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The time-dependent Schrodinger wave equation is the basic partial differential

Homotopy equation of quantum field theory. The study of this equation and its

perturbation applications play an exceptionally important function in modern physics. From

method, Time- a mathematical point of view, the time-dependent Schrodinger equation is a

fractional; commutable as mathematics itself. The newest analytical methods to solve

Schrodinger linear and nonlinear differential equation is the Homotopy Perturbation Method

equations. (HPM) developed to the time-fraction Schrodinger wave equation, which is a
combination of homotopy transformation and perturbation. Furthermore,
Picard Method (PM) is applied to formulate an approximate iterative solution
of the time-fraction Schrédinger equation.

Introduction

Let's consider the following linear time-

fractional Schrodinger equation:

Dfu+iu,, =0, u(x,0)=f(x), )]

where i% = -1, 0<a <1, and the non-linear time-

fractional Schrodinger equation

iDu+pu,, +v(x)u+ylulu=0,

u(x,0)=f (x), i2=-1,

\u?=uir, O<a<l,

where u (x,¢) is a complex function, S, y are
constants, and v (x ) is a function in term of x.

The linear and non-linear Schrodinger
equations are produced in study of the time
evolution of the wave function [1, 6, 7, 8], in many

of science and engineering sciences and quantum

mechanics [2, 17, 24].
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A large amount of this research was done in
previous studies of the linear and nonlinear (time-
fractional) Schrodinger equation [2, 6, 7, 11].

PM and HPM play an important large role in
solving the fractional order differential equations as
well as the ordinary order differential equations [9,
13, 15, 16, 18, 22, 23].

Scientists have noted that these are a large number
of real-time problems formulated by fractional
linear and nonlinear differential equations that are
very difficult to process [10, 12, 14, 20]. New
iterative method has been presented to solve this
equation [3, 4, 5, 19].

In this chapter, PM and HPM will be used
to approach the linear and nonlinear time-fraction
Schrodinger equations, it is well known that these
methods can be applied directly to both linear and
nonlinear time-fractional Schrédinger equations [2,
6, 21].

We will circulate the general formula on the linear
time-fractional Schrédinger equation, and apply
some examples.

The analytical solutions along with the
graphs reveal the reliability and full efficiency of
the proposed algorithms.

Definitions
Definition A real function g(x), x >0, is

said to be in the space C,, g e R if there exists a

real number p (> u), such that g (x)=x7g,(x),

where g,(x)eC [0, ), and it is said to be in the
space C;O if and only if g” eC,, u=2l, meN .

Definition The Riemann-Liouville fractional

integral operator of order a >0, of a function

geC,, u>-1,isdefined as:

w
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1“g(x )=mj‘(x —1) g (t)dt,a>0, x >0

2
1°g(x)=g(x).
Properties of the operator 7 can be found in [2],

we mention only the following for geC,,
u>2-1, a, 20 and y>-1:

- 1917 g (1)=1"P g (1),

2-191P g(1)=1P1%g (1),

_ I(y+1) x @
I'(a+y+1)

3- [%x7

Definition 1.1.3. The fractional derivative of

g (x) in the Caputo sense is defined as

Dfg(x)=1"""D" g(x)

m—oa—1 m
“Tom = a)j<x 1) t)dt, (3)

for m —1<a>m, meN, x >0, f €C"}.
Also, we need here two of its basic properties.
Lemma 1.1. If m—1<a<m, meN and geC”,
L >—1,then
D¥I%g(x)=g(x),
and

) (0" )k

D) =g ()3 & x
k=0 .

, x>0. (4

Picard Method (PM).

To illustrate the basic idea of this method,
we consider the following general fractional
differential equation of arbitrary order o >0
DE(t)=F(t,u®(t)), m-1<a<m, meN, (5)

ak

—u(0)=hy,

k=0,1,2,...m-1, (6)
di*

where D, is the fractional differential operator of

order a>0. In view of the fractional integral
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operators, the initial value fractional problem (5)
and (6) is equivalent to the fractional integral
equation:

-1 k

u(t)=mz hy 't—+1ta[F(f,ut(k)(l))]
k=0 k!

