A Methodological application of New Techniques for Rationalization Energy Consumption in Buildings

¹Eng. Sayed Marey Mansour, ²Prof. Randa Reda Kamel, ³Dr. Inas Abd-Elsabour Ahmed^{*} 1,2,3 Helwan University, Faculty of Engineering, Architecture Department

Abstract

Sources of energy are the most important challenges facing the world in this century. The global interest in energy and its relation to the construction sector that consider the most energy consuming sectors, which led to a search for methods of energy conservation. Research assumes a methodology to apply the modern technology in buildings and gaining advantages of developed building materials, outer envelopes, and conserve energy systems to reduce energy waste and increase its efficiency by integrating natural and renewable energy applications. This methodology could be applied to buildings during the design phase to achieve energy rationalization.

Keywords Energy rationalization, Modern techniques, Renewable energy, Building life cycle

1. Introduction

Energy sources are one of the most important challenges facing the world in this century, which greatly affects the national economy and postpone the movement development. Accordingly, studies have shown that the construction sector is one of the most energy-consuming sectors in the world. Besides, it consumes about 40% of the world's total energy, and about 68% of the total consumed electricity [1]. Most of this energy is produced from non-renewable sources, that warning the world countries to think about new energy sources, and explore other various resources to reduce their consumption, or move towards construction methods that preserve energy and look for raising energy efficiency during the building life cycle.

1.1 Research Problem

Developed countries concerned with sustainable architecture and energy rationalization in all types of buildings during their life cycle, by basing on the precautions, regulation, requirements and energy codes. While in developing countries, including Egypt, buildings were often designed and implemented without taking into consideration the effect of building materials and outer envelopes on energy efficiency. This due to either the lack of construction regulation

^{*} Corresponding author: Assistant Professor at Faculty of Engineering, Helwan University e-mail: inas.abdelsabour@m-eng.helwan.edu.eg

requirements or the limited availability of techniques for buildings' design and implementation in a manner that conserves and rationalizes energy.

Therefore, the research problem arises due to the absence of a process that governs how to earn the advantages of both developed building material techniques and outer envelope systems, to clarify their role in achieving the building energy efficiency, to use it in rationalization methods of energy consumption during building life cycle starting from the design phase until recycling phase.

The proposed methodology utilizes modern techniques in various building elements to help in rationalizing energy consumption in buildings and increase their efficiency. The application of this methodology on buildings during the design stage, which effects also on the other building stages from implementation to demolition.

1.2 Research Aims

The research aims to find a methodology to utilize modern techniques in the building, either from the external elements, outer envelope systems or internal building systems, for using in rationalizing energy consumption and upgrading the building's efficiency. This can be achieved by a number of objectives as follows:

- Explain ways to conserve non-renewable energy sources, and how using strategies to raise energy efficiency in buildings.
- Defining the energy status in Egypt and the impact of the construction sector on consumption.
- Classification of using modern technologies to rationalize energy in buildings.
- Determining the modern technologies' impact on buildings during the design stage and verify its effect on building life cycle.

1.3 Research Methodology

For achieving the purpose of this work, the research adopts two steps; theoretical and analytical study:

- *First, Theoretical study:* via studying the energy in buildings; by defining its sources, applications and the categories of rational consumption. Moreover, identifying the usage of modern technologies to rationalize energy consumption in buildings, through clarifying its applications in all building elements, (external elements-internal elements-the outer envelope).
- *Second, Analytical study*: Developing a methodology for rationalizing energy consumption methods in buildings by using modern techniques through analyzing some case studies that applied these techniques.

2. Energy in Buildings

2.1 Energy Resources:

There were many energy types surrounding us, most of them were converted to electric or kinetic energy, that could be classified into either non-renewable energy or renewable energy:

2.1.1 Non-renewable energy sources:

This kind requires a long time to develop, like (petroleum, coal, gas), it also considered one of the main causes of environmental pollution and global warming.

2.1.2 Renewable energy sources:

It is generated by a natural continuous source (wind, water, sun, hydrogen power, geothermal energy). Egypt had several resources in the renewable energy field and aims to increase the ratio of generating renewable energies to 20% of the total energy capacity by 2020. The energies that used in Egypt, are [2]:

Hydropower energy; It is produced from High Dam power station and Aswan reservoir, with production average 13350 GW/H, Fig. 1 [3].

Solar energy; Egypt is one of the solar belt countries, and suitable for solar energy applications with a brightness rate 9:11 h/day. The vertical sunbeam average is 2000/3200 kW/H, but until 2011 the output rate of solar energy electric power does not exceed 206 MW/H at the Elkorimat station in Giza, however by completing the implementation of Kom Ombo project the rate will be 100 MW/h rate, Table 1 [3].

Wind Energy; There are many suitable areas in Egypt for producing wind energy. Consequently, the production has increased from 140 MW/H in 2005 to 545 MW/H in 2011, Table 1 [3].

Figure 1 The development of electric production from hydropower in Egypt [3]

-	upic I Inc actorphicit			* pi ouuc	non m L	287 Pr [2]		
	Report/year	2005	2006	2007	2008	2009	2010	2011
	Total efficacy (MW)	18775	20452	21944	22583	21330	22750	23470
	Zafarana winds	140	225	225	300	425	517	545
	Ghergada winds	5	5	5	5	5	5	5
	Solar thermal station	-	-	-	-	-	-	140
	Energy production (GW/H)	101229	108690	100708	108788	131063	139000	141885
	Zafarana winds	523	552	627	840	941	1152	1489
	Ghergada winds	9.6	9	8.3	7	7	7	7
	Elkoraimat solar station	-	-	-	-	-	-	206

 Table 1 The development of solar and wind production in Egypt [3]

2.2 Renewable Energy Applications:

2.2.1 Solar Energy

Solar energy is generated by thermal motors or photovoltaic transformers. Thus, they were either negative or positive solar systems, in accordance with the way of utilization, conversion and distribution. So, solar energy systems can be classified into two main types, as in Table 2 [4,5]:

