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Abstract: In this paper, the exact truncated distribution of the stock price (truncated distribution
for the range of a Wiener process) is available among the established results in the field of mathematics (Probability
Distributions). Various statistical properties of the distribution are derived including reliability properties,
moments, stress-strength parameter, order statistics, Bonferroni curve, Lorenz curve and Gini’s index. A
real data set is analyzed to clarify the effectiveness of this distribution.

Keywords: Truncated distribution; Wiener process; Reliability properties; Order Statistics.

1. Introduction

Truncation in probability distributions may occur networks and finance. etc. Truncation occurs
in  many studies such as life testing in various situations, for example, right
and reliability. Truncation arises because, in many truncation occurs in the study of life testing

situations, failure of a unit is observed only if it and reliability of items such as an electronic

component, light bulbs, etc. Left truncation
arises because, in many situations, failure of a
unit is observed only if it fails after a certain
period. Often, study units may not be
followed at the beginning of an experiment
until all of them fail, and the experimenter
may have to start at a certain time and stop at
a certain time when some of the units may
still be working. Many researchers were
interested in studying the truncation method
of the distribution, for example: Zaninetti [12]

fails before and/or after a certain period. May
sometimes happen to be range of the
definition of a certain probabilistic
distribution is not fully compatible with some
of the data, either for theoretical reasons or
because the portion of the data cannot be
obtained within this range, in this case we
resort to the truncated distribution. The
truncation method of the distribution is an
important methodology in different fields of
sciences, in particular communication

The truncated distribution of the range for a Wiener process: Application to the stock price




A.A. Teamah et al.

presents a right and left truncated gamma
distribution with application to the stars that
introduces an upper and a lower boundary. In
addition, the parameters which characterize
the truncated gamma distribution are
evaluated. A Class of truncated Binomial
lifetime distributions is obtained by Alkarni
[13]. The type of middle and random
truncation have been studied by Mohie El-
Din et al. [14] and Teamabh et al. [15]. Ali and
Nadarajah [3] introduced a truncated version
of the Pareto distribution. They derived the
explicit expressions for the moments for the
truncated version. Nadarajah [4] introduced
truncated versions for five of the most
commonly known long tailed distributions
which possess finite moments of all orders
and could therefore be better models.
Zaninetti and Ferraro [5] presented a
comparison between the Pareto and truncated
Pareto distributions. Recently, many papers
has been presented the most important
applications of the truncated distribution in
various fields of science, for example, Pender
[7] used the truncated normal distribution to
approximate the non stationary single server
queue with abandonment. Chattopadhyay et al.
[8] provided a more accurate data fitting by using
truncated geometric distribution to model the
node degree distribution of a network compared
to power-law, log-normal, Pareto, drift power-law
and power-law with  exponential cutoff
distributions.

The Wiener process has many applications
throughout the mathematical sciences. In
physics it is used to study Brownian motion,
the diffusion of minute particles suspended in
fluid, and other types of diffusion via the
Fokker—Planck and Langevin equations. It
also forms the basis for the rigorous path
integral formulation of quantum mechanics
(by the Feynman—Kac formula, a solution to
the Schrédinger equation can be represented
in terms of the Wiener process) and the study

of eternal inflation in physical cosmology. It
is also a prominent in the mathematical theory
of finance, in particular the Black—Scholes
option pricing model. The change of price
formula based on the assumption that stock
price follow a wiener process. The
distribution of stock price through known
time interval is the distribution of a Wiener
process range. In the time interval (0,7) the
range of the Wiener process {W(¢);t>0} is
R(T)=supW(t)—inf W(f)and it gives the
0,7) 0,7)
difference between the highest price for the
stock and it's the lowest price. Feller [1]
derived the probability density function of
this range by using the method of images.
Recently, an expansion for its cumulative
distribution function and its quantiles are
given by Withers and Nadarajah [2]. In
addition, they gave a table of this cumulative
distribution function. Here we have the
following question: what should be done if
we need to find the new distribution of the
stock price in the time interval (0,7) and its

value is sandwiched between two certain
values a, b? To answer the above questions,

we should do a truncation on the distribution
of a Wiener process range that has been
obtained by Feller [1].

