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1. Introduction 
Truncation in probability distributions may occur 
in many studies such as life testing  
and reliability. Truncation arises because, in many 
situations, failure of a unit is observed only if it 

fails before and/or after a certain period. May 
sometimes happen to be range of the 
definition of a certain probabilistic 
distribution is not fully compatible with some 
of the data, either for theoretical reasons or 
because the portion of the data cannot be 
obtained within this range, in this case we 
resort to the truncated distribution. The 
truncation method of the distribution is an 
important methodology in different fields of 
sciences, in particular communication 

networks and finance. etc. Truncation occurs 
in various situations, for example, right 
truncation occurs in the study of life testing 
and reliability of items such as an electronic 
component, light bulbs, etc. Left truncation 
arises because, in many situations, failure of a 
unit is observed only if it fails after a certain 
period. Often, study units may not be 
followed at the beginning of an experiment 
until all of them fail, and the experimenter 
may have to start at a certain time and stop at 
a certain time when some of the units may 
still be working. Many researchers were 
interested in studying the truncation method 
of the distribution, for example: Zaninetti [12] 
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presents a right and left truncated gamma 
distribution with application to the stars that 
introduces an upper and a lower boundary. In 
addition, the parameters which characterize 
the truncated gamma distribution are 
evaluated. A Class of truncated Binomial 
lifetime distributions is obtained by Alkarni 
[13]. The type of middle and random 
truncation have been studied by Mohie El-
Din et al. [14] and Teamah et al. [15]. Ali and 
Nadarajah [3] introduced a truncated version 
of the Pareto distribution. They derived the 
explicit expressions for the moments for the 
truncated version. Nadarajah [4] introduced 
truncated versions for five of the most 
commonly known long tailed distributions 
which possess finite moments of all orders 
and could therefore be better models. 
Zaninetti and Ferraro [5] presented a 
comparison between the Pareto and truncated 
Pareto distributions. Recently, many papers 
has been presented the most important 
applications of the truncated distribution in 
various fields of science, for example, Pender 
[7] used the truncated normal distribution to 
approximate the non stationary single server 
queue with abandonment. Chattopadhyay et al. 
[8] provided a more accurate data fitting by using 
truncated geometric distribution to model the 
node degree distribution of a network compared 
to power-law, log-normal, Pareto, drift power-law 
and power-law with exponential cutoff 
distributions. 
 

The Wiener process has many applications 
throughout the mathematical sciences. In 
physics it is used to study Brownian motion, 
the diffusion of minute particles suspended in 
fluid, and other types of diffusion via the 
Fokker–Planck and Langevin equations. It 
also forms the basis for the rigorous path 
integral formulation of quantum mechanics 
(by the Feynman–Kac formula, a solution to 
the Schrödinger equation can be represented 
in terms of the Wiener process) and the study 

of eternal inflation in physical cosmology. It 
is also a prominent in the mathematical theory 
of finance, in particular the Black–Scholes 
option pricing model. The change of price 
formula based on the assumption that stock 
price follow a wiener process. The 
distribution of stock price through known 
time interval is the distribution of a Wiener 
process range. In the time interval ),0( T  the 

range of the Wiener process }0);({ ttW  is 

)(inf)(sup)(
),0(),0(

tWtWTR
TT

 and it gives the 

difference between the highest price for the 
stock and it's the lowest price. Feller [1] 
derived the probability density function of 
this range by using the method of images. 
Recently, an expansion for its cumulative 
distribution function and its quantiles are 
given by Withers and Nadarajah [2]. In 
addition, they gave a table of this cumulative 
distribution function. Here we have the 
following question: what should be done if 
we need to find the new distribution of the 
stock price in the time interval ),0( T  and its 

value is sandwiched between two certain 

values ba, ?  To answer the above questions, 

we should do a truncation on the distribution 
of a Wiener process range that has been 
obtained by Feller [1].  
 

In this paper, we will provide the Truncated 
Distribution of a Wiener Range (TDWR) and 
study various its statistical properties. The 
properties studied include reliability 
properties, moments, stress-strength 
parameter, order statistics, Bonferroni curve, 
Lorenz curve and Gini’s index. The 
difference between the TDWR and 
distribution of a Wiener process range which 
has been obtained by Feller [1] are showed as 
in the given figures through the paper. 
 

The paper is organized as follows. In Section 
2, we introduce the TDWR. We study some 
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statistical properties for TDWR in Section 3. 
An application to a real data set is presented 
in Section 4. Section 5 ends the paper with 
some concluding remarks and future works. 
 

