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The time-dependent Schrödinger wave equation is the basic partial differential 

equation of quantum field theory. The study of this equation and its 

applications play an exceptionally important function in modern physics. From 

a mathematical point of view, the time-dependent Schrödinger equation is a 

commutable as mathematics itself. The newest analytical methods to solve 

linear and nonlinear differential equation is the Homotopy Perturbation Method 

(HPM) developed to the time-fraction Schrödinger wave equation, which is a 

combination of homotopy transformation and perturbation. Furthermore, 

Picard Method (PM) is applied to formulate an approximate iterative solution 

of the time-fraction Schrödinger equation. 

   

Introduction  

 Let's consider the following linear time-

fractional Schrödinger equation: 

0, ( , 0) ( ),t x xD u i u u x f x      (1) 

where 2 1, 0 1i     , and the non-linear time-

fractional Schrödinger equation 

2( ) | | 0t x xi D u u v x u u u      , 

2( , 0) ( ), 1,u x f x i    

2| | , 0 1u u u    , 

where ( , )u x t  is a complex function, ,   are 

constants, and ( )v x  is a function in term of x. 

 The linear and non-linear Schrödinger 

equations are produced in study of the time 

evolution of the wave function [1, 6, 7, 8], in many 

of science and engineering sciences and quantum 

mechanics [2, 17, 24]. 
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A large amount of this research was done in 

previous studies of the linear and nonlinear (time-

fractional) Schrödinger equation [2, 6, 7, 11].  

PM and HPM play an important large role in 

solving the fractional order differential equations as 

well as the ordinary order differential equations [9, 

13, 15, 16, 18, 22, 23]. 

Scientists have noted that these are a large number 

of real-time problems formulated by fractional 

linear and nonlinear differential equations that are 

very difficult to process [10, 12, 14, 20]. New 

iterative method has been presented to solve this 

equation [3, 4, 5, 19]. 

 In this chapter, PM and HPM will be used 

to approach the linear and nonlinear time-fraction 

Schrödinger equations, it is well known that these 

methods can be applied directly to both linear and 

nonlinear time-fractional Schrödinger equations [2, 

6, 21].  

We will circulate the general formula on the linear 

time-fractional Schrödinger equation, and apply 

some examples. 

 The analytical solutions along with the 

graphs reveal the reliability and full efficiency of 

the proposed algorithms. 

 Definitions 

Definition  A real function ( ), 0g x x  , is 

said to be in the space ,C R   if there exists a 

real number ( )p  , such that 1( ) ( )pg x x g x , 

where 1 ( ) [0, )g x C  , and it is said to be in the 

space C 
  if and only if , 1,mg C m N    . 

Definition  The Riemann-Liouville fractional 

integral operator of order 0  , of a function 

, 1g C    , is defined as: 

1

0

1
( ) ( ) ( ) , 0, 0

( )

x

I g x x t g t d t x  


   
    

               (2)  

0 ( ) ( )I g x g x . 

Properties of the operator I   can be found in [2], 

we mention only the following for g C  , 

1, , 0      and 1   : 

1- ( ) ( )I I g t I g t    , 

2- ( ) ( )I I g t I I g t    , 

3- 
( 1)

( 1)
I x x   

 
 


  

. 

Definition 1.1.3. The fractional derivative of 

( )g x  in the Caputo sense is defined as  

( ) ( )m m
tD g x I D g x    

1

0

1
( ) ( )

( )

x
m mx t g t d t

m



  

   , (3) 

for 11 , , 0, mm m m N x f C       . 

Also, we need here two of its basic properties. 

Lemma 1.1. If 1 ,m m m N     and mg C  , 

1   , then 

( ) ( )D I g x g x   , 

and 

( )1

0

(0 )
( ) ( ) , 0

!

k km

k

g x
J D g x g x x

k
 





   . (4) 

Picard Method (PM). 