In this paper, we will provide the Truncated
Distribution of a Wiener Range (TDWR) and
study various its statistical properties. The
properties  studied include  reliability
properties, moments, stress-strength
parameter, order statistics, Bonferroni curve,
Lorenz curve and Gini’s index. The
difference  between the TDWR and
distribution of a Wiener process range which
has been obtained by Feller [1] are showed as
in the given figures through the paper.

The paper is organized as follows. In Section
2, we introduce the TDWR. We study some
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statistical properties for TDWR in Section 3.
An application to a real data set is presented
in Section 4. Section 5 ends the paper with
some concluding remarks and future works.

2. Truncated distribution of a
Wiener range (TDWR)

The stock price is assumed to move randomly
according to one dimensional Wiener process

{(W(t),t eR*}, where R" is the set of real

numbers and W (¢) is a Wiener process on

(0,0) with range I_€(T )on the time interval
(0,7). This range is the difference between
supW(¢) and 1nf W(t). Feller [1] gave the

(0.7)
probability density function for the range of
W (t) which controls the target’s motion as:

-1
1
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6]
T>0and it is
represented as in the figure 1.
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Figure 1: The probability density function
of R(T).

Withers and Nadarajah [2] give its cumulative

distribution function by:

8T
Fan (1) = z((Zk )27 +F_2jx

{ (2k—1)27r2T}
exXpl ————
2r

2)

and it is represented as in figure 2.
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Figure 2: Cumulative distribution function
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Hence, it is easy to show that the survival

function F, ()=1-

R(T) (7)is decreasing

R(T)

by increasing the value of T, see figure 3.
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Figure 3: Survival function of the range
The
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model lifetime data with increasing failure
rate.
We are interested in TDWR defined by the

following definition.

Definition 1. Let R(T) be a random variable
with probability density function (1), define
R(T) as a corresponding double truncated
(truncation from left and right) of R(T)with
the probability density function g, (r):
Then, the probability density function of
double truncated of R(T) is given by:
Fain )
Fry(0) = Fery (@)

Er(r) (r)=

k=12 2% 72T

-+ 8r2T)e_ 2

T?|&
2 ;((21( )7’

3 8 _@k-D’Z’1
z +87h2 ]e 2

S k-7

(2k=1)*7°Ta™?

_Z(Qk P +8Ta” ]e 2
3

where a <r <band T > 0 (see Appendix A) .

Figure 4 represents the TDWR density
function for different values of aand b with

increasing the value of T .

Remark 1. Using the ratio test, we can prove

(k- 1)%2; 2T

hat de is convergent where
= 2k-1)°n’

(

_QUk+)-1? 24T 1)27z2r r _Qk-)*z* 7T 1)27z 2T
m i Be =0
= Qk+1)- (2k—1) z? '

Thus, by the Weierstrass M-Test we see that,

k-1’71

i 8e 2
2k —1)’ 7>

k=1

is uniformly convergent to

0. Consequently, we can get (1) from (3)
when a —> 0 and b — .




A.A. Teamah et al.

—_— T0.2,al05bc7

----- T0.3,al0.6,br6

- T10.6,a0.7,br6

- Tr0.9,a108br4

T1.2,a009b08

Double Truncated Density Function

Double truncated
probability density

Figure 4:

The cumulative distribution function of
TDWR is given by:

fE(T)(r)
R(T)() J R(T)(b) R(T)( ) r,

using integration by parts as in the appendix

A, we get:
—(1-2k)* 2°T —(1=2k)* 7*T
1| 8 —ae W e 2
>
2 ‘kil (7 —2kr)’
GR(T) (r)=

;((21{—1)

_Z[ek—l)

and it is represented in figure 5.

k-1’7’
+87h2 ]e 2

_(2k-1)?7’Ta™?
+8Ta™? ]e 2

“)

>

TC0.2,aL0.5 '
TC0.3,a0.6
TC0.6,aL0.7
TC0.9,ar0.8

T1.2,a0.9

Figure 5: Cumulative distribution function
of TDWR.

Consequently, the survival function of

TDWR is G () =1-Gy(r) and it is

decreasing by increasing the value of T, see

figure 6.
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Figure 6:Survival function of the TDWR.

3. Some statistical properties

In this section, we study various statistical
properties of the range distribution (truncated
and non truncated) including shapes of the
probability distribution function and the
hazard rate function, reliability properties,
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raw moments, moments of (reversed) residual
life, stress-strength parameter, Bonferroni
curve, Lorenz curve and Gini’s index.