Solar	Energy	Concept	Example
stems	Flat solar heater	It is a metal insulated box with a glass or transparent plastic cover, with an inside sheet from copper or aluminum or alloy from both (often in black) for best heat absorbing, then water or air flew in the inner pipes to be heated. As a result, hot water is stored inside heat-insulated tanks, which could be from glass or fiberglass to keep the water's heat, especially during night.	
lar heating sy	Vacuum tube heater	the sun penetrates the glass surface and reach the closed paralleled transparent vacuumed glass tubes to absorb heat, then by contact the water was heated and stored in a tank.	
So	Composite heaters	This type uses convex mirrors that rotated with the sun direction, to reflect the concentrated sun rays in a collecting point above the absorbent sheet. Then, water pass through to be heated with higher temperatures more than with normal solar heaters.	
ergy into ents	Solar chimneys	It depends on the solar radiation, that warms air at the station's bottom and rises up due to the air's low density (caused by the huge temperature difference). Then air permits in the chimney turbines to generate electricity.	And the second s
ting solar en ectricity Syst	Parabolic gutters	It relies on the sun's concentration on an oil filled tube, then the temperature rises and the oil flows on a water heat exchanger then heated and evaporated. As a result, the turbines spin due to this steam to generate electricity.	Annew Tar
Conver el	Photovolt aic panels	it generates the electric power by assembling of solar modules "PVs" in an integrated system for the electric power conversion.	

Table 2 Solar energy devices [4,5]

2.2.2 Wind power

Wind turbines are widely used to produce electric power, such as windmills for mechanical energy, and wind pumps for water pumping. Moreover, 95% of the used land as wind fields can be used for agriculture or grazing, and it could be also placed above buildings. Conversely, its disadvantages, is the visual effect of turbines' rotation and noise, so it was preferred to be located in isolated areas, Fig. 4 [6].

2.2.3 Hydropower Energy

When water flows through levels, it rotates the turbines that move the generators. The electric power can also be generated by using the natural tidal movement near the shoreline, where special turbines were placed in the tidal stream operated by rising and falling of water, then the water returns and runs again [6].

2.2.4 Biomass Energy

Bioenergy is one of the most renewable energies that can be used to provide clean and usable energy for residential buildings, especially in rural and non-urban areas, which are produced from renewable organic substance origin from plant and animal [7].

Figure 4 Wind power horizontal and vertical axis [6] Figure 5 Geothermal Energy [6]

2.2.5 Geothermal Energy

Underground heat is a clean, environmentally friendly energy, that characterized by low cost after calculating the initial costs of station's production. In opposition, it requires large areas and hard to dig deep wells with depths up to 5 km at high temperatures, Fig. 5 [6].

2.3 Energy charge rates in buildings

Buildings are the largest consumer of energy, with an 40% average of the consumed energy. America is considered one of the largest energy consumers, then Europe and the Gulf countries. In addition, the consumption rate of the Egyptian individual in 2007 is (1384 kW/h), and the global rate is (4,190 kW/h), which is less than one-third of the world average. So Egypt was ranked the 85th from world consumption of electricity [2]. Fig. 6 displays energy consumption in Egypt, according to activity. Consequently, when designing a building, it is necessary to take into account the total consumed energy through building phases, from construction to repair or even the case of removal and restoration. The building's energy needs vary in each stage of its life cycle, that depends on the building's supply of the required energy, so these needs depend on a number of factors:

- Location, climatic and natural conditions.
- Access easily to energy sources.
- Variable usage of technologies and systems and its cost.
- Changing the building's installation and construction methods.
- Nature of building maintenance, its components, and services.

Figure 6 Energy consumption in Egypt according to activity [2]

Subsequently, the energy consumption during the building phases could be classified as follows; [8]

Building Phases	Environm	ental design	principles	Rationalizing energy methods
	Adjusting with Climate	Negative	Thermal comfort efficiency	 Architectural environmental design (orientation and shape) Outer envelope design (walls and ceilings) Using of design elements (used building materials) Landscape elements.
n phase	(Holism)	design	Ventilation efficiency Natural light efficiency	 Openings design and orientation Using of traditional and advanced design elements Openings design and orientation Using of traditional and advanced design elements
Desig	Renewable Energy	Positive design	Using renewable energy	 Solar energy – Wind energy Biomass energy - Ground heat energy.
	Eco-friendly Building Materials	Industrial methods	 Using of ava Choosing o manufacturi Long-edged Using enviro 	ailable local building materials. f most suitable materials that consume less energy during ng. materials that continuously enable using for periods. onmentally friendly recyclable materials.
struction ohase	Conserving Energy	Natural methods	 Implementa and installat Engineer an work in a m 	tion methods that reduce the wasted energy in transportation ion etc. d the site director performance efficiency to implement the anner time.
Con		Industrial methods	- Reduce the	consumed energy in construction and finishing.
and nce		Natural methods	Using of waInstructing u	ter spray on the building's cover for evaporative cooling. users about the importance of energy rationalization.
Operation maintenal phase	Water Conversation Strategy	Industrial methods	 Replacing A Using savin Heating wat Energy cons Water recyc 	Air conditioning with desert air conditioning. g lamps as much as possible. er by solar heaters. servation during warming. ling (lead water)
nolition hase	Recycling	Natural methods	 Reuse build demolishing Using of ma 	ings and spaces for other functions and activities instead of them. aterials with a long lifespan in construction.
Den		Industrial methods	 Reusing of I Recycle mat 	building materials or structural elements from old buildings. terials and make them a source of new materials.

 Table 3 Energy consumption during building phases [9,10]

2.3.1 Energy consumption in the design phase

In design phase, we can define the building's shape and orientation, geographical location, nature of its work, selection of the cladding components or building service systems, and many design decisions that have a direct and indirect impact on the building's energy consumption.

2.3.2 Energy consumption in the construction phase

In each stage of the building material's life, it consumes energy and produces harmful wastes. Therefore, the materials production's energy includes all processes of extraction, processing, disposal or reused, which is called the material life cycle, so the closed material life cycles the less the negative waste.