To illustrate the basic idea of this method, 

we consider the following general fractional 

differential equation of arbitrary order 0    

( )( ) ( , ( )), 1 ,k
tD t F t u t m m m N      , (5) 

(0) , 0, 1, 2, ..., 1
k

kk

d
u h k m

d t
   , (6) 

where tD  is the fractional differential operator of 

order 0  . In view of the fractional integral 
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operators, the initial value fractional problem (5) 

and (6) is equivalent to the fractional integral 

equation: 

1
( )

0

( ) [ ( , ( )) ]
!

km
k

k t t
k

t
tF t uIhu t

k






    

( )f N u  (7),

where 
1

0 !

km

k
k

t
h

k





 , ( )( ) [ ( , ( ))]k
t t tI F t uN u  , 

and tI   is the inverse of tD . The required solution 

( )u t  for (7) which is also the solution for (5) and 

(6) can be obtained as the limit of sequence of 

function 1 ( )ru t  generated by the recurrence 

relation: 

0

1 0

,

0, 1, 2, ...,( ) ,r r

u f

u u N u r




  
 (8) 

with boundary conditions: 

, 0,
u

rB u
n

 
  

,            (10) 

where A is a general differential operator, B is 

boundary operator, ( )g r  is a known analytical 

function and   is the boundary of the domain  . 

The operator A can be generally divided into two 

operator L and N, where L is linear and N is a 

nonlinear. Then equation (9) can be written as 

follows: 

( ) ( ) ( ) 0,L u N u g r r    .            (11) 

Using the Homotopy perturbation technique, we 

can construct a homotopy ( , ) : [0, 1]v r p R   

which satisfies 

 

0( , ) (1 )[( ( ) ( )] [ ( )H v p p L v L u p L v     

( ) ( )] 0N v g r   ,            (12) 

or 

0 0( , ) ( ) ( ) ( )H v p L v L u p L u    

[ ( ) ( ) ]p N v g r  ,            (13) 

where r  , [0, 1]p   is an embedding parameter 

and 0u  is an initial approximation that satisfies the 

boundary conditions. Now the solution of (12) and 

(13) can be written as a power series in p, as 

follows: 

2
0 1 2 ...v v pv p v    (14),

and the best approximation solution is: 

0 1 2
1

lim ...
p

u v v v v


     (15).

Now for the general fractional differential equation: 

( , ) ( , , ) ( , , ) ( , )t x xx x xxD x t L u u u N u u u g x t    , 

0t  ,              (16) 

where L is a liner operator, N is a nonlinear 

operator, ( , )g x t  is a known analytic function and 

D , is the Caputo fractional derivative of order  , 

where 1m m   , subject to the initial 

conditions: 

( ) ( )( , 0)k
kh xu x  , 0, 1, 2, 3, ..., 1k m  .   (17) 

In view of the homotopy technique, we can 

construct the following homotopy:  

( , , ) ( , ) [ ( , , )]t x xx x xxD u L u u u g x t p N u u u    ,

                (18) 

or 

( , ) [( , , ) ( , , )]t x xx x xxD u g x t p u u u N u u u    .

                (19) 

The basic assumption is that the solution of (19) can 

be written as a power series in p:  

2
0 1 2 ...u u p u p u    (20).

Finally, the n-term approximate solution is  

 Homotopy Perturbation Method (HMP).

  To  illustrate  the  basic  concept  of  this 

method,  we  consider  the  following  differential 

equation:

A  (u  )    g  (  r  )    0,  r      ,   (9)
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1

0

( )
n

i
i

uu x




 .               (21) 

SchrödingerTime-FractionalLinear

Equation. 

 Let's consider the linear time-fractional 

Schrödinger equation of the following form 

( , 0) ( ), 0 10,t x x u x f xD u i u    

. (22)

To solve the linear time-fractional Schrödinger 

equation (22) by using: 

1- PM: We proceed as follows: 

1 0 [( ) ], 0, 0 1j t j x xu u I i u j      ,  (23) 

0 ( )u f x , 

2 2

1 2 2
( ) ( )

( 1)t
f f t

u f x I i f x i
x x





  

  
    

  , 

2

2 2
( ) ( )

( 1)t

x x

tf
u f x I i f x i

x





 

 
  

    

4 22
2

42
( )

(2 1)( 1)

f tf t
if x i

xx







   

, 

2

3 2
( ) ( )

( 1)t
tf

u f x I i f x i
x





 

 
 

   

24
2

4 (2 1)

tf
i

x






 
  