3.1 Reliability properties

A key concept of "Whenever you want to
check more than one investment profits in the
stock market, investment whenever exposed
to greater risk." You are when you buy or sell
shares or bonds or any other financial
instruments, you are fair investment risk and
the degree of risk this differ from other
financial instrument. For example, the
financial instruments that you expect them
highly profitable (such as active stock)
contain a large degree of risk. This means that
the share price could rise so much (that is to
make a profit for you), but it may happen that
the price drops much (and these are the risks
that may cause the low volume of your
money and your investments). Therefore, the
risk rate (hazard rate) is influenced by the
swings between fall and rise much of the
stock price during the time period(0,7). We
get the hazard rate function of the range
distribution for Feller [1] and Withers and
Nadarajah [2] as follows:

) (M) = fﬂﬂ{Fk(:)(”)}?l

1 N R
2V, HErr | Qk-1)2z* | FT ?
— | Q2r)} —— exp| ——— | ——

(nj ( ){ 2 sz{ P 8 2

- B 8T Qk—-17°T
;[(21( P JeXp{_ 272 }
6]
and it is represented as in figure 7. Also, the

reversed hazard rate function is:
Zxen () = frad ,m)(r)}‘1

-1 1\ 2
Qk-1)*7*

(2| | S 2

k=1

~
~

) = 87 I (2k-1’7°T ’
kz[(Zk—l)z 2 rz]exl{ 2 }

(©)

See figure 8.
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Figure 8: Reversed hazard rate function
of the range.
It is clear that, the hazard rate approaches
zero as the range 7 increases, and increases
rapidly as 7 falls to zero. For the new
distribution of TDWR, the hazard rate

function is:
®R(T) (r)= Er {(_;R(t) (V)}_la

and it is represented in figure 9.
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Figure 9: Hazard rate function of TDWR.
In addition, the reversed hazard rate function
of TDWR is:
O ity (1) = rery Gy (M1
see figure 10. Also, in this case the hazard
rate increases rapidly as r falls to lower

bound a.

5

T0.2,al0.5bL7

TC0.3,al0.6,bL 6

T0.6,al0.7,b 6

TC0.9,al0.8br4

Reversed Hazard Rate Function of BRW

Ti1.2,a0.9,br 8

4 5 6 7

Figure 10: Reversed hazard rate function

of TDWR.
3.2 Moments
Many interesting characteristics and features
of the range distribution and TDWR can be
studied through its generating function and

moments. For the range distribution (1)
Withers and Nadarajah [2] found its
generating, characteristic functions and

moments. Here, if R has TDWR distribution
and a<r<bandT >0then the moment
generating function (m.g.f.) of R defined by:

M(t) = E(e")

-1
2| e k=17 7T
‘T Z( 8 5 2+8r2Tje 2 e”
, 2 1S\ Qk-D)"x
= < —dr
© (2k-1)*7°Th?
A 8T e 2
o\ (2k— 1) w
© 8 k-1 7’Ta”’
—Z ﬁﬁ-STa*Z e 2
o\ (k-7
-
2
T 1(a,b,t,T)
- © k-1 7’Tp°
Dl 5+8Tb7 e 2
i\ (2k — 1) 7
(2k-1)’7’Ta”?
—Z +8Ta? |e 2
(2k—1)
(7
where,
b = & [tr—ﬁ—gJ
I(a,b,t,T) = jz t e r, )
w k=1
and
8 k-1’7°T

a,=——— 4=8T, B, =
O Qk-1)r? P

Since the expansion of the exponential
function is valid for r € (—o0,) and the series

is uniformly convergent, then we have

w m m;z
_1+tr— +ZZ ( J(—ﬂk)”r’“”.
m! \ u
Assume that,
I(a,b,t,T)=1(a,b,t,T)+1,(a,b,t,T)

where,
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trfﬂJ

I1,(a,b,t,T) = zjak[ 3

:ibak(uw—ﬂhiit“( J( B 3“Jdr

r m=2 u=0 m'