=f +N (u), (7)
m—1 k

where Y % N )=1°[F (t,u® (t))],
k=0 :

and 1, is the inverse of D, . The required solution
u (¢) for (7) which is also the solution for (5) and
(6) can be obtained as the limit of sequence of
function u, . (¢#) generated by the recurrence
relation:

ug =/,

{u,.+l=uO+N(u,), r=0,1,2, ..., ®

Homotopy Perturbation Method (HMP).
To illustrate the basic concept of this

method, we consider the following differential

equation:

Aw)—-g(r)=0, reQ, 9

with boundary conditions:

B(u,a—uj=0, rerl, (10)
on

where A is a general differential operator, B is

boundary operator, g (r) is a known analytical

function and I' is the boundary of the domain Q.
The operator A can be generally divided into two
operator L and N, where L is linear and N is a
nonlinear. Then equation (9) can be written as
follows:

Lw)+N (u)—-g(r)=0, reQ. (11)
Using the Homotopy perturbation technique, we

can construct a homotopy v (r, p): Qx[0,1] >R

which satisfies

H,p)=>0-p)I(LE)=L(u)l+p[L()

+N (v)-g(r)]=0, (12)
or
H@,p)=L)=L(ug)+pL(ug)

+p[N (v)-g(r)], (13)

where r € Q, p €[0, 1] is an embedding parameter
and u, is an initial approximation that satisfies the
boundary conditions. Now the solution of (12) and
(13) can be written as a power series in p, as
follows:

v:v0+pv1+p2v2+..., (14)
and the best approximation solution is:

u=limyv =vyg+v,+v, +.. . (15)
p—l

Now for the general fractional differential equation:
Df (x,t)=L(u,u,,u, )+N (u,u,,u.)+g(x,t),
t>0, (16)

where L is a liner operator, N is a nonlinear

operator, g (x,t) is a known analytic function and

D“, is the Caputo fractional derivative of order «,

where m —1l<a<m, subject to the initial

conditions:

u® (x,0)=h, (x), k=0,1,2,3,...,m—-1. (17)

In view of the homotopy technique, we can

construct the following homotopy:

Dtau _L(u’ux s Uxx )_g(xat):p[N (I/I,Mx > Uxx ]7
(18)

or

Dtau _g(xat):p[(uaux auxx )+N (u’ux auxx )] .
19)

The basic assumption is that the solution of (19) can

be written as a power series in p:

u=u0+pu1+p2u2+... . (20)

Finally, the n-term approximate solution is



n-1
u(x)=>u; . (21)
i=0

Application
Linear Time-Fractional Schrodinger
Equation.
Let's consider the linear time-fractional

Schrodinger equation of the following form

Dfutiu,, =0, u(x,0)=f(x), 0<a<l
(22)

To solve the linear time-fractional Schrédinger

equation (22) by using:

1- PM: We proceed as follows:

upg=ugFL0i[(u; ) 1, j20, 0<a<l, (23)

uy=f(x),

PN o PN o S
=l O l{8x2:|_f(X)+l ox? F(a+1)’
3 . af t“
U, _f (X)+]t l|:f ()C) ax2 F(O‘Jrl)lx

aZf tDt +1264f ZL20{

O e T ot T2as))
v, 2 ta
us=f (x)¥1, {f(x)+ Py 2m

+i —_—
A T(2a+1)

2 a 4 2a
t 0 t
of 429

O T et TQasD)
3 aéf t3(l
e TGa+) @9
For higher order terms, we can obtain:
u(x,0) f(x>+2(+1) O s 1)222{ (25)

For the special case « =1, we obtain from equation

(25)

u(x,r) f(X)+Z( 1)

2n
GNP
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2-HPM: we suppose that the solution of the

problem can be written as a power series in p:

U =ug +pu1+p2u2 . 27
and let us construct the homotopy:

Df =xpliu,, ], (28)