 

2 4 2
2

42
( )

(2 1)( 1)

f t f t
if x i

xx

 


 


   

   

6 3
3

6 (3 1)

f t
i

x






 
              (24) 

For higher order terms, we can obtain: 

2

2
1

( , ) ( ) ( 1) ( )
( 1)

n n
n n

n
n

t f
u x t f x i

n x










 

  
  .  (25) 

For the special case 1  , we obtain from equation 

(25) 

2

2
1

( ) ( )
( 1)( , ) ( )

!

n n
n

n
n

i t f x
u x t f x

n x






 


  . (26) 

2-HPM: we suppose that the solution of the 

problem can be written as a power series in p: 

2
0 1 2 ...u u p u p u    (27),

and let us construct the homotopy: 

[ ]t x xD p i u   (28),

Substitute (27) in (28), the homotopy for (22) 

becomes: 

2 3 2
0 1 2 3 0 1 2[ ...] [tD u pu p u p u pi u pu p u         

3
3 ...]x xp u  ,  (29) 

Equating the coefficients of equal power of p in 

both sides of (29), we obtain: 

0
00

1
1 0 1

2
2 1 2

3
3 2 3

( , 0)0,: ( ),

, ( , 0) 0,:

, ( , 0) 0,:

, ( , 0) 0,:

x x

x x

x x

t

t

t

t

u xp D u f x

u xp D u i u

u xp D u i u

u xp D u i u









 



 














(30) 

Solving the above set of equations (30), we get the 

first terms of the homotopy perturbation solution 

for (22): 

0

2

1 2

24
2

2 4

36
3

3 6

( ),

,
1)(

,
(2 1)

,
(3 1)

u f x

tf
iu

x

tf
u i

x

tf
u i

x













 



   


   
 


   










 (31) 

So the solution will be 

0 1 2 3( , ) ...u x t u u u u       

242
2

42
( )

( 1) (2 1)

tftf
if x i

x x



 



    

  

36
3

6
...

(3 1)

tf
i

x







 

 . (32)

Application
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For higher terms we get  

2

2
1

( )
( , ) ( ) ( 1) ( )

( 1)

n n
n n

n
n

t f x
u x t f x i

n x










 

  
  .

                (33) 

For special case 1   , we obtain from equation 

(33) 

2

2
1

( ) ( )
( , ) ( ) ( 1)

!

n n
n

n
n

i t f x
u x t f x

n x






 


  . 

Example 3.1. Consider the linear time-fractional 

Schrödinger equation 

0, 0 1t x x xD u i u     ,            (34) 

with the initial condition ( , 0 ) i m xu x k e . 

1- By PM:  

 We construct the following iteration 

formula for Picard: 

1 0 [( ) ], 0j t j x xu u I i u j
    .            (35) 

Therefore, we can obtain the following first few 

terms of the required solution. 

0
i m xu k e , 

2
1 ( 1)

i m x t
u k i k m




 

 
, 

2
2 ( 1)

i m x i m x t
u k e i k m e




 

 
 

2
2 4

(2 1)
i m x t

i k m e





 
, 

2
3 ( 1)

i m x i m x t
u k e i k m e




 

 
 

2 3
2 4 3 6

(2 1) (3 1)
i m x i m xt t

i k m e i k m e
 

 
 

   
, 

then  

2
2 2 41

( 1) (2 1)
i m x t t

u k e i m i m
 

 


      
 

3
3 6

(3 1)

t
i m






   
. 

In closed form, we obtain the solution 

2

0

( )
( 1)

n
i m x n

n

t
u k e i m

n









 
     

 .            (36) 

For the special case 1  , we obtain that: 

 
2 2 2 3

2 ( ) ( )
1 ...

2! 3!
i m x i m t i m t

u k e i m t
 

      
 

  

( )i m x m tk e  , 

which is an exact solution for (34). 

 The same result can be obtained by 

applying the general formula (25) for solving (4.34) 

in the form: 

2

( 1)
i m x i m x t

u k e i k m e



 

 
 

2
2 4

(2 1)
i m x t

i k m e





 
 

3
3 6 ...