)
and
ta 4]
LabtT)=Y [Se ~dr
k=1, T
b —
A > ﬂk SN tm “(m m=2-3pu
= 1 -— -B.)" “\dr.
akZ_:‘{( +tr pE; +MZ_;”:O — ('uj( B)r ] r
(10)
By solving the following equations:
m—-3u=-1, (11)
m—-2-3u=-1, (12)

as Diophantine equations, we have the set
solution for (11) is given by:

Sl = (mS] > s, ) = {(2a1)>(5’2)>(8a3)>(1 134)a-~~}a

(13)
and for (12)
S, =(mg ,pg )= {(4,1),(7,2),(10,3),(13,4),...}.
(14)

Hence, /,(a,b,t,T)can be written as follows:

I,(a,b,t,T) = Za{(b a)+— (b2 a’)- ﬂk[l—;ﬂ
k=1 a

Y om,(u# pg Am=myg, )

S [« ( ﬂ )/l " m+l=3p _m+l-3u
+;ak|:m—2u 0[ Jm'(m-‘rl 3#) (b ¢ ):|
S m\(=B)" i b
+kz_;a{(m%:€5(uj pr t lna}
(15)

Also, 1,(a,b,t,T)can be written as follows:

Iz(a,b,t,T)zdi{(a b Y41l b_ﬁk(l_lﬂ

Y m (g, Amzmsz)

~ C | X ( ﬁk)ﬂ " m=1-3u m=1-3u |
A S —T Ho_ Y
”Z{ZZ( ]m!(m—l—w)( ‘ )}
N m\(B)" -
+ "1
a;((w H)ES, lu m' " GJ
(16)

Consequently, from (15) and (16) we obtain
the value of (8). Hence,

M(t) = E(e")
-1
S| w k=177 T
‘T Z( 8 5 +8r2TJe 2 e”
R =
» (2k-1)’7’TH? dr
+8Th2 e 2
;((Zk . ]
© (2k-1)*7’Ta”’
- +8Ta™? |e 2
Z(@k—l)z ’ J
-1
T?
- (1,(a,b,t,T)+1,(a,b,t,T))
(2k-1)*7°Th?
( —+8Tb~ ] 2
=\ Qk-1)’7
- (2k-1? z°Ta™?
—z 7+8ch2 ei 2
=\ k-1’7’
(17)

Also, the moments of R about the origin can

be obtained as:

b

E(r”’)zjr"gR(T)(r)dr.
(18)
!
To solve (18), we let, x=rT 2/2 and

=(2k —1)* z* /8 then (3) become,

-1 (—4x~ exp(—a)kx"2 ))
T? & _ _
TZ +Qaw,x” exp(-w,x 7)) |,

)= L
@

- x(w,' +2x7%)
(19)
where,
. k- 7T
~+8Tb 7 e 2
©= ;((Zk -z J

@k=)*ATa
—z +87a’ le 2
2k - l) 7’

Since the series,
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(—4x~ exp(—a)kx’2 ) }

o | + Qo x” exp(—o,x 7))@, +2x77)

is uniformly convergence series, then we get,

E(x)=L A,

£ =

where,

, (—4x~ exp(~@,x 7))
= qu + Qx> exp(—w,x)) |dx.
¢ x(w;' +2x7%)

Thus,
A =g g’& pag 4 3
¢ é{z az} : 27 b
a —1+1,&
d 2°a’ '

g 149 D
SR

+ 2w,

where £is the exponential integral function.

2+qé;|:q a)k :| 2+qé;|:q a)k :l
—4+q _ g a)i
a 5{ 1+ X }

+b‘”"§{ 1+4 ZZ‘}

Consequently,

M

>
N

+ 2w,

E(xq)z

2k-12 2°Tb?

;((2]{ VA +8Th~ Je

» 8 k-1’ 7*Ta?
-2
—;((2]{_1)2”2 +8Ta ]e 2

1
By substation again with x=r7 2/2 and

= (2k - 1)2 7* /8 then we get:

8a’

S 4 2k -1y 7
o

4
2

29T

>
[ . 2k -1)x?
1 b”é[g,( 8b2) d }xk

Z +87h |e 2
i\ (2k - 1) ~?

k=12 7Ta™?

—Z[(zk Dx > +8Ta” ]e 2

E(r")z

(20)

where,

a—4+q §|: 1+ S (2k 12) :|
2k -1) x* 2" 8a
4 +b4+q§|:_1+q’(2k_1)27[2:|

2 8h?