Substitute (27) in (28), the homotopy for (22)

becomes:
Dta[uo +puy +p2u2 +p3u3 +..]=Fpi[uy+pu, +p2u2
+plus+.0 (29

Equating the coefficients of equal power of p in

both sides of (29), we obtain:

ug(x,0)=f (x),
p' :D,aulziiuow , up(x,0)=0,

p° :Dfuy=0,

p- i Dfuy=Fiuy_, uy(x,0)=0, (30)

P’ i Dfuy=Fiuy -, uz(x,0)=0,

Solving the above set of equations (30), we get the
first terms of the homotopy perturbation solution
for (22):

ug=f (x)
ox2T(a+1)

4 2a
ox*T(2a+1)

ul :il

€2))

u i s E—
ST T Gar )’

So the solution will be
u(x,t)=ug+u +uy +uz+...

aZf ta o 26f t2a

= F T T o T atD)

36 f t3a
ox® F(3a+1)

Fi (32)
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For higher terms we get

tna a2nf(x)
(Ifl06+1) 8x2”

u(x,t)=f(x)+Z<¢1>”<i)"F
n=l

(33)
For special case =1 , we obtain from equation

(33)
2 (i) 3P f (x)

n[ ax2n

w(x,0)=f (x)+ (F1)

n=1
Example 3.1. Consider the linear time-fractional
Schrodinger equation

Dfu, +iu,, =0, O<a<l, (34)

with the initial condition u (x, 0)=k e’ ™~ .

1- By PM:

We construct the following iteration
formula for Picard:
U =ug =150 ), ], Jz0. (35)
Therefore, we can obtain the following first few
terms of the required solution.
ug=hke"",

a

u =k’ +ikm?

C(a+1)’
. . 1%
u,=ke'"* vikm?e!mr —
I'(ae+1)
) t2a
+i2km4€ln1x—,
r2a+1)
. . %
uy=ke'"* vikm?e! ™ —
I'la+1)
) t2a ) t3zx
wiZkmtem™ — 4 idkmletmt |
r2a+1) I'GGe+l1)
then
) ) ta - tZa
u=ke'"| 1+im*"——+i*m" —
I'a+1) ra+1)
3a
+i3m6—t .
I'Ba+1)

In closed form, we obtain the solution

X [ee] tna
u=ke"* im?)' ————— | 36
(nZ:;‘)( ) F(na+1)J (36)
For the special case & =1, we obtain that:

. 2 .\2 . 2 .\3
u:ke”“(1+im2t+(lm b m7) +J

2! 3!
=keim(x+mt)

which is an exact solution for (34).
The same result can be obtained by

applying the general formula (25) for solving (4.34)

in the form:
a
uzkeimx+ikm2eimx—t
'a+1)
) t2a
+iZhkmtelmy ——
ra+1)
. t3a
+idkmbe' ™ —— 4., (37)
I'Ga+1)
then
u=ke' ™| 1+im? £ 2
I'a+1) IFCa+1)

In closed form, we obtain:

) o) (e
—kelMmx PN/ )
neRe (;)(lm ) F(na+1)]

For the special case o =1, we obtain that

902 2.3
u=ke””(1+im2t+(lm f) +(lm £ +]
21 3!

=keim(x+mt)’ (38)
which is the exact solution for (34).

2- By HPM: The homotopy for (34) becomes
Dfu=—iplu,,], (39)

we suppose that the solution of the problem (34) is

in the form:

u=u0+pu1+p2u2+p3u3+.... (40)



Substituting (40) into (39), we obtain:
Df [uy + puy +p2u2 +p3u3 +..]=—i pluy+puy,
+pluy +puy +.]i g (41)

Equating the terms of equal powers of p in both
sides of the above equation, we obtain:

P’ D% uy=0, ug(x,0)=ke' ™,
p Dfuy=-iuy ., u(x,0)=0,

p?: Dfuy=—iu,__, uy(x,0)=0, (42)

P i Dfuy=—iuy -, uy(x,0)=0,

Solving the above set equations in (42), we obtain:

uozkelmx’
a
imx t

C(a+1)

2a

u1=ikm2e

t

u2=i2km4eimx .
r(2a+1)

(43)

t3a

6eimx ,
FGa+1)