(3 1)
i m x t

i k m e



 

 
,            (37) 

then  

2
2 2 41

( 1) (2 1)
i m x t t

u k e i m i m
 

 


      
 

3
3 6

(3 1)

t
i m






   
. 

In closed form, we obtain: 

2

0

( )
( 1)

n
i m x n

n

t
u k e i m

n









 
     

 . 

For the special case 1  , we obtain that 

2 2 2 3
2 ( ) ( )

1 ...
2! 3!

i m x i m t i m t
u k e i m t

 
      

 
 

( )i m x m tk e  ,              (38) 

which is the exact solution for (34). 

2- By HPM: The homotopy for (34) becomes 

[ ]t x xD u i p u   ,              (39) 

we suppose that the solution of the problem (34) is 

in the form: 

2 3
0 1 2 3 ...u u p u p u p u      .             (40) 
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Substituting (40) into (39), we obtain: 

2 3
0 1 2 3 0 1[ ...] [tD u pu p u p u i p u pu        

2 3
2 3 ...]x xp u p u                (41) 

Equating the terms of equal powers of p in both 

sides of the above equation, we obtain: 

0
0 0

1
1 0 1

2
2 1 2

3
3 2 3

: 0, ( , 0) ,

: , ( , 0) 0,

: , ( , 0) 0,

: , ( , 0) 0,

x x

x x

x x

i m x
t

t

t

t

p D u u x k e

p D u i u u x

p D u i u u x

p D u i u u x









 

   
   

   



(42) 

Solving the above set equations in (42), we obtain: 

0

2
1

2
2 4

2

3
3 6

3

,

,
( 1)

,
(2 1)

,
(3 1)

i m x

i m x

i m x

i m x

u k e

t
u i k m e

t
u i k m e

t
u i k m e


















  



 
  


  






(43) 

So the solution will be 

0 1 2 3( , ) ...u x t u u u u       

2

( 1)
i m x imx t

k e i k m e



 

 
 

2 3
2 4 3 6 ...

(2 1) (3 1)
imx imxt t

i k m e i k m e
 

 
  

   
,

                (44) 

then  

23
2 2 4

0

1
( 1) (2 1)

imx
i

i

t t
u u k e i m i m

 

 


       
  

3
3 6

(3 1)

t
i m






 
. 

In closed form, we obtain the solution 

2

0

( )
( 1)

n
imx n

n

t
u k e i m

n









 
     

 .            (45) 

For the special cases 1  , we obtain 

2
2 2 4( , )

2!
imx imx imx t

u x t k e i k m e t i k m e     

3
3 6 ...

3!
imx t

i k m e  ( )im x mtk e  , (46) 

which is the same exact solution as obtained by 

PM. 

It is clear that the result obtained by HPM in (45) is 

the same result as obtained by PM (36). 

 In Fig. (3), we have Plotted the 

approximate solution for the linear Schrödinger 

equation (34) for the closed a) 0.25  , b) 

0.5  , c) 0.75  , d) 1  , and e) the 

corresponding exact solution at 1m k  . 

        

   (a) 0.25                  (b) 0.50   

  

    (c) 0.75                   (d) 1.0    

 

(e) Exact solution 

Fig. 3. The surfaces show the approximate solution 

for (34) for various values of   with the 

corresponding exact solution at 1m k  . 
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Example 3.2. Consider the linear time-fractional 

Schrödinger equation. 

0t x xD u i u   ,              (47) 

with the initial condition 

( , 0) 1 cosh 2u x x  . 

1- By PM: using formula (25) lead to the following 

result: 

( , ) 1 cosh 2 4 cosh 2
( 1)

t
u x t x i x




  

 
 

2
216 cosh 2

(2 1)

t
i x






 
 

3
364 cosh 2

(3 1)

t
i x






 
 

2
21 cosh2 1 4 16

( 1) (2 1)

t t
x i i

 

 


       
 

3

64 ...
(3 1)

t
i




 

 
,               (48) 

then 

0

( , ) 1 cosh 2 ( 4 )
( 1)

n
n

n

t
u x t x i

n









 
      

 .  (49) 

For the special case 1  , we obtain 

2
2( , ) 1 cosh2 4 cosh2 16 cosh2

2!

t
u x t x i x t i x     

3
364 cosh 2 ...