2.3.3 Energy consumption in the operation and maintenance phase

It means the energy consumption that help the building to perform its function, and achieve the comfort levels for users by utilizing the building systems that responsible for lighting, ventilation, cooling, and heating, as well as the consumed energy by the equipment and devices. It varies depending on the building type and the usage nature. There are many ways that help in the rationalizing energy consumption during the operation phase, including the use of negative design methods by using natural lighting, that includes negative cooling, ventilation and heating systems, and selecting cooling and heating high-efficiency systems.

2.3.4 Energy consumption in the demolition phase

It includes the required energy for demolition process, by involving the potential energy during materials' construction or post-implementation construction, which expected to obtain with minimal waste. Table 3 shows energy consumption during different building stages, and the methods that help in rationalizing energy consumption [9].

2.4 Rationalization in energy consumption

This part deals with the definition of rationalization in energy consumption, and the rationalization fields through different building elements.

2.4.1 Rationalization concept of energy consumption

It means the best consumption of energy resource, to limit the waste without compromising the user's comfort and productivity or the efficiency of the used equipment. Accordingly, this objective is attained by means of the wise operation methods in various consumption's sectors. These benefits can be summarized as follows:

- Optimal utilization of non-renewable energy sources, which helps to preserve these sources for next generations.
- Reducing fuel consumption, which help in improving the environment.
- Make provisions in the energy sector, helps to develop other fields.
- Reduce the amount of energy consumed and thus reduce the consumption bill on users.

2.4.2 Fields of rationalizing energy consumption

Energy consumption can be rationalized via two methods; First, by rationalizing the current energy, so it can reduce the waste amount of consuming energy. Second, depends on the future energy, with long-term rationalization by replacing current energy with permanent efficiency one.

The fields of energy rationalization in the building and improving the efficiency of its use could be defined in the following elements, as in Table 4:

Methods Of	
Rationalizing	Application
Energy	Аррисацов
Consumption	
Related To	The building needs to reduce the required energy for lighting, cooling, and heating, by selecting
Equipment, Tools	efficient appliances either electrical, or air conditioning systems to achieve high efficiency that
And Used Devices	require less power. In Egypt, the General Organization for Standardization and Quality of the
	Industry and Commerce Ministry sets the standards for most energy-efficient household
	appliances, that required a placed sticker on the device in a visible place to recognize the degree
	of energy efficiency and help users make the decision.
Related To	The misuse of equipment (heating, cooling, lighting, etc.) tends to lose energy even if it is highly
Energy-	efficient. Subsequently, mechanical instead of manual systems are used to manage energy to
Consuming	provide control that reduces energy consumption and costs.
Systems	
Related To The	Energy consumption in buildings is rationalized during design and implementation stages in
Building Itself and	accordance with environmental standards, taking into account the adaptation with the
The Surrounding	surrounding environmental, geographical and climatically conditions to increase its thermal
Elements	efficiency.
Related to the	The outer envelope plays an important role in separating the outside climate conditions and the
Outer Envelope	inside required functions to achieve comfort levels in the building. Therefore, the outer envelope'
Design;	type and the used techniques should be studied to take in consideration the energy conservation
	in the building.
Related To The	Training of the building's users help in achieving low energy buildings by using cooling and
Building's Users	negative heating systems in an optimal way. Accordingly, this is done via the development
	awareness programs in the audio, video media and the civil-society system, especially from
	individual behavior.

 Table 4 Methods Of Rationalizing Energy Consumption [11,12]

2.5 Classification of buildings according to energy consumption

This classification depends on the intensity of building's energy consumption, and compares it with same buildings' types that meet standards and requirements of construction. These buildings can be classified into; intensive-energy buildings, low-energy buildings, zero-energy buildings, with ensuring that the users' comfort levels and the building performance are kept efficiently [1], Fig. 7.

2.6 Measuring programs and systems for energy in buildings:

There are many energy simulation programs that could analyze by using an interactive interface different inputs via various design structures and calculation equations. These tools are used in the design stage to make different decisions that effect on the energy consumption in the following stages mainly in operation and maintenance phase and directing the developing design. The most famous program is HEED program, that combines the energy simulation search engine in buildings with an easy interface [13].

Figure 7 Building levels according to energy consumption [Author]

Figure 8 New techniques classification according to place in the building [Author]

3. Modern Techniques in Buildings

The research deals with the concept of using modern techniques in buildings and their classification according to their location in the building. These techniques cannot be separated from each other, due to the mutual influence on each other either directly or indirectly with varying amounts. Consequently, the research assumed theoretically divided these elements to facilitate their study, into three sectors, Fig. 8.

3.1 External elements

The external elements provide shading for buildings by preventing thermal radiation from the surroundings, to control the ambient temperature. These elements are; orientation, geographical location, building shape, external shading and landscape elements, which play a vital role in reducing thermal loads and helping in energy rationalization [12].

3.2 Outer envelope

The building's outer envelope is a direct expression of the used functional and structural elements in the building facade, whether concrete, iron, glass or other construction materials. Besides, the building outer envelope is the link between the inside and the outside, and affects by the noise, heat or overcome external climatic conditions for the user's convenience. Thus, the outer envelope design is affected by many factors [14]:

- *External factors:* which include external air temperature, wind speed and direction, relative humidity and the amount of solar radiation.
- *Internal factors:* such as internal air temperature, surface temperature, air change's rate, relative humidity and lighting intensity.
- *The design of the outer envelope*: successful envelopes take into consideration the functional standards (ventilation, natural lighting, acoustic performance, thermal insulation, shading, photovoltaic cells, passive design, cooling and

heating), structural, aesthetic and environmental availability. As a result, by using new techniques in the outer envelope design such as; smart materials, power generation materials, dynamic casings, solar skis, etc., especially with the emergence of nanotechnology will increase all the materials efficiency.