-3
us=i"km

So the solution will be
u(x,t)=uy+u;+uy +usz+..

a

t

ke vikmPe™ ——
T(a+l)
2a 3a

4 imx t i3k mP o n
Ira+l) I'Ga+1)

+i’km

i

(44)
then

3 ) 7 t2a
u=>yu; =ke™ 1+i m* +itm ———
& T(a+l) T(2a+)

3a
.3 6 t

m —.
rGa+l)

In closed form, we obtain the solution

E. E. Eladdad (2019)

_ imx < . 2\n tna
u=ke (%(zm ) —r(na+1)J' (45)

For the special cases a =1, we obtain

2
. ) . ) .
u(x,t)=ke™ +ikm?e™ t+i’k m*e™ B

3
+itkmCbe™ 3 +.. =k e™TM (46)

which is the same exact solution as obtained by
PM.

It is clear that the result obtained by HPM in (45) is
the same result as obtained by PM (36).

In Fig. (3), we have Plotted the
approximate solution for the linear Schrdédinger
equation (34) for the closed a) a=0.25, b)
a=0.5, ¢) =075, d) a=1, and e) the

corresponding exact solution at m =k =1.

(b) a=0.50

(e) Exact solution
Fig. 3. The surfaces show the approximate solution
for (34) for various values of @ with the

corresponding exact solution at m =k =1.
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Example 3.2. Consider the linear time-fractional

Schrodinger equation.
Dfu+iu,, =0, (47)

with the initial condition

u(x,0)=1+cosh2x .

1- By PM: using formula (25) lead to the following
result:

a

u(x,t)=1+cosh2x —4icosh2x ——
I'(a+1)

2a

+16i % cosh2x ———
r2a+1)

3a

—64i°cosh2x ———
F(3a+l)

a 20

“l+cosh2x| 1-4i —— 4162
T(a+1)

Ta+l)

3a

i
rGa+l)

(48)
then

u(x,t)=1+cosh2x(i(-41‘)”%} (49)
no

n=0

For the special case a =1, we obtain
/2
u(x,t)=1+cosh2x —4i cosh2x ¢ +16{ 2 cosh2x B

3

—64i° cosh2x t3—'+ =l+e?

it
"' cosh2x ,

which is the exact solution for (47).
2- By HPM: by using formula (33), we obtain that:
ug=1+cos2x,

a

u, =—4i cosh2x t—,
I'(a+1)
2a
u, =16 % cosh2x ———, (50)
F(2a+1)
3a

uy =—64i 3 cosh2xy ————,
rca+1)

So the solution will be:
u(x,t)=ug+u +u, +uz+...
a

I'a+1)

=1+cosh2x —4i cosh2x

2a

+16i%cosh2x ———
ra+1)

3a

t

—64i°cosh2x ——+...
FQa+l)

a 2a

“1+cosh2x| 1-4i —— +16i2
T(a+1)

r2a+1)

3a
— .3—
64i r(3a+1)+"'j (51)

then

o0 o tn(l
u(x,l)—1+cosh2x(nzg(—4l) —F(na—i-l)J (52)

For the special case « =1, we obtain that

2
u(x,t)=1+cosh2x —4i cosh2x t +16i % cosh2x %

3
—64i° cosh2x t3—'+

=1+e ' cosh2x .

which is an exact solution for (47).

It is clear that the result obtained by HPM in (52) is
the same result as obtained by PM (49).

In Fig. (2), we have Plotted the approxi-
mate solution for the linear Schrodinger equation
(47) for the case a) =025, b) a=0.5, ¢)
a=0.75,d) a=1, and e) the corresponding exact

solution.



(e) Exact solution

Fig. 3. The approximate solution for (47) for var-
ious values at @ with corresponding exact solution.
Non Linear Time-Fractional Schrodinger

Equation.

Consider the  following  nonlinear

Schrodinger equation in the following form

iDu+pu,  +v(x)u+ylu|*u=0,0<a<l,
(53)

which the initial conditions:

u(x,0)=f(x).