3!

t
i x  41 cosh 2i te x  , 

which is the exact solution for (47). 

2- By HPM: by using formula (33), we obtain that: 

0

1

2
2

2

3
3

3

1 cos 2 ,

4 cosh 2 ,
( 1)

16 cosh 2 ,
(2 1)

64 cosh 2 ,
(2 1)

u x

t
u i x

t
u i x

t
u i x













  



    

 

  

   



             (50) 

So the solution will be: 

0 1 2 3( , ) ...u x t u u u u       

1 cosh 2 4 cosh 2
( 1)

t
x i x




  

 
  

2
216 cosh 2

(2 1)

t
i x






 
 

3
364 cosh 2 ...

(2 1)

t
i x




 

 
 

2
21 cosh2 1 4 16

( 1) (2 1)

t t
x i i

 

 


       
 

3
364 ...

(3 1)

t
i






    
            (51) 

then  

0

( , ) 1 cosh 2 ( 4 )
( 1)

n
n

n

t
u x t x i

n









 
      

  (52) 

For the special case 1  , we obtain that 

2
2( , ) 1 cosh2 4 cosh2 16 cosh2

2!

t
u x t x i x t i x       

3
364 cosh 2 ...

3!

t
i x   

41 cosh 2i te x  . 

which is an exact solution for (47). 

It is clear that the result obtained by HPM in (52) is 

the same result as obtained by PM (49). 

 In Fig. (2), we have Plotted the approxi-

mate solution for the linear Schrödinger equation 

(47) for the case a) 0.25  , b) 0.5  , c) 

0.75  , d) 1  , and e) the corresponding exact 

solution. 
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       (a) 0.25    (b) 0.50   
 

     

        (c) 0.75     (d) 1.0    

 

(e) Exact solution 

Fig. 3. The approximate solution for (47) for var-

ious values at   with corresponding exact solution. 

Non Linear Time-Fractional Schrödinger 

Equation. 

 Consider the following nonlinear 

Schrödinger equation in the following form 

2( ) | | 0, 0 1t x xi D u u v x u u u         , 

                (53) 

which the initial conditions: 

( , 0) ( )u x f x . 

We can rewrite the equation (53) in the form 

( )t x xD u B i u i v x u   2 0i u u   where u  

is the complex conjugate of u, 2| |u u u   and 

,   are constants, ( , )u x t  is a complex function, 

( )v x  is a function with x. 

1- By PM: we proceed as follows 

2
1 0 [ ( ) ],

x xj t j j j ju u I i u i v x u i u u      

 0, 0 1j    ,              (54) 

0 ( )u f x , 

2
1 0 0 0 0( ) [ ( ) ]

( 1)x x

t
u f x i u u i u v x i u


 


   

 
, 

2
2 0 0 0 0( ) [ ( ) ]

( 1)x x

t
u f x i u u i u v x i u


 


   

 
  

2 2 3 2 2
0 0 0 0 0[ 2 3 ( ) ( )u u u u v x u v x      

2 2 2 2
0 0 0 0 0 0 0 02 4

x x x x x x
u u u u u u u u         

2
0 0 0 0 0 0 04 2 ( )

x x x x x x x
u u u v x u u u u         

2
0 0 02 ( ) ( ) ]

xxxx x
u u v x u v x       

   
2

...
(2 1)

t 




 
, 

2
3 0 0 0 0( ) [ ( ) ]

( 1)xx

t
u f x i u u i u v x i u


 


   

 
  

2 2 3 2 2
0 0 0 0 0[ 2 3 ( ) ( )u u u u v x u v x       

2 2 2 2
0 0 0 0 0 0 0 02 4

x x x x xx
u u u u u u u u         

2
0 0 0 0 0 0 04 2 ( )

xx xx x xx
u u u v x u u u u      

2
2

0 0 02 ( ) ( )]
(2 1)xxx x

t
u u v x u v x


  


   

 
  

3 3 4 2 2 3 2 2
0 0 0 0 0 0[ 2 ( ) ( )i u u i u u v x i u u v x      

2 2 2
0 0 0 0 0 02 2 ( )

xx xx
i u u u i u u r x u      

3
2 2

0 0 ] ...
(3 1)xx

t
i u u


 