For example, in Champillion building at Dubai that used hexagonal units to form the outer envelope from many layers of glass and solar panels on a structural frame. These units are aligned mechanically with the sun, closed to block the sun or open to inter the natural lighting inside the building. In addition, the outer envelope contains layers of micro-energy generating cells that generate power during the day and provide energy during working hours, Fig. 9.

Figure 9 Champillion building in Dubai [15]

3.3 Internal elements

Internal elements that affect energy consumption in buildings, involve service systems to achieve the users' comfort levels, which vary from ventilation, cooling and heating, lighting systems, and the selected building's materials.

3.3.1 Lighting

The required lighting for comfort levels in spaces affects by the used strategies of energy rationalization in the building, which depend on: the building type, internal spaces, work nature, and the operating and lighting periods that has two main types [15]:

- *Natural Lighting;* For building operation, natural lighting greatly reduces the required energy in the internal spaces, by taking into account the site and building shape. Accordingly, the factors that maximize the benefits of natural lighting are; the building location and shape, external openings ratios, the used glass, and the geometric shape of internal space.
- *Artificial Lighting;* Artificial lighting is used as an auxiliary element for natural lighting to achieve proper lighting for the internal space, such as LED illuminations that are used currently to minimize consumption as much as possible. Therefore, control systems help to combine natural and artificial lighting in spaces by several strategies, such as using of wireless sensors that close or reduce the intensity of artificial light according to the occupied spaces at certain periods of time, or according to the amount of the external lighting.

3.3.2 Ventilation

The natural ventilation in the internal spaces depends on the differences in the temperature and pressure between inside and outside to create the wind movement, which is considered the most important factors affecting the energy consumption; this happened in two ways [16]:

- *Natural ventilation;* Windows helps in natural ventilation by avoiding the heat lose during the winter and allow the fresh air to pass through the outer envelope in moderate heat periods during the year. Besides, some architectural elements can be used such as; solar chimneys or air intakes to benefit from the natural air ventilation in the internal spaces.
- *Mechanical ventilation;* To keep the air change's rate constant in the internal spaces, it is better to use mechanical ventilation units that are responsible for providing fresh air and disposal of bad air, especially in non-natural ventilation spaces. These are suction units with filters and delivered air pipes.

3.3.3 Cooling and heating:

Cooling and heating requirements must be designed carefully, due to it affected on the building cost and operating expenses. So, thermal comfort levels can be achieved via several strategies [17]:

- *Negative cooling and heating strategies:* by using of conductivity, radiation load, evaporation features, and using of the environment as natural sources of energy "Sink Heat". Therefore, their use in buildings help in creating sustainable buildings and reduce consuming fuel to achieve comfort thermal levels.
- Using of mechanical cooling and heating systems: which are divided into; airbased systems such as; window air conditioning, split units, and air-conditioning with tubes, and water-based systems, that are divided according to the coolant type into; water-cooled and the air-cooled system, Fig. 10.

Figure 10 Mechanical cooling and heating systems [18]

• **Cooling and heating control systems:** used in controlling the air amount's levels, temperature and humidity to achieve the users' comfort levels. In consequence, a fully control of each space by sensors helped in energy rationalization that used in the building operation.

3.3.4 The used materials

Building materials consumed energy during three phases in parallel to the construction stages itself. Starting with; the **pre-construction phase** of material extraction, manufacturing and transport, then the **construction phase** of the implementation, installation, maintenance, and **post-construction phase**, which includes final disposal either by reusing or recycling [18].

The selection of building materials must be evaluated to meet the environmental sustainability standards. Subsequently, these standards related to the building's life cycle and includes efficiency standards for material sources, internal environment quality, and energy efficiency standards. The technological development in the construction field led to many building material's productions with advanced properties. Such as; the nanotechnology and the enormous potentials of smart materials to support the building's performance and improve rationalization of energy consumption, either in structural or compatible materials [17], Fig. 11.

4. Analytical study

In this section, some case studies were analyzed, these buildings used modern techniques in different building elements (external elements, outer envelope, internal elements), which effect on energy consumption. In order to reach the correlation between the used technologies and rationalization of energy consumption, helped in attaining a methodological design of energy rationalization in buildings, that can be utilized and applied either on new or existing buildings. A descriptive, analytical methodology is used for this purpose, though three tables describe the used technique and its evaluation by colored points; 1 for 'weak', 2 for 'moderate', and 3 for 'good' in their application in buildings.

4.1 Case Studies

The selected buildings attained the usage of modern technologies to achieve the functional efficiency and energy rationalization. These buildings won international awards, and obtained the accreditation of an international organization of evaluating energy efficiency.

4.1.1 Institution & exhibition of earth environmental, Renzo Piano, 2008

Figure 12 Institution & exhibition of earth environmental [19]

Table 5 Evaluation of used techniques in Institution & exhibition of earthenvironmental [20]

										Oute	r en	velop	e									
								Er	ıergy	ratio	naliz	zatio	n							E	nerg	у
		Ι)esigi	ı elei	nent	5		Te	chnic	al ele	emen	its		T	he used :	mate	rials			ger	ierati	ion
The criteria	Envelope shape	Envelope kind	Thermal insulation	Double envelope	Sun refractions	Windows	Others	Kinetic sun refractions	The used widows	Dynamic envelopes	Smart materials	Others	Energy efficiency	Local materials	Natural materials	Durability	Recycled materials	Reuse materials	Others	Photovoltaic cells	Solar collectors	Others
The used techniques		Single envelope with double layers	Isolated concrete panels- Green Roof	High efficiency glass envelope	Sun refractions in south facade	Full-high openable widows		Vertical and horizontal sun refractions	Triple layered glass - with high efficiency (Low-E)	Widows with automatic control			Timber from sustainable sources - Recycled concrete	Large percentage of the used materials	Wood-claddings-limestone-insulated materials	Strong structure from high durability steel	Recycle steel - Recycled Content concrete	Limestone walls - reused insulating materials	High efficiency glass	Glass panels of photovoltaic in Canopy ^{**}		
ng ency																						
ffici																						
Notes	•]	Insula prefab glass v The u and to Struc recycl	ation: oricate with 1 sed w bene tural ed co	All ed co righ o rindo fit fr skel ntent	build ncret coeffi ows an om na eton: c, a lat	ling e uni cient re fro atural was rge p	elem ts in effic m thu l ligh mad ropor	ents a walls iency ree lay ting. e fron tion c	re go "Stru vers Lo n high of cem	ood in actura ow-E h dura aent w	isulai 1 Ins glas: abilit /as re	ted, s ulate s with y, rec place	starting d Pane 1 low a cyclab ed with	g from els", a absorp le and h fly a	n the ro ind the n stion coe: I reusabl ish.	of wi orthe fficie e me	ith th ern fa nt, for tal. R	e plar cades r prote einfor	nt c are ection	over, of tr on fro	usir ansp m th crete	ng of arent e sun with

