𝑖−1),(4𝑖−2)) 𝑎((4𝑖−1),(4𝑖−1)) 𝑎((4𝑖−1),(4𝑖)) 𝑎((4𝑖−1),(4𝑖+1)) 𝑎((4𝑖−1),(4𝑖+2)) 𝑎((4𝑖−1),(4𝑖+3)) 𝑎((4𝑖−1),(4𝑖+4)) 

𝑎((4𝑖),(4𝑖−3)) 

 

𝑎((4𝑖),(4𝑖−2)) 𝑎((4𝑖),(4𝑖−1)) 𝑎((4𝑖),(4𝑖)) 𝑎((4𝑖),(4𝑖+1)) 𝑎((4𝑖),(4𝑖+2)) 𝑎((4𝑖),(4𝑖+3)) 𝑎((4𝑖),(4𝑖+4)) 

𝑎((4𝑖+1),(4𝑖−3)) 𝑎((4𝑖+1),(4𝑖−2)) 𝑎((4𝑖+1),(4𝑖−1)) 𝑎((4𝑖+1),(4𝑖)) 𝑎((4𝑖+1),(4𝑖+1))    𝑎((4𝑖+1),(4𝑖+2)) 𝑎((4𝑖+1),(4𝑖+3)) 𝑎((4𝑖+1),(4𝑖+4)) 

𝑎((4𝑖+2),(4𝑖−3)) 𝑎((4𝑖+2),(4𝑖−2)) 𝑎((4𝑖+2),(4𝑖−1)) 𝑎((4𝑖+2),(4𝑖)) 𝑎((4𝑖+2),(4𝑖+1)) 𝑎((4𝑖+2),(4𝑖+2))    𝑎((4𝑖+2),(4𝑖+3))    𝑎((4𝑖+2),(4𝑖+4)) 

𝑎((4𝑖−1),(4𝑖−3)) = 𝑒𝜅1𝑖 , 𝑎((4𝑖−1),(4𝑖−2)) = 𝑒𝜅2𝑖 , 𝑎((4𝑖−1),(4𝑖−1)) = 𝑒𝜅3𝑖 , 𝑎((4𝑖−1),(4𝑖)) = 𝑒𝜅4𝑖 

𝑎((4𝑖−1),(4𝑖+1)) = −1, 𝑎((4𝑖−1),(4𝑖+2)) = −1,        𝑎((4𝑖−1),(4𝑖+3)) = −1, 𝑎((4𝑖−1),(4𝑖+4)) = −1 

𝑎((4𝑖),(4𝑖−3)) = 𝜅1𝑖  𝑒
𝜅1𝑖  𝑎((4𝑖),(4𝑖−2)) = 𝜅2𝑖  𝑒

𝜅2𝑖 𝑎((4𝑖),(4𝑖−1)) = 𝜅3𝑖  𝑒
𝜅3𝑖 𝑎((4𝑖),(4𝑖)) = 𝜅4𝑖  𝑒

𝜅4𝑖 

𝑎((4𝑖),(4𝑖+1)) = − 𝐿𝑖 𝐿(𝑖+1)⁄ 𝜅1(𝑖+1),                      𝑎((4𝑖),(4𝑖+2)) = − 𝐿𝑖 𝐿(𝑖+1)⁄ 𝜅2(𝑖+1) 

𝑎((4𝑖),(4𝑖+3)) = − 𝐿𝑖 𝐿(𝑖+1)⁄ 𝜅3(𝑖+1), 𝑎((4𝑖),(4𝑖+4)) = − 𝐿𝑖 𝐿(𝑖+1)⁄ 𝜅4(𝑖+1) 
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put,               𝑊1𝑖 = 𝐸(𝑖+1) 𝐼(𝑖+1) 𝐿𝑖
2 𝐸𝑖  𝐼𝑖  𝐿(𝑖+1)