 

 
 

2- By HPM: we suppose that the solution of the 

problem can written as a power series in p 

2[ ( ) ]t xxD u i p u v x u u u     ,            (55) 

2 3
0 1 2 3 ...u u p u p u p u      .            (56) 

Substituting (56) in (53), the homotopy for (53) 

becomes  

2 3
0 1 2 3 0 1 1[ ...] [ [tD u p u p u p u i p u p u        

2 3 2 3
2 3 0 1 2 3...] ( )[xxp u p u v x u pu p u p u        

2 3 2
0 1 2 3 0 1...] [ ...] [u pu p u p u u pu        

2 3
2 3 ]]p u p u                (57) 
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Equating the coefficient of equal power of p in both 

sides of equation (57), we obtain 

0
0 0

1 2
1 0 0 0 0 1

2 2
2 1 1 0 1

0 1 0 2

3 2
3 2 2 0 2

2
0 1 0 2 0 1 1 3

: 0, ( , 0) ( ),

: ( ) , ( , 0) 0,

: ( )

2 , ( , 0) 0,

: ( )

( 2 ) 2 , ( , 0) 0,

xx x

xx x

xx x

t

t

t

t

p D u u x f x

p D u iu iv x u iu u u x

p D u iu iv x u iu u

iu u u u x

p D u iu iv x u iu u

iu u u u iu uu u x









 

 



 

 

 

    


   
  

  

   












                (58)    

Solving the above set of equation in (58), we get the 

first terms of the homotopy perturbation  

0 ( )u f x , 

2
1 0 0 0 0[ ( ) ]

( 1)xx x

t
u i u i v x u i u u


 


  

 
, 

2
2 1 1 0 1 0 1 0[ ( ) 2 ]

xx x
u i u i v x u i u u i u u u       

2

(2 1)

t 

 
, 

2 2
3 2 2 0 2 0 1[ ( ) (

xx x
u i u i v x u i u u i u u        

3

0 2 0 1 12 ) 2 ]
(3 1)

t
u u i u u u





 

 
, 

     

So the solution will be 

0 1 2 3( , ) ...u x t u u u u     . 

Example 3. Consider the following cubic nonlinear 

time-fractional Schrödinger equation 

22 | | 0t xxi D u u u u    ,             (59) 

with the initial condition 

( , 0) i xu x e . 

The exact solution is ( 3 )( , ) i x tu x t e  . We have 

1, ( ) 0v x   , 2   , we can rewrite the 

equation (59) in the form 

22 0t xxD i u i u u    .             (60) 

1- By PM: we constract the following iteration 

formula for Picard: 

2
1 0 [ 2 ], 0

xxj t j j ju u I i u i u u j
     ,    (61) 

therefore, we can obtain the following first few 

terms of the required solution 

0
i xu e , 

1 3
( 1)

i x i x t
u e i e




 

 
, 

2
2

2 3 9
( 1) ( 2 1)

i x i x i xt t
u e i e i e

 

 
  

   
, 

2
2 2

3 3 3
( 1) (2 1)

i x i x i xt t
u e i e e i

 

 
  

   
 

3
3 33

(3 1)
i x t

i e





 
, 

     

then 

2 2 3 3(3 ) (3 )
1 3 ...

( 1) (2 1) (3 1)
i x t i t i t

u e i
  

  
 

            
. 

                (62) 

In closed form, we obtain the solution 

0

( 3 )
( 1)

n
i x n

n

t
u e i

n









 
     

 .            (63) 

For the special case 1  , we obtain 

2 3(3 ) (3 )
( , ) 1 3 ...

2! 3!
i x i t i t

u x t e i t
 

      
 

, 

which is an exact solution for (59). 