							I UN	100	00		muv	u					
							Ex	terna	ıl ele	men	its						
		Buildi	ing feat	tures							E	sternal	eleme	nts			
The criteria	Building type	Building volume	Climate region	Time of usage	other	Building	orientation	Building	shape	Building	location	External	shading	T Tanana	Lanoscape elements	other	Contract of the second s
The used technique	lbition- ication	100 m ²	rate cool	-Night		East dire	: west ction	Hu, recta wit Atria	ge ngle th ums	U: a:	rban reas	Green I Over Car	Roofs , thang 10py	Good plant	usage of elements	Using sir progr	nulation ams
Kind	Exhi Edu	10.1	Image: space set of the												designal	technical	
Usage efficiency	*	~	~	~													
tes	• Bu lig wi	uilding hting, th phot	integra ventilat ovoltai	ition: C ion, co c panel	The de oling, ls fron	sign co and h transp	ombine eating. parent §	s nega Besio glass p	ative des tl panel	ener he ir s.	igy co itegrai	nservat tion of	ion stra renewa	ategies able en	by using lergy gen	natural en eration te	ergies in chniques
No	• T •	ndscar	no docir	m. Th	a huild	ling"e r	oofcor	ing	dari	anać	with	a local	nlant c	otter "C	Treen Roy	of achier	100 mana

Table 5 continued

Landscape design: The building's roof covering designed with a local plant cover "Green Roof", achieves many environmental and design benefits, which acts as an extension of the surrounding environment and it is used to reduce heat convection.

Table 5 continued

																- 1	Inte	ern	al e	eler	nen	ts																
				1	Lig	htir	ıg						Ve	ntil	atio	n					C	ool	ling							Н	eat	ing						
The criteria	Natural Lishting	Smugrt	Oriented	natural lighting	Artificial	lighting	Perfect lighting		Others		Direct natural ventilation		Oriented natural	ventilation	Arthcial ventilation	Othere	CIII CII	Natural naccina	cooling	Mechanical	Cooling	Artificial cooling			Others		Natural passive	neaung	Mechanical	<u>Heating</u> Heat Pumps	Solar energy				Others		Energy control systems	
The used techniques	Transparent windows- ceilings openings	and a second and a second and a second as	Natural lighting catching unites -internal	courtyards		High efficacy artificial lighting	Means and control devices in light	intensity		Lighting control systems	Onenchia midone – Internal constructs	Openance whoma - micrimat county area	Passing air through internal covered	courtyards	Through cooling protons	TILOGER COOMIES Systems			Cooling by radiation (water pipes through	floor)		Cunned water system		Cooling through floors (UFAD)	Cooling through passing water pipes in	ceilings	Green roofs – heating by radiation	through floors		Chilled water system					Heat Recovery systems	ALLER LAVING THE PARTY	Enormy management arreforms (EMC)	COMPT) STITUTE (STATES) STATES (STATES
Kind	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical
ng ency																																						
Usi		_																																\mid				
	•	E	nei	gv	co	ntr	ol	pro	gra	ms	an	d d	levi	ices	s: ar	eυ	ised	l to	ob	ser	ve e	ene	rgv	со	nsu	mp	tion	ı fo	r lie	ghtir	ıg,	ver	ntila	tio	n, c	:00	ling.	and
otes		he	ati	ng	wi	th t	he	gen	erat	ed	ener	gy	by	ph	otov	/olt	aic	cel	lls,	fþr	cor	ntin	uou	ıs e	val	uati	on	to a	ichi	eve	ene	rgy	eff	ici	enc	y.		
z	•	С	an	opi	es:	use	ed t	o sl	had	e th	e er	ıtir	e bı	uild	ling	an	d in	iteg	rat	ed 1	nigh	ı-er	nerg	gy p	hot	ovo	lta	ic c	ells	with	n th	ie u	sed	gla	ass j	par	nels.	

4.1.2 Siemens Head quartz, Masdar City, Sheppard Robson, 2014

Figure 13 Siemens Head quartz, Masdar City [21] [22] Table 6 Evaluation of used techniques in Siemens Head quartz, Masdar City [22]

										Oute	er en	velo	pe									
								Ene	rgy	conse	ervat	tion								Ener	gy ge	neration
]	Desig	n elei	ment	5		Te	chni	cal el	eme	nts		Tł	he us	ed m	ateria	als				
The criteria	Envelope shape	Envelope kind	Thermal insulation	Double envelope	Sun refractions	Windows	Others	Kinetic sun refractions	The used widows	Dynamic envelones	Smart materials	Others	Energy efficiency	Local materials	Natural materials	Durability	Recycled materials	Reuse materials	Others	Photovoltaic cells	Solar collectors	Others
The used techniques	Double envelope with an outer layer for shading Insulated concrete pallets Two internal glass layers and aluminum as external layers Solar skis in South West Facades An openable windows An openable windows An openable windows Insulti-layer glass windows Using of some local materials Using nigh-tempered aluminum Plastic units inside roof tiles Reuse large percentage of construction waste																					
ng ency																						
Usi effici																						
Notes	•	Insul curtai The u colum The u units used	ation in. Th used nns fi used insid mate	the out struct ree, w struc e con rials in	build er lay tural here t tural crete n sim	ling er fro syste the u l syst slabs ilar s	doub om al sed s tem i in lo vster	le-lay lumin llows pans t is from ow loa ns.	er er um s high betw n fla ad lo	nvelo solar flexi een c at pre cation	pe's skis, bility olun -tens ns th	desiş separ y in th ms uj sione at rec	gn co rated he int p to 1 d uni lucinț	nsist by a erior 5 me tes v g the	ing o dista space ters. with " conc	f inn nce f e des Integ rete i	er lay or the ign. T grated usage	ver ac main The ad void- , and s	t as tena min Fon	an in nce. istrati ning' more	sulat ve sp ' wit thar	ed glass paces are h plastic 1 60% of