2⁄  

𝑎((4𝑖+1),(4𝑖+1)) = −(𝑊1𝑖  𝜅1(𝑖+1)
2 − (𝐿𝑖 𝐿(𝑖+1)⁄ )𝛷𝑖(𝑖+1)𝜅1(𝑖+1))   , 

𝑎((4𝑖+1),(4𝑖+2)) = −(𝑊1𝑖  𝜅2(𝑖+1)
2 − (𝐿𝑖 𝐿(𝑖+1)⁄ )𝛷𝑖(𝑖+1)𝜅2(𝑖+1))   , 

𝑎((4𝑖+1),(4𝑖+3)) = −(𝑊1𝑖  𝜅3(𝑖+1)
2 − (𝐿𝑖 𝐿(𝑖+1)⁄ )𝛷𝑖(𝑖+1)𝜅3(𝑖+1))   , 

𝑎((4𝑖+1),(4𝑖+4)) = −(𝑊1𝑖  𝜅4(𝑖+1)
2 − (𝐿𝑖 𝐿(𝑖+1)⁄ )𝛷𝑖(𝑖+1)𝜅4(𝑖+1)) 

𝑎((4𝑖+1),(4𝑖−3)) = 𝜅1𝑖
2  𝑒𝜅1𝑖,  𝑎((4𝑖+1),(4𝑖−2)) = 𝜅2𝑖

2  𝑒𝜅2𝑖 

𝑎((4𝑖+1),(4𝑖−1)) = 𝜅3𝑖
2  𝑒𝜅3𝑖 , 𝑎((4𝑖+1),(4𝑖)) = 𝜅4𝑖

2  𝑒𝜅4𝑖                           put,         𝑊2𝑖 = 𝐸(𝑖+1) 𝐼(𝑖+1) 𝐿𝑖
3 𝐸𝑖  𝐼𝑖  𝐿(𝑖+1)

3⁄  

𝑎((4𝑖+2),(4𝑖+1)) = − (𝑊2𝑖 𝜅1(𝑖+1)
3 + (−𝑚(𝑖+1)

∗ × 𝜆𝑖
4 + 𝑍(𝑖+1)))   , 

𝑎((4𝑖+2),(4𝑖+2)) = − (𝑊2𝑖 𝜅2(𝑖+1)
3 + (−𝑚(𝑖+1)

∗ × 𝜆𝑖
4 + 𝑍(𝑖+1)))   , 

𝑎((4𝑖+2),(4𝑖+3)) = − (𝑊2𝑖 𝜅3(𝑖+1)
3 + (−𝑚(𝑖+1)

∗ × 𝜆𝑖
4 + 𝑍(𝑖+1)))   , 

𝑎((4𝑖+2),(4𝑖+4)) = − (𝑊2𝑖 𝜅4(𝑖+1)
3 + (−𝑚(𝑖+1)

∗ × 𝜆𝑖
4 + 𝑍(𝑖+1))) 

𝑎((4𝑖+2),(4𝑖−3)) = 𝜅1𝑖
3  𝑒𝜅1𝑖   , 𝑎((4𝑖+2),(4𝑖−2)) = 𝜅2𝑖

3  𝑒𝜅2𝑖   , 

𝑎((4𝑖+2),(4𝑖−1)) = 𝜅3𝑖
3  𝑒𝜅3𝑖   , 𝑎((4𝑖+2),(4𝑖)) = 𝜅4𝑖

3  𝑒𝜅4𝑖                              

  
End elements of the system, with for span (n+1) or (6): 

𝑎(23,21) = 𝜅16
2 + 𝛷7 𝜅16 𝑒𝜅16 𝑎(23,22) = 𝜅26

2 + 𝛷7 𝜅26 𝑒𝜅26 

𝑎(23,23) = 𝜅36
2 + 𝛷7 𝜅36 𝑒𝜅36 𝑎(23,24) = 𝜅46

2 + 𝛷7 𝜅46 𝑒𝜅46 

𝑎(24,21) = (𝜅16
3 + (𝑚7

∗ × 𝜆6
4 + 𝑍7))𝑒𝜅16 𝑎(24,22) = (𝜅26

3 + (𝑚7
∗ × 𝜆6

4 + 𝑍7))𝑒𝜅26 

𝑎(24,23) = (𝜅36
3 + (𝑚7

∗ × 𝜆6
4 + 𝑍7))𝑒𝜅36 𝑎(24,24) = (𝜅46

3 + (𝑚7
∗ × 𝜆6

4 + 𝑍7))𝑒𝜅46 

 (18a:l) 

    The previous elements are the elements of the determinant which represents, the 

characteristic equation. This equation is solved to get the natural frequencies and 

associated mode shapes of the system using Matlab package and the bisection 

numerical method. 