2. Truncated distribution of a  
       Wiener range (TDWR)  

The stock price is assumed to move randomly 
according to one dimensional Wiener process 

ttW ),({ R+}, where R+ is the set of real 

numbers and )(tW  is a Wiener process on 

),0(   with range )(TR on the time interval 

),0( T . This range is the difference between 

)(sup
),0(

tW
T

 and )(inf
),0(

tW
T

. Feller [1] gave the 

probability density function for the range of 

)(tW which controls the target’s motion as:  
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where  r0 and 0T and it is 
represented as in the figure 1. 
 

 
 
 
 

 

Withers and Nadarajah [2] give its cumulative 

distribution function by: 
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and it is represented as in figure 2. 
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Figure 1: The probability density  function 
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Figure 2: Cumulative distribution function 

                  of the range distribution. 
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Hence, it is easy to show that the survival 

function )(1(.)
)()(

rFF
TRTR

 is decreasing 

by increasing the value of ,T see figure 3. 
 

 
 

The importance of the distribution of the 

range that defined by (1) lies in its ability to 

model lifetime data with increasing failure 

rate. 

We are interested in TDWR defined by the 

following definition. 
 

Definition 1. Let )(TR  be a random variable 

with probability density function (1), define 

)(TR  as a corresponding double truncated 

(truncation from left and right) of )(TR with 

the probability density function )()( rg TR : 

Then, the probability density function of 

double truncated of )(TR is given by: 

)()(

)(
)(

)()(

)(
)( aFbF

rf
rg

TRTR

TR
TR 
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ppendix A) .A(see 0T andbra where  

 

Figure 4 represents the TDWR density 

function for different values of  a and b  with 

increasing the value of T .   
 

Remark 1. Using the ratio test, we can prove 
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when 0a  and b .  
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The cumulative distribution function of 

TDWR is given by: 
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and it is represented in figure 5. 

 
 

 

Consequently, the survival function of 

TDWR is )(1(.) )()( rGG TRTR   and it is 

decreasing by increasing the value of ,T see 

figure 6. 

 
 

 

3. Some statistical properties 
In this section, we study various statistical 

properties of the range distribution (truncated 
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probability distribution function and the 

hazard rate function, reliability properties, 

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

r

D
ou

bl
e

Tr
un

ca
te

d
D

en
si

ty
Fu

nc
tio

n

T1.2,a0.9,b3

T0.9,a0.8,b4

T0.6,a0.7,b5

T0.3,a0.6,b6

T0.2,a0.5,b7

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

r

T1.2,a0.9

T0.9,a0.8

T0.6,a0.7

T0.3,a0.6

T0.2,a0.5

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

r

T1.2,a0.9

T0.9,a0.8

T0.6,a0.7

T0.3,a0.6

T0.2,a0.5

Figure 4: Double truncated 
                     probability density 

Figure 5: Cumulative distribution function 

 of TDWR. 

 

Figure 6:Survival function of the TDWR. 
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raw moments, moments of (reversed) residual 

life, stress-strength parameter, Bonferroni 

curve, Lorenz curve and Gini’s index. 

3.1 Reliability properties 
A key concept of "Whenever you want to 

check more than one investment profits in the 

stock market, investment whenever exposed 

to greater risk." You are when you buy or sell 

shares or bonds or any other financial 

instruments, you are fair investment risk and 

the degree of risk this differ from other 

financial instrument. For example, the 

financial instruments that you expect them 

highly profitable (such as active stock) 

contain a large degree of risk. This means that 

the share price could rise so much (that is to 

make a profit for you), but it may happen that 

the price drops much (and these are the risks 

that may cause the low volume of your 

money and your investments). Therefore, the 

risk rate (hazard rate) is influenced by the 

swings between fall and rise much of the 

stock price during the time period ),0( T . We 

get the hazard rate function of the range 

distribution for Feller [1] and Withers and 

Nadarajah [2] as follows: 
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and it is represented as in figure 7. Also, the 

reversed hazard rate function is:
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See figure 8.  

 
 

 

 
 

 

It is clear that, the hazard rate approaches 

zero as the range r  increases, and increases 

rapidly as r  falls to zero. For the new 

distribution of TDWR, the hazard rate 

function is:
 

,)}({)( 1
)()()(

 rGgr tRTRTR

 
and it is represented in figure 9. 
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In addition, the reversed hazard rate function 

of TDWR is: 

,)}({)(
~ 1

)()()(
 rGgr tRTRTR  

see figure 10. Also, in this case the hazard 

rate increases rapidly as r  falls to lower 

bound a .  