2- By HPM: the homotopy (59) becomes 

2[ 2 ]t xxD u i p u u u   ,             (64) 

we suppose that the solution of the problem (64) is 

in the form 

2 3
0 1 2 3 ...u u p u p u p u      .            (65) 

Substituting (65) into (64), we obtain: 

2 3 2
0 1 2 3 0 1 2[ ...] [[tD u pu p u p u i p u pu p u          

3 2 3 2
3 0 1 2 3...] 2[ ...]xxp u u pu p u p u        

2 3
0 1 2 3[ ...]]u p u p u p u                (66) 



 

10 E. E. Eladdad (2019 )  

Equating the terms of equal powers p in both sides 

of the above equation we obtain: 

0
0 0

1 2
1 0 0 0 1

2 2
2 1 0 1 0 1 0 2

3 2 2
3 2 0 2 0 1 0 2

0 1 1 2

: 0, ( , 0) ,

: 2 , ( , 0) 0,

: 2 4 , ( , 0) 0,

: 2 2 ( 2 )

4 , ( , 0) 0,

xx

xx

xx

i x
t

t

t

t

p D u u x e

p D u i u i u u u x

p D u i u i u u i u u u u x

p D u i u i u u i u u u u

i u u u u x









 

   


    

    
  



 

                            (67) 

Solving the above set of equation in (67), we obtain 

0

1

2
2

2

3 3
3 3

3 2

,

3 ,
( 1)

9 ,
(2 1)

(2 1)
63 18 .

(3 1) (3 1) ( 1)

i x

i x

i x

i x i x

u e

t
u i e

t
u i e

t t
u i e i e





 






  






  



 
  


          

  

                (68) 

So the solution will be 

0 1 2 3( , ) ...u x t u u u u       

2
2 23 3

( 1) (2 1)
i x x i xt t

e i e i e
 

 
  

   
 

3 3
3 363 18

(3 1) (3 1)
i x i xt t

i e i e
 

 
 

   
 

2

(2 1)
...

( 1)




 


 
              (69) 

then  

2 23
2

0

1 3 (3 )
(2 1) (2 1)

i x
i

i

t t
u u e i i

 

 


       
  

3
3(3 ) ...

(3 1)

t
i




 

 
 . 

In closed form, we obtain the solution: 

0

( 3 )
( 1)

n
i x n

n

t
u e i

n









 
     

 .            (70) 

The special case 1  , we obtain that 

2
2( , ) 3 (3 )

2!
i x i x i x t

u x t e i e t i e     

3
3 ( 3 )(3 ) ...

3!
i x i x tt

i e e    . 

Which is the same exact solution as obtained by 

PM. 

It is clear that the result obtained by HPM in (70) is 

the same result as obtained by PM in (63). 

 In Fig. (3), we have plotted the approximate 

solution for nonlinear Schrödinger equation (55) for 

the cases a) 0.25  , b) 0.5  , c) 0.75  ,     

d) 1  , and e) the corresponding exact solution. 

        

      (a) 0.25    (b) 0.50   

  

       (c) 0.75     (d) 1.0    

 

(e) Exact solution 

Fig. 3. The surface shows the approximate solution 

for (59) for various values at   with the 

corresponding exact solution. 

Example 4. We consider the nonlinear time-

fractional Schrödinger equation 

2 21
cos | |

2t xxi D u u x u u     ,            (71) 

with the initial condition 
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( , 0) sinu x x . 

The exact solution is  

3
2

sin
( , )

i t
x

u x t e


 . 

We rewrite the equation (71) in the form 

2 21
cos

2t xxD u i u i u x i u u    .            (72) 

In the equation we have 
1

, 1
2

    , and 

2( ) cosv x x  . 

1- By PM: we construct the following iteration 

formula for Picard: 

2 2
1 0

1
cos ,

2 xxj t j j j ju u I i u i u x i u u


      
 

0j  ,               (73) 

Therefore, we can obtain the following first few 

terms of required solution 

0 sinu x , 

1
3

sin sin
2 ( 1)

t
u x i x




 

 
, 

2
2

2
3 9

sin sin sin ...
2 ( 1) 4 (2 1)

t t
u x i i x

 

 
   

   
, 

2
2

3
3 9

sin sin sin
2 ( 1) 4 (2 1)

t t
u x i i x

 

 
  

   
 

3
327

...
8 (3 1)

t
i




 

 
,             (74) 

then 

2
23 9

sin 1
2 ( 1) 4 (2 1)

i t t
u x i

 

 


      
 

3
327

...
8 (3 1)

t
i




 

 
. 