 

3. Model verification and case study 

A single span clamped–pinned pipe is analyzed and verified without concentrated 

masses as shown in Table 1, with reference [15]. A pinned-pinned pipe is verified 

with reference [16] to check the accuracy of present model results. Good 

agreement is obtained as illustrated in table 2. The present model with multi-span 

pipe is verified its results with reference [12]. The model consists of a clamped-

pinned pipe, carrying five equal concentrated masses.  
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Table 1.The first two modes for a (c-p) pipe conveying fluid, 𝜷 = 𝟎. 𝟑 and without 

concentrated mass. 

�̅�𝑓 
𝜆𝑖

2 𝜆𝑖
2 

[15] present % 

error 
[15] present % 

error 0 15.418 15.418 0.000 49.964 49.965 0.002 

0.1 15.414 15.414 0.000 49.961 49.961 0.000 
0.2 15.401 15.403 0.015 49.952 49.948 -0.009 
0.3 15.381  15.385 0.023 49.936 49.926 -0.019 
0.4 15.352 15.358 0.041 49.915 49.896 -0.038 
0.5 15.315 15.325 0.062 49.887 49.857 -0.059 
1 15.003 15.040 0.245 49.653 49.534 -0.241 
1.5 14.472  14.552 0.551 49.260 48.989 -0.552 
2 13.702  13.838 0.986 48.702 48.217 -1.006 
2.5 12.657  12.859 1.569 47.971 47.205 -1.623 
3 11.275  11.541 2.305 47.056 47.937 1.838 
3.5 9.433  9.744 3.192 45.942 45.393 -1.209 
4 6.806  7.099 4.127 44.606 42.542 -4.852 
4.499 0.0  0.000 0.000 43.019 40.347 -6.624 

       
The first two frequency parameters are shown in Table 1. There is a small percentage 

error between the present work and Ref. [15] .This percentage error appears due to 

the different methods used to get these frequencies. Chellapilla and Simha [15], use 

Fourier series and Galerkin’s technique, but the present work uses the exact solution 

and the bisection method to find the roots. 

Table 2. The first five natural frequencies of the seven-span (p-p-p-p-p-p-p) pipe. 

𝑣𝑓 = 𝑚 𝑠⁄  Method 
Natural frequency (rad/sec) 

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 

       
𝑣𝑓 = 0 present 29.8715 84.6195 167.5772 259.5011 274.1713 

 [16] 29.8700 84.6200 167.5800 259.5000 274.1700 

 Error % 0.005 0.001 -0.002 0 0.001 
       

𝑣𝑓 = 10 present 29.8328 84.5667 167.5188 259.4383 274.1102 
 [16] 29.8200 84.5700 167.5300 259.4400 274.1000 
 Error % 0.043 -0.004 -0.007 -0.001 0.004 
       

𝑣𝑓 = 15 present 29.7847 84.5007 167.4458 259.3574 274.0338 
 [16] 29.7600 84.5100 167.4600 259.3400 274.0200 
 Error % 0.083 -0.011 -0.009 0.007 0.005 
       

     Although Deng [16] considered Coriolis term when calculating the natural frequencies 

for his case study, the obtained results indicate that, the present model with its assumption 

of neglecting Coriolis term, has good agreement with [16]. For more clear vision, Table (2) 
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contains a very small percentage error. In the current model, the results are illustrated 

and compared with the results of Kang [12], Figure 4 and Table 3. Both results are 

almost identical. Non-dimensional velocity is �̅�𝑓
2 =

𝑚𝑓𝑣𝑓
2𝐿2

𝐸𝐼
 and the natural frequency 

parameter is 𝜆𝑖
∗2 = √(𝜌𝐴𝐿4𝜔2 𝐸𝐼⁄ ). 