We can rewrite the equation (53) in the form

Dfu—-Biu,, —iv(x)u —yiu?iad =0 where i

is the complex conjugate of u, |u?|=ui& and
S, y are constants, u (x,¢) is a complex function,
v (x ) is a function with x.
1- By PM: we proceed as follows

. . . 2 —
U =ug+17[i Pu; +iv(x)u; +iyuji;],

>0, 0<a<l, (54)

E. E. Eladdad (2019)
ug=f(x),

ul =f ()C )+[l yu—(}ug +inV (x )+iﬂu0xx ]F(Z!'FI) ’

a

wy =f () +[i yitgug +iug (x)+i Bug_ i

=272 uduy =3yiaqudy (x)—ugp *(x)
— 2 — 2 22 —
—2,57”0“0x —4ﬂ7uouoxuox —ﬂﬂ’”ouoxuo”

—“4fyugiy,  —2pv(x)ug, —,B;/ugﬁox U,

~Bug—2Bug v'(x )= Pug"(x)]
t2a
—_—+t...,
ra+1)

uy=f (x)+[iyu§ﬁ0 +iug (x)+i Pug_ ]ﬁ

+[—2y2u§u3 —Byugu_ov (x )—uovz(x)

_ _ 9 22 —
—2Byuguy —4PByugig ug, —Brugug g

— 2
—“ﬂﬂ’uououomC —2pv(x )“oxx - ﬂ?’uo“oxuoxx
2a

2y v' ()~ Pugy () |

_ 2
P T2a+1)

XXX
+Hi )/31/7031/!3 —-2i }/2L702u8v (x)—i 7LTOM§V2(X)

~2i Bylirguqug,, —2i Britgugr(x g
) 5 3a
- Uyl —_— ...
P Oxx]r(3a+1)

2- By HPM: we suppose that the solution of the

problem can written as a power series in p
DXfu=ip[fu,, +v (x)u+yu’ic], (55)

U =ug +pu1+p2u2 +1)3u3 o (56)
Substituting (56) in (53), the homotopy for (53)

becomes
2 3 .
D [ug +puy+p-uy +pus+..]=i p[ Blug +pu
2 3 2 3
P Uy +pus+. ] Y (X)[ug +puy +puy + prus
2 3 20— —
+.J+7lug +puy+puy, +pus+..] [ug + puy

+p’ity + pity 1] (57)



Picard and Homotopy Perturbation Methods for Solving the Time-Fractional Schrédinger Equations 9

Equating the coefficient of equal power of p in both

sides of equation (57), we obtain

P°:Dfuy =0, up(x, 0)=/(x),

P Dy =Piug  +iv (g, +yiudity, u(x,0)=0,

P DA, =Piw_+iv () +yi Ui
+ 271ty Uy, uy(x,0)=0,

3.1, _ . .2
P Dfus=Piuy  +iv 0y, +yiugiy

+yi zio(ul2 +2ugty )+ 2y ugniiny, us(x, 0)=0,

(58)
Solving the above set of equation in (58), we get the
first terms of the homotopy perturbation
ug=f(x),

a

t

ulz[ﬂiuoxx +iv (x )MO)C +7iu§bl_0]m,

uy =[fiuy  +iv(x)u +7/iu§u_1 +2yiugug ]
t2a
ra+1)’
. . .2 — . — 2
uy=[Liuy +iv (x)uy +yiugiy+yiig(u;
3a

uous )+ 2viugu it |—————,
or )+ 2y Oll]F(3a+l)

So the solution will be

u(x,t)=ug+u +u, +uz+....