In addition, the characteristic function can get

k =

from the equation:

M) = E(e™)

‘ 2 . _Qk=1’ 7T
Z +8r7°T le 2 e
(2k

k=1

dr

Il
S

. k=)’
Z((Zk Vi 2+8Tb'2)e 2
k=1

_Z((Zk )’z 8Ta2je 2

o] L

TT (. (a.b.t. Ty + 1 (@.b.t.T))
8 k-1 2’Th
s — 4+ 8Th7% e 2
k T (2k—1) 2

. 8 k-1’ 7°Ta”?
-2
_;((2/(—1)27[2 +8Ta Je 2
(21)

where, i = \/—_1 ,
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And, for TDWR(Z;) and TDWR(T))

0

(b—a)+i5t(b2 -a’)

jl (a,b,t,T) = 2 a, - distribution, we find that
=B Y = P(R(T,) < R(T))) where Y has
a b 2 1
Y (s, Am=mg, ) a random strength R(7;) that is subject
N s ak{ii[’q (=B (i)" ™ (bmﬂfsﬂ _ g )} to a random stress R(7,). Consequently,
k=1 w2 o\ M ) m!(m+1-3u) b
o u Y=(G (r;T,).g pery (7 T)dr. Now we find
k=1 (m,mes, \ M - )
and Y by assuming that,
IR o 8 k)T
A L@ =b7) 0, :Z(—z 5 +8le2je 2
12 (a,b,t,T) = dz . b ﬁk 1 1 k=1 (Zk - 1) T
| titln———"| ——— (2k-1)? 77T,
a 3\a b - Z +8Tale 2
Y om,(p# s, Am=myg, ) (2k - 1) !
RSB eh el R (_ﬁk)#(it)m_ﬂ -1-3 -1-3 < 8 - BCLa
+a —— " —a" = ————+8T,h 7 |e 2
;L,Zz;(ujm!(m—l—su)( ) e Z (2k—1>2n2 ’
© _ u (k-1 7’Tya”?
+ dz (mJ&(it)m” 1né . —Z +8T,a” |e 2
k=1 \_(m,u)eS, /’l m' a (2k 1)
c o= —8a B 8
3.3 Stress-strength parameter R (r=2kn)? Y (r-2kn)?
In this section, we find 22
e — - N _ (=207 , D 8 and
Y=P(R(T,)<R(T})), when R(7;) and k ) LT L-1 2
R(T,) are two independent random variables QL-1)7°
distributed as in (1) with T}, T,, respectively. F = - Then,
In the statistical literature Y is known as the .
stress-strength parameter which describes the T,%|T,2
changing of stock price. In addition, Y has a 20 2
random strength R(7))that is subject to a Y = W
— 122
random stress R(7,). The changing in stock . _(C N Ty, g N )
© w0 Ka 1y + w1y
price at the instant that the stress applied to it X ZZI € i #e . }d
—FrT, 2 _-FrlT
exceeds the strength, and the changing will kel L=l a| X (DLe +8r°Te )
function satisfactorily whenever Let,

R(T,) > R(T}); see, for example, Church and
Harris [6]. Thus, for the range distribution, Y
can be expressed as:

Y= _[ R(T)(r;TZ)‘fE(T)(F;Ti)dF.
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—N,a’T. —N,r T,
b (Cke “R 4 Bre 2)

J(a,b,Tl,T2)=J —Fr, Y
a|x\Dye " +8r e
-~ -2 o2
Cke N;a TzDLe Fpr-Th
_ -2 _ _ -2
ji +Ce M g e h
= r
a2 g2
o| +Bre W D e
+ B, re N 8r’2Tle_F’sz‘
-2 b -2,
=Ce ™ TzDLIe_FLr iy
a
2 b 2
—N,a °T, -2 _-Fr T
+C,e ™ 28Tl'|.r e’ 'dr
a
b -2 -2
+BkDLjre'N” Le i i gy
a
b 2 2
-1 _—-Nr T, —-Fr T
+Bk8ﬂfr e " e Ndr.
a
-Nya T,
=Ce ™ 2D, J (a,b,T,,T,)
—Na T,
+Ce ™ 28TJ,(a,b,T,,T,)
+B,D,J(a,b,T,,T,)
+B,87,J,(a,b,T,,T,),
where,
L AR

b
Jl(aaba]—iaTz):J.eiFLriledI”:_ae @ the b

o

f5%)