							Ext	ternal	elen	nents							
		Build	ing fea	tures							Exte	ernal	elemer	ıts			
The criteri	Building type	Building volume	Climate region	Time of usage	other	Building	orientation	Building	shape	Building	location	Fxternal	shading	Landscape	elements		other
The used technique	inistrative	$.800 \text{ m}^2$	ot damp	y -Night		North direc	East	Hu square Atri	ge with ums	Urban	areas	Ir cour with co surro buil	iner tyards h roof ver - unding ldings	The place th assoc witi buil	outer es and eir tation h the ding	Use si software buildinį simu externa in	imulation e during the g design to llate the ll elements apact
Kind	Adm	Administration Administrating administration Administration <t< th=""><th>technical</th></t<>															technical
age cien X	7	1	1	1													
US effi	*	ľ	•	ľ													
Notes	• A ar • T fr	wide n nd wate he buil om the	range o ar cons ding wa office	of susta umptio as desi spaces	n sign gned t	e mate nificar to be h	erials ntly. nigh (s and i	innov grou	vative ind wi	tech th co	nolog	gies we s, and t	ere use the gro	ed to r	educe e oor was	electricity s emptied

Table 6 continued

Table 6 continued

															Ι	nte	ern	al (elei	me	nts																
				Lig	htin	ng						Ve	enti	lati	ion					0	Coo	lin	g						H	leat	ing				-		
The criteria		Natural Lighting	Oriented natural	5	Artificial lighting		Perfect lighting	Othom	Ottlers	Direct natural	ventilation	Oriented natural	ventilation	Artificial	ventilation	Others	OULIERS	Natural passive	cooling	Mechanical	Cooling		Armicial cooling		Others	Natural passive	heating	Mechanical	Heating	Heat Pumps	1	Solar energy		Others	Energy contro	systems	
The used techniques		Transparent windows	Sun refractions with	Uteh officerus addition	111gu entracy antitutat lighting	Means and control devices in	light intensity		Lighting control systems	Onenahle widours	Openant with a	Watter Deret At	venun Eueci Anums		I mougn cooming systems			Wontend Definet Atrineer	venturi Errect Atriums		Chilled water system					Thermal Mass walls and	collectors		Chilled water system							Energy management systems	(EMB)
Kind	decional	technical	designal	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical
ng encv																																					
Usi	-			+							-											\vdash									-	+	\vdash				
Notes	•	S ti S r s	oftw hat c olar eflec pace	ont ski tive s.	e an rols is: a e alu	d c the rou umi	e hu and inur	tro umi the n, t	l d dit wi	evia y, ta inda prot	ect	th per s in fro	ne i ratu 1 the om	nte ire e so su	gra and outl nlig	tio 1 liş h ar zht	n c ght nd v an	of a : lev wes d re	dva vel st fa	inte inte	ed s ensi des hea	sys ity, are at lo	ten wl ca	n fo hicl ref s w	h g ully hil	he (rea y d e a	tly esi; llo	red gne wir	l en luce d fr ig n	erg es er rom atur	y m nerş ligi ral l	gy c htw ligh	igen cons eig t to	men sum ht a	it (ipti nd ach	BM ion hig of	IS), hly fice

4.1.3 Al-Dar Central Market Abu Dhabi, Fosters+ Partners, 2010.

Figure 14 Al-Dar Central Market Abu Dhabi [23] [24]

																I	nte	rna	al e	len	ier	ıts																
				L	igh	itin	ıg						Ve	enti	lati	ion						Coo	lin	g						1	Heat	ting	ţ			•	0	
The criteria		Natural Lighting	Oriented	natural lighting	Artificial	lighting		Ferfect lighting	10	Others	Direct natural	ventilation	Oriented	natural	Artificial	ventilation		Others	Natural passive	cooling	Mechanical	Cooling	1 1 1 2 2 7 1	Artificial cooling		Olders	Natural passive	heating	Mechanical	Heating	Heat Pumps	James	Solar energy	ð	Others		Energy contr systems	
The used techniques	4	Transparent and colored windows	Ceilings openings to catch natural	lighting	Lich officers subficial lighting	глад еписасу аннистан панниа	Means and control devices in light	intensity				Openable widows		sugging root unites for ventuation	Working and a	venuation systems			Thereas we are interested at in the second s			Cooling system						I nermal Mass walls and collectors	TT	rieating system							Energy management systems (EMS)	
Kind	-	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	fechnical	designal	technical	designal	technical	designal	technical	designal	technical
50	EC A																																					
Usin							-		_																							╞	+					
Notes	•	r V f	Nati via b iull : Soft uuto	ura brir fac wa ma	al li ngin ade re tic:	i gh ng es f an ally	tin nat neiş nd (g: ' tura ght, con	The all all atro em	e co igh nd t ol d per	omi ting the the lev	me g fi use ice	rcia rom ed c s: t and	al c n hi of n the the	ent igh oof int	er : -ef f ur iegi	ach fici nits rati	iev ien to on vel	res cy o cov of tha	goo dou /er the the	od i ible int bu mi	leve e-gl ern uild ts g	els laze al c ling rea	of r ed c cou g m tlv	natu ove rty: ana the	urai rhe ard age	l lig ad s. me	ght lig nt	ing thti sys	ster	unit unit ns " mot	ng ts, s BN	sev stai /IS"	rera neo ', v	ıl st l gl vhic	rat ass :h :	egie s wi adju	es: th