Table 3. The first three natural frequencies vs nondimensional flow velocities for the 

(c-p) pipe with concentrated masses. 

 �̅�𝑓 𝜆1
2 𝜆2

2 𝜆3
2 

     
 0 8.7127 31.0369 60.5558 
 0.5 8.6600 30.9687 60.4931 
 1 8.4999 30.7632 60.3044 
 1.5 8.2255 30.4176 59.9885 
 2 7.8239 29.9269 59.5432 
 2.5 7.2723 29.2840 58.9654 
 3 6.5303 28.4785 58.2510 
 3.5 5.5168 27.4963 57.3944 
 4 4.0227 26.3180 56.3887 
 4.1 3.6162 26.0567 56.1690 
 4.3 2.5697 25.5063 55.7103 
 4.45 1.2296 25.0682 55.3491 

�̅�𝑓,𝑐𝑟 = 4.49         0.0000 24.9475 55.2502 
 4.5  − 

 

24.9171 55.2254 
 5  − 

 

23.2554 53.8934 
 5.5  − 

 

21.2772 52.3793 
 6  − 

 

18.8953 50.6658 
 6.5  − 

 

15.9611 48.7305 
 7  − 

 

12.1771 46.5447 
 7.5  − 

 

6.5993 44.0692 
 7.6  − 

 

4.8772 43.5349 
 7.65  − 

 

3.7618 43.2625 
 7.71  − 

 

1.6829 42.9308 
�̅�𝑓,𝑐𝑟 = 7.73   − 

 

0.0000 42.8191 
 8  − 

 

 − 

 

41.2500 
 8.5  − 

 

 − 

 

38.0088 
 9  − 

 

 − 

 

34.2240 
 9.5  − 

 

 − 

 

29.6896 
 10  − 

 

 − 

 

23.9972 
 10.5  − 

 

 − 

 

16.0440 
 10.6  − 

 

 − 

 

13.8920 
 10.7  − 

 

 − 

 

11.3471 
 10.8  − 

 

 − 

 

8.0677 
 10.9  − 

 

 − 

 

1.5946 
�̅�𝑓,𝑐𝑟 =10.91  − 

 

 − 

 

0.0000 
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Fig. 3. Clamped-pinned pipe model [12] without intermediate support. 
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 Non-dimensional fluid velocity 𝑢  Non-dimensional fluid velocity �̅�𝑓 

 (a)  (b) 

Fig. 4. The first three modes for a clamped-pinned pipe conveying fluid, (a) [12] and 

(b) present With 𝒗𝒇 = 𝟎. 𝟑, 𝜷 = 𝟎. 𝟑, 𝒎𝟏
∗ = 𝒎𝟐

∗ = 𝒎𝟑
∗ = 𝒎𝟒

∗ = 𝒎𝟓
∗ = 𝟎. 𝟑. 

    The case study is developed for clamped-pinned-pinned pipe as shown in Fig. 5 to 

study the effect of the intermediate support location on the critical flow velocity for 

different values of concentrated masses. Fig. 6 shows the natural frequencies vs the 

flow velocity for the first three modes with three locations for the intermediate 

support and four different values of the middle concentrated mass.  

 

Fig. 5. Clamped-pinned-pinned pipe model with present intermediate support. 

The values of the four concentrated masses 𝑚𝑖
∗ are equal, where (𝑖 = 1,2,3,4) their 

non-dimensional values are: 0.1, 0.2, 0.3 and 0.4 respectively. As can be seen from 

Fig. 6, the values of the natural frequencies are decreased due to the increase in 

concentrated mass values. At zero natural frequencies, the critical value of fluid 

flowing velocities are determined (for details see Table 3 and for the same location 

of the intermediate support, with the different values of the concentrated masses. The 

critical velocity is kept constant for each mode. 
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(a) first three modes, intermediate support at point (2). 
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 (b) first three modes, intermediate support at point (3). 