 

 
 

3.2 Moments 
Many interesting characteristics and features 

of the range distribution and TDWR can be 

studied through its generating function and 

moments. For the range distribution (1) 

Withers and Nadarajah [2] found its 

generating, characteristic functions and 

moments. Here, if R  has TDWR distribution 

and bra  and 0T then the moment 

generating function (m.g.f.) of R  defined by: 
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where, 
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and 
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By solving the following equations: 

            ,13  m                      (11) 

 ,132  m                       (12) 

as Diophantine equations, we have the set 

solution for (11) is given by: 
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Also, ),,,(2 TtbaI can be written as follows: 
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Consequently,  from (15) and (16) we obtain 

the value of (8). Hence,  
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Also, the moments of R  about the origin can 

be obtained as: 
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where  is the exponential integral function. 

Consequently, 
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where, 
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In addition, the characteristic function can get 

from the equation: 
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(21) 

where, 1i , 
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3.3 Stress-strength parameter 

 In this section, we find

))()(( 12 TRTRPY  , when )( 1TR  and 

)( 2TR  are two independent random variables 

distributed as in (1) with ,1T 2T , respectively. 

In the statistical literatureY is known as the 

stress-strength parameter which describes the 
changing of stock price. In addition, Y has a 

random strength )( 1TR that is subject to a 

random stress )( 2TR .  The changing in stock 

price at the instant that the stress applied to it 

exceeds the strength, and the changing will 

function satisfactorily whenever 

)()( 12 TRTR  ; see, for example, Church and 

Harris [6]. Thus, for the range distribution, Y  

can be expressed as: 
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And, for TDWR( 1T ) and TDWR( 2T ) 

distribution, we find that 
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a random strength )( 1TR  that is subject  

to a random stress ).( 2TR  Consequently, 
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Similarly, we can find 
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3.4 Order statistics 
For the European minimum (or maximum) 

options, Goldman et al. [16] defined and 

derived the closed form pricing formula. The 

exact distribution of the maximum and the 

minimum of the prices-path had been 

available among the established results in the 

field of mathematics (Probability Theory). 

There are several studies in the literature 

including Bergman [17], Kemna and Vorst 

[18], Kunitomo and Takahashi [19] and 

Tumbull and Wakeman [20], they determined 

the probability distribution of the geometric 

average of the prices when the underlying 

asset price follows the log-normal 

distribution, and the closed form for the 

option prices were obtained. However, the 

closed form pricing formula for the arithmetic 

average options do not seem to be derived yet 

except for a special case in Bergman [17]. 

The approximated pricing formula and the 

algorithms for them are quite well studied. 

The difficulty seems to be in deriving the 

exact distribution function of the average 

price. This make the order statistics are 

among the most fundamental tools in non-

parametric statistics and inference. In this 

part, we discuss some properties of order 

statistics for TDWR. 

Let nnnn RRR ::2:1 ...   denote the order 

statistics of a random sample nRRR ,...,, 21  

from the TDWR. Then the p.d.f. of  the pth 

order statistic npR :  is,
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where, 
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Also, the distribution function of npR :  is, 
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(24) 

In addition, the qth moment of the pth order 

statistic npR :  is, 
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where Ei gives the exponential integral 

function. Also, at 2j  we obtain, 
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3.5 Bonferroni curve, Lorenz curve and 

        Gini’s index 

Recently, studies of the stock price has gained 

a lot of importance. Some important measures 

in this studies are the Lorenz curve and Gini’s 
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index. Lorenzcurve and the associated Gini 

index are undoubtedly the most popular 

indices of income in equality. Giorgi and 

Mondani [9] and Giorgi [10] shown that 

Bonferroni curve is such a measure, which 

has the advantage of being represented 

graphically in the unit square and can also be 

related to the Lorenz Curve and Gini ratio. 

Giorgi and Crescenzi [11] presented that 

these measures have some applications in 

reliability and life testing as well. 

Since R be a non negative random variable 

with cumulative distribution function (4) 

which is smooth (i.e., continuous and has 

derivatives of all orders). However, the first 

moment of R about zero is finite, exists and 

non zero as in (20).  The Lorenz curve is 

useful in business modeling: e.g., in consumer 

finance, to measure the actual percentage of 

delinquencies attributable to the percentage of 

people with worst risk scores. Lorenz curve 

can be obtained by using the equation, 
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The Gini index which is defined as a ratio of 

the areas on the Lorenez curve is given by: 
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C  is given above. 
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22)21(2 Tkeaba    Also, the 

Bonferroni curve is given by: 

)(
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rgL
rgB

TR

TR
TRg  , 

 where ))(( )( rgL TR  is given by (22) and from 

(4) we get )()( rG TR .  