In closed form, we obtain the solution: 

0

3
sin

2 ( 1)

n n

n

i t
u x

n









         
 .            (75) 

For the special case 1  , we obtain that: 

2 3
3 3 1 3 1

( , ) sin 1 ...
2 2 2! 2 3!

i t i t
u x t x i t

                 
 

2
2 sin
i t

e x


 , 

which is an exact solution for (72). 

2- By HPM: the homotopy for (72) becomes  

2 21
cos

2t xxD i p u x u u u      
,            (76) 

we suppose that the solution of the problem (74) is 

in the form  

2 3
0 1 2 3 ...u u p u p u p u     ,            (77) 

substituting (76) into (77), we obtain: 

2 3 2
0 1 2 3 0 1 2

1
[ ...] [

2tD u pu p u p u i p u pu p u       
  

3 2 2 3
3 0 1 2 3...] cos [ ...]xxp u x u pu p u p u        

2 3 2 2
0 1 2 3 0 1 2[ ...] [u pu p u p u u pu p u        

3
3 ...]p u


  


.               (78) 

Equating the terms of equal powers p in both sides 

of the above equation, we obtain: 

0
0 0

1 2 2
1 0 0 0 0 1

2 2 2
2 1 1 0 1

0 1 0 2

3 2 2 2
3 2 2 0 2 0 1

0 2 0 1 1 3

: 0, ( , 0) sin ,

1
: cos , ( , 0) 0,

2

1
: cos

2

2 , ( , 0) 0,

1
: cos (

2

2 ) 2 ( , 0) 0,

xx

xx

xx

t

t

t

t

p D u u x x

p D u i u i x u i u u u x

p D u i u i x u i u u

i u u u u x

p D u i u i x u i u u i u u

u u i u u u u x









 



    



   

  

    

  











                (79) 

Solving the above set of equation in (79), we obtain 



 

12 E. E. Eladdad (2019 )  

 

0

1

2
2

2

3 3
3 3 2

3

3 3
3 3 3 3

2

sin ,

3
sin ,

2 ( 1)

9
sin ,

4 (2 1)

9 9
sin sin sin

8 (3 1) 4 (3 1)

27 9 (2 1)
sin sin

4 (3 1) 4 (3 1) ( 1)

u x

t
u i x

t
u i x

t t
u i x i x x

t t
i x i x





 

 





 


  


 

  

 

  

     

   

      

 

                (80) 

So the solution will be 

0 1 2 3( , ) ...u x t u u u u       

23 9
sin sin sin

2 ( 1) 4

t
x i x i x




  

 
 

2 3
39

sin
(2 1) 8 (3 1)

t t
i x

 

 


   
 

3
3 2 3 39 27

cos sin sin
4 (3 1) 4

t
i x x i x




 

 
 

3 3
3 3

2

9 (2 1)
sin ...

(3 1) 4 (3 1) ( 1)

t t
i x

  
  

 
 

     
,

               (81) 

then, 

23
2

0

3 9
sin 1

2 ( 1) 4 (2 1)i
i

t t
u u x i

 

 


       
  

3
327

...
8 (3 1)

t
i






    
. 

In closed  form, we obtain the solution 

0

3
sin

2 ( 1)

n n

n

t
u x i

n









         
 .            (82) 

For the special case 1  , we obtain that 

23
2( )3

( , ) sin sin sin
2 2!

i ti t
u x t x x x    

33
2( )

sin ...
3!

i t
x    

3
2 sin
i t

e x


 , 

which is the same exact solution as obtained by  

PM. 

It is clear that the result obtained by HPM in (82) is 

the same result as obtained by PM in (75) 

  In Fig. (4), we have plotted the approximate 

solution for the nonlinear Schrödinger equation (77) 

for cases a) 0.25  , b) 0.5  , c) 0.75  , d) 

1  , and e) the corresponding exact solution. 

        

       (a) 0.25    (b) 0.50   

          

       (c) 0.75     (d) 1.0    

 

(e) Exact solution 

Fig. 4. The surface shows the approximate solution 

for (72) for various values of   with the 

corresponding exact solution. 
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