 

 

 
(c) first three modes, intermediate support at point (4). 

 non-dimensional fluid velocity, �̅�𝑓 

Fig. 6. The first three modes vs flow velocity for different concentrated masses 

values and the intermediate support locations for a (c-p-p) pipe, (a) at point 2, 

(b) at point 3 and (c) at point 4. 
     In Fig. 6, two parameters are studied. The first one is the concentrated mass 

parameter which varies, as (0.1, 0.2, 0.3 and 0.4). The second one is the intermediate 

support location with three locations are selected for study. The three locations are 

represented by point (2, 3 and 4) which are assigned on the pipe model. As can be 
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seen from Fig. 6, an increase in concentrated mass decreases the natural frequencies 

for the first three modes of vibration.  

    Intermediate support is located firstly at point (2). The first three natural 

frequencies are obtained. Comparing case one with case two at which the location is 

at point (3), the natural frequencies are increased. In the third case of location point 

(4), the natural frequencies are also increased. As can be seen from Fig. 6, the 

concentrated masses have no effect on the buckling critical velocities because 

buckling is a static phenomenon which depends on the elastic properties of the pipe 

rather than the inertial ones [9]. 

In figure 7, the case of intermediate support located at point 3, two nodal points are 

lied around point 3, see figure 8, with magnified view to point 3.  

   

   

   
Support is at point 2.                              Support is at point 3.                       Support is at point 4.  
 

Fig. 7.The first three mode shapes of the (c-p-p) pipe with different locations of the 

intermediate support, (𝒎𝒊
∗ = 𝟎. 𝟑) and �̅�𝒇 = 𝟎. 𝟑 
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Fig. 8.Magnified area under mode shape curve, support is at point 3, shows 

two nodal points at 0.4 and 0.41. 

 

3.1 Mode shapes for the (c-p-p) pipe 

    In pipe applications, the position of the nodal and anti-nodal points are of 

importance from the design point of view and for observability and controllability 

aspects. The control units have to be located at the nodes, while vibration measuring 

instrument are to be located at the anti-nodes.  Fig. 7 shows the first three mode shapes 

of the (c-p-p) pipe with different locations of the intermediate support and the 

concentrated mass (𝑚𝑖
∗ = 0.3). From the above figures, the shift of the nodes can be 

noticed due to the change of the intermediate support locations. The nodal points are 

important locations for any sensitive part to prevent their vibration. 

 

   3.2 Effect of concentrated masses  

    Table 3 shows the effect of concentrated masses on system natural frequencies at 

zero velocity of flow at different locations of the intermediate support. Referring to 

Table 4, an increase in the value of concentrated masses decreases the natural 

frequencies. For the first mode, an increase in the natural frequencies with the 

intermediate support location increases, from 0.2𝐿 for 𝜆1,𝑚𝑖𝑛.
2  to 0.5𝐿, for 𝜆1,𝑚𝑎𝑥.

2   

 

 
Fig. 8. Clamped-pinned pipe model with intermediate support. 
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Table 4. The effect of concentrated masses and the intermediate support location  

on the natural frequencies for the first three modes for (c-p-p) pipe at �̅�𝒇 = 𝟎. 

Intermediate 

support 

location 

 Concentrated masses 

 𝑚𝑖
∗ = 0 𝑚𝑖

∗ = 0.1 𝑚𝑖
∗ = 0.2 𝑚𝑖

∗ = 0.3 𝑚𝑖
∗ = 0.4 

       

point (2) 
𝜆1

2 8042332 16.8537 14.2129 12.5180 11.3129 

𝜆2
2 2042002 55.1422 46.6319 41.1795 37.2927 

𝜆3
2 03142222 120.4664 102.5637 90.6861 82.1186 

       

point (3) 
𝜆1

2 0034122  28.1589 24.1772 21.5126 19.5701 

𝜆2
2 01040223 80.8019 68.4705 60.4577 54.7228 

𝜆3
2 20800248  107.8757 90.9763 80.1090 72.3822 

       
point (4) 