 Table 7 Evaluation of used techniques in Al-Dar Central Market Abu Dhabi [23] [24]

							Tar	ole 7	con	tinu	ea						
						į	Exte	rnal e	eleme	ents							
		Buildi	ng fea	tures						E	xtei	nal e	lement	s			
The criteria	Building type	Building volume	Climate region	Time of usage	other	Building	orientation	Building	shape	Building	location	Fxtemal	shading	Landscape	elements		omer
The used technique	Image: Constraint of the system Imag																
Kind	Col	27	H	Da		designal	technical	designal	technical	designal	technical	designal	technical	designal	technical	designal	technical
Usage efficienc	~	~	~	~													
Notes	•	Laı Teı bes lan	ge mu raced ides th dscape	lti-stor roof ga e selec eleme	y sho irdens tion o nts.	pping cove of gre	mall ring en pl	with the ce ants a	man ntral nd tr	y shoj mark ees ao	os an et to ecoro	d han redu ling to	dicraft ce the l o the lo	s. buildii ocal er	ng's th wironr	ermal l nent ar	loads, 1d the

Table 7 continued

Table 7 continued																						
Outer envelope																						
		Energy conservation															Energy					
	Design elements							Technical elements					The used materials							generation		
The criteria	Envelope shape	Envelope kind	Thermal insulation	Double envelope	Sun refractions	Windows	Others	Kinetic sun refractions	The used widows	Dynamic envelopes	Smart materials	Others	Energy efficiency	Local materials	Natural materials	Durability	Recycled materials	Reuse materials	Others	Photovoltaic cells	Solar collectors	Others
The used techniques		Double envelope with protective layer as solar skis	Insulated concrete pallets	Two internal glass layers and aluminum external	Solar skis in South West Facades	An openable windows		GRC panels for exterior facades	Multi-layer glass windows	Moveable sliding ceilings			Low energy combined materials	Using of some local materials	Using of some natural stones	Using high-tempered aluminum	Plastic units inside roof tiles	Reuse large percentage of construction waste				
Using																						
																						
Notes	•	 Insulation: Reinforced glass fiber concrete panels supported by aluminum sections were used to cover the exterior walls and provide good levels of thermal insulation and protection from solar radiation. Structural system: Based mainly on a concrete structure, the internal courtyard covered with sliding units, supported on six metal columns up to 15 meters high and spans 8.4 meters wide. Internal courtyard: covered with a movable roof system with 8.4 m * 16.8 m, consists of 8 units each with 4.2 m * 4.2 m, each consists of 9 lighting openings from aluminum segments welded together and fitted with aluminum fins moving horizontally by hydraulic arms. 														ver ling ach and						

4.2 Results and Discussion

From the analytical study by comparing the case studies through the used techniques and design methods to rationalize the energy consumption, a set of results between these examples was drawn to achieve the energy rationalization criteria as follows, Table 8.

Three ways of rationalizing energy consumption in buildings were concluded:

- **First: Rationalize energy consumption:** by reducing the demand energy "Reduce Loads" and then meet the needs efficiently "Meet Loads Efficiency" by using modern technologies in different building's elements (external elements-outer envelope-internal elements) to achieve the required function efficiently.

Table 8 Analysis of the used techniques in the case study examples [Author]

- Second: Energy generation from renewable sources: by integrating the energy generation systems in the building's outer envelope by installation in external façades and ceilings, to help in providing the needed energy for operation, some of them reach to self-sufficiency.

- **Third: Energy control and management systems:** that assist to reduce the lost energy even with using high-efficiency equipment, even with the misuse of services equipment and systems as lighting, ventilation, cooling, and heating.

From the above theoretical and analytical study, it was possible to develop a methodology to rationalize energy consumption in buildings during its life cycle, Fig 15.

Figure 15 The proposed methodology for energy rationalization in buildings [Author]

5. Conclusion and Recommendation

As a result, from the theoretical and analytical study in rationalizing energy consumption in buildings, some points were concluded followed by some recommendations.

5.1 Conclusion

- Rationalization of energy consumption means the optimal consumption of energy resources, to limit their waste without compromising the user's comfort, productivity or affect the used equipment efficiency.
- Energy conservation fields in the building and the improving the user's efficiency were determined by the following rationalization methods:
 - Associated with the used equipment, tools, and devices
 - Related to the used energy-consuming systems in the building.
 - Connected with the building itself and the surrounding elements.
 - Combined with the outer envelope design.
 - Related to the person who uses the building.
- The modern technologies used to rationalize the energy were applied on three elements (external elements outer envelope- internal elements).
- Rationalization strategies for electricity consumption are based on several fields begins with reducing consumption by applying design criteria, next use modern technologies efficiently and then integrate renewable energy generation systems.
- Buildings that succeeded in achieving good levels of ventilation, cooling and heating relies on the negative design, using modern technologies with high-efficiency systems, and building control systems to reduce cooling, heating loses and total control of its loads.
- The most common systems that used in energy generation are photovoltaic cells with various types, including chips united in glass facades, their location varies in the buildings either in the front facades or in flat and tilted ceilings.
- A methodology was set up to use modern technologies in the various building elements to contribute in rationalizing building's energy consumption and increase efficiency during its life cycle.

5.2 Recommendations

- The proposed methodology of the rationalization building energy consumption should be applied to the new projects during the design process.
- The need to formulate a scientific mechanism to evaluate the alternatives and selecting the strategies from the proposed methodology, by converting the used technology's standards for rationalizing energy consumption to a digital scale, that can be applied in different buildings during the design and operation stages.
- Designers in different fields should integrate the building energy management systems to control the operation of electrical appliance, cooling systems, heating, lighting and manage renewable energy systems.
- Architects should study and analyze the global experiences that concern in energy saving mechanisms for existing or new architectural projects to benefit from them in the case of Egypt.