4. Application 
 

The oscillation between the fall and rise of 

the stock price within a time period T  can be 

expressed by a Wiener process. The 

difference between the highest and the lowest 

value of the stock price it called the range R  

of the Wiener process. When the selling price 

becomes equal to the cost price then 0R   

and when the share price up to the upper limit 

barrier (the upper limit that the stock price 

has already been reached and reversed to 

decline) then R .  In the upper limit 

barrier case, the analysts believe that the 

stock price became expensive and there is no 

rush to buy it. In this case, sudden drop in the 

market index may occur while the stock did 

not reach the point of sale. To avoid a sudden 

drop in the share price sale we should study 

the behavior of R  by studying some its 

statistical properties as in Withers and 

Nadarajah [2]. To ensure that no loss, we 

should put an upper limit barrier (to avoid 

sudden drop) and lower limit barrier greater 

than 0 (a guarantee of a gain even if few). 

Thus, we use (3) and (4) to get these 

statistical properties of the bounded range.  

In [2], Withers and Nadarajah supposed that 

2/2

1


 rTx  where the values of x  are given. 

Here, we let the truncated values of 

5,...,2,1, x  for the corresponding time 

periods are 5,...,2,1, T , then we get the 

values of the lower limit barrier a  and the 

upper limit barrier b . Also, we obtain the 

values of  ,R  the probability density function 

and cumulative distribution function of R are 

given in Table 1.   

 

 

 

 

 

 

 

Table 1: The probability density function, cumulative distribution function and the mean values 

               of R .  

)()( rg TR  r bra   vT  

0.359021  14.14  

  

  

799.1914.14  r 

 

 

50 

0.383331 15.2 

0.3899  15.5 

0.389935  15.556  

0.404273  16.5 
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The most important information for the 

company that builds its decision in order to 

choose the right time to sell the stock when 

bRa   is to know the mean value of R . 

From (17) we find that the mean value of R  

is depend on the values of a , b  and T as 

follows: 
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Also, the mean values of R  for the 

corresponding time periods 5,...,2,1, T  

are given in Table 1. 

By using mathematica 7 , we found that







1000000

1
2

1
)12(

8

k k 
. Thus, in (3), (4) and 

)(1 tM  we get the values of the probability 

density function, cumulative distribution 

function and the mean values of R  

as in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Continued  

)()( rg TR  r bra   vT  

0.293429  17.3205  

  

  

248.243205.17  r 

  

  

75 

0.298058 17.59 

0.307531  18.2 

0.311711  18.5  

0.318651  19.0526 

0.207485 24.495 

  

  

2929.34495.24  r  

  

  

150 

0.213385 25.2 

0.221321  26.3 

0.225316  26.944  

0.226782  27.2 

0.179672 28.284 

  

  

59798.39284.28  r 

  

  

200 

0.189531 29.95 

0.19041  30.12 

0.195119  31.113  

0.199212  32.12 

0.160714 31.6228 

  

  

2719.446228.31  r 

  

  

250 

0.16382 32.23 

0.174528  34.785 

0.177046  35.54  

0.179039  36.2 
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5. Concluding remarks  
 

In this paper we introduced a truncated 

distribution for the range of a Wiener process. 

This distribution is the best for the stock price 

in a limited range. We provided a 

mathematical treatment to find some 

statistical properties including reliability 

properties, moments, stress-strength 

parameter, order statistics, Bonferroni curve, 

Lorenz curve and Gini’s index. A real data set 

is analyzed to clarify the effectiveness of this 

distribution. We hope that this distribution 

may attract a wide applications in lifetime 

modeling.  

In future research one can introduce a new 

type of middle and random truncation for the 

range of a Wiener process. 
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Appendix A 
To get a double truncated density function of 

TDRW, we put 2/2
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 rTx , ,
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b  and   ,8/12 22  kk  then (1) 

(the probability density function of the range) 

become: 
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And, its cumulative distribution function is 
given by: 

)exp()2()( 22
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Consequently, 
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kT  .If  

bxa  then the double truncated density 
function can get from the equation:
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of TDWR is given by: 
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Using integration by parts one can shows that 
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TR drr 1)()( . 
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ى ل الع ال

ه و ل ر ل ع ع ال ز ه :ال   ت على سع ال
اتق  اض م - ال ة العل  ا  جامعة -ل

ع  اد توزي م ايج ه ت ذه الورق ى ه ة ف دى عملي ور لم الى المبت ع الاحتم اد التوزي ق ايج ن طري دده ع ره مح ى فت تج ف هم لمن عر الس س

Wiener .ا للتوزيع المختلفة الإحصائية الخصائصتم ايجاد   العشوائيه ي بم ك ف ة، خصائص ذل اد  ،العزوم الموثوقي ل الاجه معام

وة  اءاتوالق ة ،الإحص ى ،الرتيب ى ، Bonferroni ومنحن ل Lorenz منحن م. Gini ومعام ه  ت ى مجموع وى عل ال يحت اء مث اعط

  .التوزيع هذا فعالية لتوضيحمفترضه من البيانات 

 

 