 

 

 

𝜆1
2 0324132  37.5898 32.5379 29.0916 26.5490 

𝜆2
2 0224223  64.9674 56.1646 50.1661 45.7473 

𝜆3
2 20204022  137.0024 116.0178 102.1692 92.2552 

 

 

3.3 Critical velocity 
    Table 5 represents the critical velocities values, related to intermediate support 

locations and different values of concentrated masses. The values in this table are 

used to support the curves illustrated in Fig. 6. 

 
Table 5. The effect of intermediate support location on the critical  

velocities for the first three modes for a (c-p-p) pipe. 

 

Vibration 

mode 
�̅�𝑐𝑟 

0.2 𝐿 0.4 𝐿 0.5 𝐿 

    First 5.2855 6.4498 7.1465 

Second 9.0927 10.6885 10.8838 

Third 12.8006 14.0505 14.0551 

    
    

  Referring to Table 5, an increase in the critical velocity is observed due to the change 

of the support location towards the middle of the pipe. Hence the maximum critical 

velocity of flow is observed at the middle point (4) of 0.5𝐿 for all three modes.  

            

4. Conclusion 

    The main conclusions from the present work can be withdrawn as follows; 

- An analytical model and a computer code for multi-span pipe conveying fluid 

have been implemented using closed form solution. 

- Good agreement between results of the present model and previous relevant 

publications are obtained.  
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- The change of the nodal and anti-nodal points in the mode shape with the 

location of the intermediate support is observed.  

- Interaction between the two parameters, the concentrated masses and the 

intermediate support locations affect the system vibration and its critical 

velocities.  

 

 

Nomenclature 

𝐴 Cross-section of the pipe.                         

(𝑚2)  

𝑌 Lateral displacement of the pipe.        

 (𝑚) 𝐸 Young's modulus.     (𝑁 𝑚2⁄ ) 𝑍1 Lateral rigidity parameter 

𝐼 Moment of inertia of the pipe 

cross  

 𝑍1 = 𝑘1𝐿3 𝐸𝐼⁄  
 section about the neutral axis.               

 (𝑚4) 

𝜙1 Bending stiffnesses.                        

(𝑁𝑚2) 𝑘1 Translation spring stiffness.              

 (𝑁 𝑚⁄ ) 

𝛷1 Rotational rigidity parameter 

𝜅 The wave numbers.  𝛷1 = 𝜙1𝐿 𝐸𝐼⁄  

𝐿 Length of the pipe.                                          

(𝑚) 

𝜆4 Frequency parameter 

𝑚𝑝 Mass of the pipe.                                

(𝑘𝑔) 

 𝜆4 = (ρA𝐿4𝜔2 𝐸𝐼⁄ ) 
𝑚𝑓 Fluid mass.                                                       

(𝑘𝑔) 

𝜔 Circular frequency.                       

(𝑟𝑎𝑑 𝑠⁄ ) 𝑚𝑖
∗ Concentrated mass parameter,           

  
ρ𝑝 Density of the pipe material.                    

 (𝑘𝑔 𝑚3⁄ )  𝑚𝑖
∗ = 𝑚𝑖 𝐿(𝑚𝑓 + 𝑚𝑝)⁄  𝜉 Non-dimensional pipe length, 

(𝑥 𝐿⁄ ). 𝑣𝑓 Steady flow velocity of fluid.          

(𝑚 𝑠⁄ ) 

𝐶 Clamped (fixed) support. 

�̅�𝑓 Flow velocity parameter, 𝑃 Pinned (hinged) support. 

 �̅�𝑓
2 = 𝑚𝑓𝑣𝑓

2𝐿2 𝐸𝐼⁄  𝑣𝑠 Very small, (10 𝐸 − 8). 

𝑥, 𝑦 System co-ordinate of the pipe. 𝑣𝑙 Very large, (10 𝐸 + 8). 
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