- The importance of holding seminars for architects and architecture students to warn them about the expected environmental dangers and to strengthen the rationalization concept.
- The need to organize awareness campaigns in the visual and audiovisual channels carried out by the Ministries of Information and Culture and directed to different society sectors about the importance of rationalizing energy consumption in buildings.
- The State must put the time plan rules to replace the used lighting, ventilation, cooling systems and appliances in low-efficiency with better efficiency ones, which are based on the latest technologies in this field, without compromising the required performance level.
- Encouraging the public and residential buildings owners to integrate renewable energy generation systems, especially in remote areas, by providing technical support and long-term financing loans.
- The consultants should subject the buildings at the licensing stage to energy analysis and simulation programs.

References

- 1. UNEP, "Building and climate change: status, challenges, and opportunities", United Nations Environmental Program, 2007.
- 2. Ibrahim El Ghitani, Amani Abdel Ghani, "The Prospects of Renewable Energy in Egypt: Opportunities to Get Out of the Specter of Energy Downturn", Egyptian Center for Studies and Information, Cairo, 2012, Site: ascicenter, org.
- 3. Renewable Energy Authority, Renewable Energy in Egypt, Annual Report, Cairo, 2011
- 4. http://renewableenergydev.com/benefits-of-solar-energy/, (3-8-2016).
- 5. Solar thermal power plants, Renewable Energy World 06/2003 pp. 109ttp://www.volker-quaschning.de/articles/fundamentals2/, (1-8-2016).
- 6. Dave Parker, Micro generation, "Low energy strategies for larger buildings", Elsevier Ltd, oxford, 2009
- 7. Saud Yousef Ayash, "Alternative Energy Technology", Knowledge World, Volume 38, National Council for Culture, Arts and Letters, Kuwait, 1981.
- 8. Ehab Mahmoud Okbba, "Approaches to Environmental Design Towards Compatibility with Natural Environment Changes", Tawfiq Al Amara and Urbanization Conference in Transformations Contracts, Cairo University, Cairo, 2006
- 9. Aktham Mohamed Abul-Ela, Kamilia Youssef, "Electricity Efficiency: Objectives, Responsibilities and Procedures", Committee on Rationalization, Ministry of Electricity and Energy, Cairo, 2013.
- 10. Energy Conservation and Environmental Protection Project Prepared by Hagerlebays Consulting, Companies Energy Management, 1996
- 11. Mohamed Baradab, "Energy Efficiency and Efficiency Improvement in Building Sector in ESCWA Countries", UN Committee, "The Third Scientific Symposium of the 22nd Arab Engineering Conference for Energy and its Sources in the Arab World and Sustainable Development", Damascus, 2000.
- 12. American Institute of Architects, "The Carbon Neutral Design Project", 2012, site:http://www.tboake.com/carbon-aia, accessed 1-8-2016.
- 13. https://www.aud.ucla.edu/heed, Accessed 01-03-2016.

- 14. Christian Schittich, "In Detail: Building Skins, new enlarged edition", Birkhauser publisher for Architecture, Berlin, 2006,
- 15. Urukia Magazine, Adaptable facade with hexagonal parametric pattern for "Chameleon" mixed-use office, Online site:http://www.urukia.com/adaptable-facade-hexagonal-parametric-pattern-for-chameleon-mixed-use-office/ Accessed 1-2-2016
- 16. Manfred Hegger, Mattias Fuchs, Others, "Energy Manual Sustainable architecture", Birkhauser, Berlins, 2008
- 17. Norbert Lechner, "Heating, Cooling, Lighting: Sustainable Design Methods for Architects", John Wiley &sons. USA, 2015,
- Jin Kim & Rigdon, B, "Sustainable Architecture module: Qualities, Use, and Examples of Sustainable building Materials", 1998, site:http:// www.umich.edu/~nppcpub/ accessed 3-9-2016.
- 19. Nico Saieh, "California Academy of Sciences", 2008, site http://www.archdaily.com/ 6810/California-academy-of-sciences-Renzo-piano/, (17-11-2016).
- David Basulto, "California Academy of Science / Green roof construction and opening", 2008, site: http://www.archdaily.com/7033/california-academy-of-science-green-Roofconstruction-and-opening/, (15-11-2016)
- 21. ArchDaily, "Siemens HQ in Masdar City / Sheppard Robson ", 2014, http://www.archdaily.com/539213/siemens-hq-in-masdar-city-sheppard-robson/, (01-12-2015).
- 22. Zumtobel, "Siemens Headquarters Masdar City", Report Available on: Dubai.Zumtobel.com, Accessed 01-12-2015.
- 23. Stu Robarts, "The roof of Abu Dhabi Central Market can now be closed to keep it cool", 2014, site http://newatlas.com/abu-dhabi-central-market/34387/, (1/11/2015).
- Gabriela Celani, David Moreno Sperling, "Computer-Aided Architectural Design Futures: The Next City - New Technologies and the Future of the Built Environment", 16th International Conference, CAAD Futures 2015, São Paulo, Brazil, July 8-10, P.180-181.

التطبيق المنهجي للتقنيات الحديثة لترشيد استهلاك الطاقة في المباني

ملخص البحث

تعد مصادر الطاقة أحد أهم التحديات التي يواجها العالم في القرن الحالي، ويعد أكثر القطاعات استهلاكا للطاقة هو قطاع البناء، مما دفع إلي البحث عن أساليب ترشيد الطاقة والحفاظ عليها ورفع كفاءتها. ويهدف البحث الي ايجاد منهجية للاستفادة من التقنيات الحديثة في ترشيد استهلاك الطاقة. ويفترض البحث أن توظيف التقنيات الحديثة في المباني والاستفادة من التطور في مواد البناء وأنظمة أغلفة المباني وأنظمة التحكم في الطاقة تعمل على ترشيد الطاقة وتقليل الفاقد ورفع كفاءتها وتوظيف الطاقات الطبيعية وإدماج استهلاك الطاقة المتجددة، ويمكن تطبيق تلك المنهجية على المباني أثناء مرحلة التصميم لتحقيق الترشيد في استهلاك الطاقة.