Example 3. Consider the following cubic nonlinear
time-fractional Schrodinger equation

iDfu+pu., —2|ul*u=0, (59)
with the initial condition

u(x,0)=e'"

The exact solution is u (x,7)=e'* ). We have
f=Lv(x)=0,

equation (59) in the form

y=-2, we can rewrite the

D —iu,, +2iu’ic=0. (60)

1- By PM: we constract the following iteration

formula for Picard:
uj+1 :uo +[ta[iujxx —211/1]21/!] ]’ ]ZO’ (61)
therefore, we can obtain the following first few

terms of the required solution

u0=e N

a
u =e'”" —3ie”‘t—,
I'ae+1)
uzzeix _3ieix t” 22 ix t2a ,
I'(a+1) r2a+1)
a 2a
uy=e'” B PP SRNLAR P LS
I'(ae+1) r2e+1)
_33;3,0x >
rGa+l)’
then

u=eix(l—3i 7 (3l )2 20! (3l)3 30‘ +]
[(a+]) TQa+l) TGa+l)
(62)

In closed form, we obtain the solution

(Z( 31 r(na+1)J (63)

For the special case a =1, we obtain

(3it)2_(3it)3+m}

u(x,t)=e (1—31t+ o 3

which is an exact solution for (59).

2- By HPM: the homotopy (59) becomes
Du=iplu,, —2u’i], (64)
we suppose that the solution of the problem (64) is

in the form

u=u0+pu1+p2u2+p3u3+.... (65)

Substituting (65) into (64), we obtain:

Dta[uo +puy +p2u2 +p3u3 +..]=i p[lug +pu +p2u2
3 2 3 2

+p uz+.. ] —2ug+pu;+pu, +prus+.]

ity + pity + p ity + p ity +...]] (66)
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Equating the terms of equal powers p in both sides

of the above equation we obtain:
P°: Dfuy =0, ug(x,0)=e'",
P’ 1 Dfuy =iy iy, u;(x,0)=0,

p? D%, =iuy —2i ud ity —4i ugity, uH(x,0)=0,

3.7, _i A 2= g 2
P Dfuy=iuy  —2iugiy —2iug (uy +2uguy)

—diugin, uy(x, 0)=0,
(67)
Solving the above set of equation in (67), we obtain
uy=e'",
a
u=-"3ie"" ! ,
[(a+1)
. 2a
1y =9i%e’™ ———,
I'2a+l)
) 3a ) 3a
uy=-G3i’eF ——y1giex L T@atD
I(3a+1) TGa+l) T(a+1)
(68)
So the solution will be
u(x,t)=ug+u +uy +uz+...
a 2a
=eix —3ie* ! 2.2 ix
T(a+1) FQa+l)
3a 3a
63i% L 418i%
FGa+l) F(Ga+l)
w+... (69)
I'a+1)
then
3 ) t2a t2a
u=Yy u;=e""| 1-3i ———+(3i*)———
P T(2a+l) T(2a+1)
3a
GBI ——— ..
FGa+l)

In closed form, we obtain the solution:

ix - i\ tna
u=e (ZO( 3i) —r(na+1)J' (70)

The special case a =1, we obtain that

E. E. Eladdad (2019)

2
; i 2 ixt
u(x,t):e”‘—31e”‘z+(3z)2e”‘5

.3 ixt3 _i(x-3t)
—(3i)’e ;4‘...—6 .

Which is the same exact solution as obtained by
PM.
It is clear that the result obtained by HPM in (70) is
the same result as obtained by PM in (63).

In Fig. (3), we have plotted the approximate
solution for nonlinear Schrodinger equation (55) for

the cases a) ¢ =0.25, b) «=0.5, ¢) a=0.75,

d) @ =1, and e) the corresponding exact solution.

(b) @ =0.50

(e) Exact solution

Fig. 3. The surface shows the approximate solution
for (59) for various values at a with the
corresponding exact solution.

Example 4. We consider the nonlinear time-

fractional Schrodinger equation
1
iD,“z—Euxx +ucos’x +|u’|u, (71

with the initial condition
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u(x,0)=sinx .

The exact solution is

ﬂsinx
u(x,t)=e 2

We rewrite the equation (71) in the form

—iucos’x —iutir. (72)

1.
Dfu =it

In the equation we have fg=—, y=-1, and

1
29
v(x )=—cos2x .