—Erf
EE T

b
Jy(a,b, T, T,) = [r7e " dr

a

Aol )

)dr

2JFAT

11

b
N, —Fr
J3(a,b,7],T2):Ire e gy
a

I‘*(O FLT'1+NKTZJ

2
a

:%FLTI FT +N,T.
+
_F(O’ L*1 - K 2)

F;T\+NgT, FT\+NgT,
2 2 2 2
—-a‘e ° +b7e P

FT+N,T
+l F(O, L 1a2 K 2)

F.T, +N,.T.
_F(O’ L lb2 K 2)

and

b
-1 N T, —Fr T,
J4(a,b,T1,T2)=Ir e e dr
a

F,T, + NiT.
_F(O, L la2 K zj

Consequently,

1 1
LT ,
2 2 CkeiNka ~TZDLJl(‘}l’b>T15Tz)

0

=7iz +C,e ™ 8T J,(a,b,T,,T,) |
Q0. +B,D,J(a,b,T,.T))
+Bk87"1J4(a,b,7],T2)J
(22)

Similarly, we can find

Y:jFE(T)(F;T2)'f§(T)(F;Ti)dF‘
0
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3.4 Order statistics

For the European minimum (or maximum)
options, Goldman et al. [16] defined and
derived the closed form pricing formula. The
exact distribution of the maximum and the
minimum of the prices-path had been
available among the established results in the
field of mathematics (Probability Theory).
There are several studies in the literature
including Bergman [17], Kemna and Vorst
[18], Kunitomo and Takahashi [19] and
Tumbull and Wakeman [20], they determined
the probability distribution of the geometric
average of the prices when the underlying
the
distribution, and the closed form for the

asset price follows log-normal
option prices were obtained. However, the
closed form pricing formula for the arithmetic
average options do not seem to be derived yet
except for a special case in Bergman [17].
The approximated pricing formula and the
algorithms for them are quite well studied.
The difficulty seems to be in deriving the
exact distribution function of the average
price. This make the order statistics are
among the most fundamental tools in non-
parametric statistics and inference. In this
part, we discuss some properties of order
statistics for TDWR.

Let R,<R, <..<R,  denote the order

statistics of a random sample R ,R,,...,R,

from the TDWR. Then the p.d.f. of the pt

order statistic R,, is,
_ ”!(GRm (r ))p_l (1 =G (r ))n_p Era (1)
Suaem = (p-Dl(n—p)! !
n!

~(p-Dl(n-p)!

—(1-2k)? 7*T

—(1=2k)? 2*T
2
. 8 —ae +re

22

|

(7 —2krx)?

12

< 8 _
_;[(2k—1)27z2 +8Ta Zje

—(1-2k)* 2T

2

k=1’ 7*Th?
+87h je

2

—(1-2k)* 7°T

24%

+re

272
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(k-1 7Ta?

k=D’ 7T

> 8 .
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d 8 _
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© 8 @k 77T
X ——————+8r T e 2 >
;((Zk -1’7’ J

(23)
where,

8 k-1’7’1
0= Z(—2+ 8Tb"zje 2

=\ Q2k-1)’7
_(2k-1)*7*Ta”?
+8Ta™ Je 2

_Z((zk—l)

Also, the distribution function of R, is

GR(T)(p:n) (r)= i(?J(ka (’”))i (1 - GR(T)(r))n_i

i
—(1-2k) 2°T —(1-2k)? 2°T
2 2
8 —ae 2 +re 7
w

(m —2krm)*

( 72 ei(Zk—l);/rsz’z
=\ Qk-1)’7*

(k-1 7’Ta”?
((21{ n*z* 8Ta2je 2
k=1 T

n—i
—(1-2k)*7°T —(1-2k)*2°T
2 2
1| 8 —ae +re ¥

N\‘_

k=

M

7; (7 —2kx)’
x| 1— 2 202
© 8 _(2k71)“7r Th
m\(2k-1)"7m
© k-1 2’Ta”’
—z 8 o) +8Ta™ |e 2
o\ (k=177

(7 = 2kr)’

—-(1-2k) 7z°T —-(1-2k) 7z°T i
; 8 —ae +re
0
22— X
i=p Q k=1

13
—(1-2k)2 2T —(1-2k)* 2T n
‘;1 8 —ae 2  +re
T? &
B Z — 2
2 '3 (7 —2kr)
(24)

In addition, the q" moment of the p™ order

statistic R, is

E(R{,)=q Y,

n (_ l)jfnJrkfl ( ] _ lj(nj
j=n—k+1 n-— k .]