1- By PM: we construct the following iteration

formula for Picard:

u -

1
_ a . - 2 . 2 —
]+1_u0+1t|:2lujxx fujcos™x —iuju; |,

Jj =0, (73)
Therefore, we can obtain the following first few
terms of required solution
ug =sinx ,

a

. 3. . t
Uy =sinx ——i sinx
2

C(a+1)’
3 a 9 2a
U, =sinx ——1i sin +2i%siny ———...,
2 I'(a+1) 4 r2a+1)
3 a 9 2a
Uy =sinx ——=i sin———+—i 2 siny ———
I'a+1) 4 ra+1)
3a
s L (74)
8 T'(Ba+l)
then
. 3 it? 9 , ¢
u=sinx| 1— +—i
2T (a+1) 4 TQRa+l)

1" —+... .
8 T(Ba+l)

In closed form, we obtain the solution:

. (3 "
u—smx{}g(—?j —F(na+1)]' (75)

For the special case « =1, we obtain that:

. 3.0 (3ie Y1 (3ieN 1
u(x,t)=sinx| 1-=it+| — | == — | =+...
2 2 )22 )3

_2it

=e 2 sinx ,
which is an exact solution for (72).

2- By HPM: the homotopy for (72) becomes

Dt’)‘:ip{%uxx —coszxu—uzﬁ}, (76)
we suppose that the solution of the problem (74) is
in the form

u=u0+pu1+p2u2+p3u3+..., 77)

substituting (76) into (77), we obtain:
De 2 3 .11 2
g +puy +p7uy +pus +.. =i p E[uo tpuy+pu,

+p3u3 + oo )ix —cos’x [ug +pu, +p2u2 +p3u3 +...]

—fug+pu +P2”2 +P3”3 +"']2[LTO +puy +P2572
+pity +...]}. (78)

Equating the terms of equal powers p in both sides

of the above equation, we obtain:
p° D%y =0, uy(x, 0)=sinx,

p' D%, =Eiu0xx —i cos” X uy —i ug ity, uy(x, 0)=0,

1. , .
p?:Dfu, =5, i cos® X uy —i ud ity
—2l uoulﬁo, uZ(.x, 0)=0,

p’:Dfu, =§iu2xx —i COS X 1ty —i ity —i iy (4}

+ 21y ) — 20 Uiy us(x, 0)=0,

(79)

Solving the above set of equation in (79), we obtain
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Uy =sinx,
td
ul :‘l Sll’lx N
2 [a+1)
9.,. t2a
Uy =—1"sinx ,
4 I2a+l)
3a 3
u3=—913smx ! —21'3 in® !
8 I'Ga+l) 4 I'Ga+1)
3a 3a
—271'3Sin3x t +2i3 . 3x t F(2a+1)
4 FGa+l) 4 TGa+) T(a+1Y
(80)
So the solution will be
u(x,t)=ug+u)+uy +uz+...
. 3., t? 9., .
=sinx ——i sinx ————+—{ “sinx
2 I'a+1) 4
t2a 9 t3a
—  Ziliny——
ra+1) 8 IrGa+1)
3a
—Zi3 cos x sinx t———7i3sin3x
4 rGa+1) 4
3a 3a
! +2i3sin3x d [Ga+D) +...
I'Ga+1) 4 I'Ga+1) F(a+1)2

(81

3 a 2a
u=2ui=sinx 1—3 ! +2i2 !
, 2T (a+1) 4 T'QRa+l)

27 .5 t3a
- —+... .
8 TGa+l)

In closed form, we obtain the solution

. (30 e
u—smx[%(—;z) m} (82)

For the special case « =1, we obtain that

. N2
. 3it . (Git)
u(x,t)=sinx —Tsmx + sinx

. \3
(3it) .
- sinx +...

E. E. Eladdad (2019)

it

=e 2 sinx,
which is the same exact solution as obtained by
PM.
It is clear that the result obtained by HPM in (82) is
the same result as obtained by PM in (75)
In Fig. (4), we have plotted the approximate
solution for the nonlinear Schrédinger equation (77)

for cases a) ¢ =0.25,b) a=0.5,¢c) a=0.75, d)

a =1, and e) the corresponding exact solution.

(e) Exact solution
Fig. 4. The surface shows the approximate solution
for (72) for various values of « with the
corresponding exact solution.
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