—8a
Y o(r=2km)?’
2
G, (1-2k)'x
2
Then,
j
b R & -2 -2
N =J.r"1 1- Z(Zke_G*'” +8re” % ) dr.
" k=1

2

T -2 -2
Also, let UZT (Zke_G"” +8re )

s

b
L

From Binomial uniforms theorem we get:

a-vy =3 "Jrv-

=0\ J

Thus,




A.A. Teamah et al.

1+qE 3+q’i
G G 2 a’
| —de “q
e quEi(3+q’G§j
2 b

b

& +(—a"+b")Zk

where Ei gives the exponential integral
function. Also, at j =2 we obtain,

14

_ -2 A2 a2
ii Z,Z,e 0 1 8rZ, e O
= a2 a2 a2 2 [
oo+ 8rZ e T 4 6dpPe O O
Thus,
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a q

_aq+1Ei(3+q an

b G )

.[ rle 0 dp = e 2 e
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By the same method we can obtain
b
N, =[r(-UY dr.

a

3.5 Bonferroni curve, Lorenz curve and
Gini’s index

Recently, studies of the stock price has gained

a lot of importance. Some important measures

in this studies are the Lorenz curve and Gini’s
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index. Lorenzcurve and the associated Gini
index are undoubtedly the most popular
indices of income in equality. Giorgi and
Mondani [9] and Giorgi [10] shown that
Bonferroni curve is such a measure, which
has the advantage of being represented
graphically in the unit square and can also be
related to the Lorenz Curve and Gini ratio.
Giorgi and Crescenzi [11] presented that
these measures have some applications in
reliability and life testing as well.

Since Rbe a non negative random variable
with cumulative distribution function (4)
which is smooth (i.e., continuous and has
derivatives of all orders). However, the first
moment of R about zero is finite, exists and
non zero as in (20). The Lorenz curve is
useful in business modeling: e.g., in consumer
finance, to measure the actual percentage of
delinquencies attributable to the percentage of
people with worst risk scores. Lorenz curve

can be obtained by using the equation,

”

J.’”gR(T)(’”)d”
L(gR(T)(r)) = Z
IrgR(T)(r)dr

a

i oo a-2027°7
AT -
5 o 02kt
k=1 27”2
y
+7
L (z-2kn)? |
o =20 70r ’
ar| L2
5 o 02022
k=1 ’ 2b*
C
+7
| (7 - 2kn)? |

(25)

15

where,
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2be ¥ (b* —(1-2k)> 7°T)
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x T2 Epf| —— =27 "
V2b
A2 2 )
r{o, a 2k)27r T}
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C is given above.
hpy2 2
S =2(1-2k)* (b a)ﬂZT.r{o,M‘#}
2a
and A =—4a’(b—a)e "7, Also, the

Bonferroni curve is given by:

L(gR(T) (r)
GR(T) (r)

where L(g (7)) is given by (22) and from

Bg (gR(T) (r) =

b

(4) we get Grr (r).

4. Application

The oscillation between the fall and rise of
the stock price within a time period 7' can be
expressed by a Wiener process. The
difference between the highest and the lowest
value of the stock price it called the range R
of the Wiener process. When the selling price
becomes equal to the cost price then R =0
and when the share price up to the upper limit
barrier (the upper limit that the stock price
has already been reached and reversed to

decline) then R =o0. In the upper limit

16

barrier case, the analysts believe that the
stock price became expensive and there is no
rush to buy it. In this case, sudden drop in the
market index may occur while the stock did
not reach the point of sale. To avoid a sudden
drop in the share price sale we should study
the behavior of R by studying some its
statistical properties as in Withers and
Nadarajah [2]. To ensure that no loss, we
should put an upper limit barrier (to avoid
sudden drop) and lower limit barrier greater
than 0 (a guarantee of a gain even if few).
Thus, we use (3) and (4) to get these
statistical properties of the bounded range.

In [2], Withers and Nadarajah supposed that

1
x=rT ?/2 where the values of x are given.

Here, we let the truncated values of
x.,k=12,..5 for the corresponding time
periods are T,,v=12,...,5, then we get the
values of the lower limit barrier a and the
upper limit barrier 5. Also, we obtain the
values of R, the probability density function
and cumulative distribution function of R are

given in Table 1.

Table 1: The probability density function, cumulative distribu

of R.
T, as<r<bh r 8rar (1)
14.14 0.359021
15.2 0.383331
15.5 0.3899
50 14.14<r<19.799 15.556 0.389935
16.5 0.404273
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The most important information for the
company that builds its decision in order to
choose the right time to sell the stock when
a <R<b is to know the mean value of R.
From (17) we find that the mean value of R
is depend on the values of a,b and T as

follows:

il
T2

S E G .
;((2/{1)” H8Tin

Ml(t)_
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Table 1: Continued

© k-1’ 7’Th?
dYl———55+8Tb7 e 2
i\ (2k — 1) z

(2k=1)*7*Ta™?

—Z[(zk REpE +8Ta” je 2

Also, the mean values of R for the
corresponding time periods 7,,v =12,..5
are given in Table 1.

By using mathematica 7 , we found that

1000000 8

——=~1. Thus, in (3), (4) and
2 kD 3), (4)

M () we get the values of the probability
density function, cumulative distribution

function and the mean values of R

as in Table 1.

T, a<r<b r grery ()
17.3205 0.293429

17.59 0.298058

18.2 0.307531

75 17.3205<r<24.248 18.5 0311711

19.0526 0.318651

24.495 0.207485

252 0.213385

26.3 0.221321

150 24.495<r<34.2929 26.944 0.225316

272 0.226782

28284 0.179672

29.95 0.189531

30.12 0.19041

200 28.284<r<39.59798  31.113 0.195119

32.12 0.199212

31.6228 0.160714

32.23 0.16382

34.785 0.174528

250  31.6228<r<442719 35.54 0.177046

36.2

0.179039
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5. Concluding remarks

In this paper we introduced a truncated
distribution for the range of a Wiener process.
This distribution is the best for the stock price
in a limited range. We provided a
mathematical treatment to find some
statistical properties including reliability
properties, moments, stress-strength
parameter, order statistics, Bonferroni curve,
Lorenz curve and Gini’s index. A real data set
is analyzed to clarify the effectiveness of this
distribution. We hope that this distribution
may attract a wide applications in lifetime
modeling.

In future research one can introduce a new
type of middle and random truncation for the

range of a Wiener process.
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Appendix A
To get a double truncated density function of
L
1 2
TDRW, we putx=rT /2, a= “7; :

b=

, and @, = (2k—1)’ 7 /8, then (1)
(the probability density function of the range)
become:

(—4x7 exp(—w,x %))

b (0= |+ Qox exp-o,x ) |-
. x(w, +2x7%)




A.A. Teamah et al.

And, its cumulative distribution function is
given by:

D, (x)= Z (0, +2a ) exp(-w,x?)
k=1
Consequently,

O, (@)= (o, +2a *)exp(-w,a *)and

k=1

D, (b)=) (@, +2b)exp(-w,b *).If
k=1

a < x < b then the double truncated density

function can get from the equation:

- _ ¢ (x)
I ) -0, @

(—4x~ exp(—a),{x’2 )

i +Qw,x" exp(-o,x7))

k=1
x(w, +2x7)

0

z (o, 14267 exp(—a)kl;’z)

k=1
> (o, +2a 7 )exp(-w,a )
k=1

Now by substituent again with

w, =2k -1y’ z*/8 then the density function
of TDWR is given by:
fﬁ(r) (I")

T = —
R(T)(’”) FE(T) (b)— FE(T) @)

(k=1 2T

0 8 5

;[(2/(—1)27[2 +8r T]e 2

© 8 k-1’ 7TH?
-2

Z((Zk ) +27h ]e 8

© 8 k=1’ 7Ta?
_z(mazje R

o\ Qk-1’7?
Using integration by parts one can shows that

b
[Ty (r)dr =1.
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