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0.1 Abstract In this paper, we first recall the definition of a family of Koenig’s root-

finding algorithms known as Koenig’s algorithms (

K ) for polynomials. In the whole

paper p has degree d > 2 with real coefficients and real (and simple) zeros xj, 1 <

k<d.

Now we want to discuss Koenig’s algorithms in details where

n =4, (Kpa(2)).
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Definition 0.1.1.
Let Let p be a polynomial with real coefficients and
p(2)=ay+a,z+a,z®>+ -+ aa—1Zd_1 real (and simple) zeros x;, , 1 < k <d, then
+ayz% K —7-3 p2p'’ ~2pp/? )
be a polynomial with real coefficients and real P 6pp'p''~6pr3-p2prn ’

(and simple) zeros x, , 1<k <d,andn > 2is
an integer. Koenig’s method of p of order n is
defined by the formula

@2
Kypn(z)=z+(n—-1) ”)[n o

(0.1.1)

where (%) "l is the nth derivative of % .
For n =2 the map K,
for n =3 the map

K, is Halley’s
Householder’s method

h (Z)— pz(Z) pZ

is Newton’s method of p,

method of p, and

(0.2.1)

defined as Koenig’s function of order four
associated with p. The fixed points of K, are
given by the zeros of p2 " —2pp'? . Since we
have known pp'' — 2p <0 on R, the fixed
points of K, , are the zeros of p together with oo,
and from proposition (0.5.1) the rational map
K, 4 has degree 3d — 2.

Proposition 0.2.1. Let p:C - C be a
polynomial of degree d, then Koenig’s method
K, 4 is a rational map, it has a repelling fixed
point at © with multiplier (d + 2)/(d — 1).
Proof. When |z| tends to co, we have

. . p(2)~ Az%
which we have discussed all of them in the we know
previous papers 1)17
0.2 Koenig’s root-finding algorithms of order Kps=2z+3+5; 1 —
four 2
where
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1 d(d+1)
(;)” ~ Azd+2 >

and
1y —a(d+1)(d+2)
(p) /12‘“'3 s
Then
z

Kpa~z2=337

3 d-1
K,,(z) ~1—— ~—
p'4( ) d+2 a+2

as we know that the multiplier A | at oo is equal to
l 1 d+2

oK) (2)  d—1

0.3 Derivative of Koenig’s method of order
four
The derivative of Koenig’s method K, 4 is
pa =
p3(app'''2—24 lpllplll+6p12p(4)+18pn3_4pp, (4))
(6pp'p""~6p"* —p2p111)?

(0.3.1)

from (0.3.1), we can see that the roots of p(z) are
superattracting fixed points of K, 4, but of one
degree higher order than for Halley’s method.
There are three critical points at each fixed point
of K 4. The rational map K, 4 has 2(3d — 2) —
2 = 6d — 6 critical points, and 3d — 6 of them
are free critical points. Also from proposition
(0.5.1), the local degree of K, , at the roots of p
is exactly equal to four.

Remark 0.3.1. Let x be a simple zero of p, then
Kps (x) = x and from (0.5.1) Kp,(x) =
Kys() = Ky4(x) = 0, while K% # 0. Thus
K, 4 is of order four for simple roots.

Since p(x) = 0, it follows that N, (x) = H,(x) =
K, 4(x) = x, and this fixed point is
superattracting fixed point for the three methods
because N',(x) = H',(x) = K', 4(x) = 0. And
since the third derivative of K,, vanishes,
whereas the third derivative of H,, does not, the
graph of K, 4 is flatter than that of H, near the
fixed point. Thus K, 4

is faster convergence to the fixed point than H,,.
From figures (1,2), Koenig’s function (K4 )
looks like Newton’s function but (K, 4), where
p(z) =z3—z , has non-real critical points
wherea Newton’s function does not.

i e
:
g

Figure 1: Koenig’s function for the
polynomial p(x) = x3 — x.
Proposition 0.3.1. Let p:C-C be a
polynomial of degree d with real coefficients
and real (and simple) zeros. Then the rational
mapK, 4 has 2d — 2 repelling fixed points in C
and their multipliers are all equal to four.
And pp”' — 2p'? < 0 on R, it follows that, if p >
0in (cq, xg), thenp’< 0 and p"' <0,
and if p < 0 in(cy, x) , then p’> 0 and p"" > 0.
Thus

p(pp"” —2p"*)
6p'(pp” —p'*) —p?p
it follows that K, 4(x) > x in (cq, ), thus
xll)r?;r K'pa(x) = +oo.

" <0 in (Cllxk);

Similarly, we have
p(pp" — 2p"?)

6p'(pp” —p'*) — p?p

SoKp.(x) <x in (xgcp), thus

min K’ ,(x) = —co.
x-c;

>0 in (xk! CZ):

rnr

and at the repelling fixed points of K4, g = 0.
Thus K'), 4, = 4 at each repelling fixed point.
Definition 0.3.1. If ¢; < ¢, are consecutive real
poles of K}, 4, then the interval (cq,c;) is called a
band for K, , .
Proposition 0.3.2. If (cy,c;) is a band for K', ,
that contains a root of p(x), then
lim K’} 4(x) = +oo, min K", ,(x)
_)Cl X—>C2

= —00

Proof. From
p(pp" — 2p"%)

Kpa =1z

m"r ’

~Tep'(pp" —p'?) —pp




Figure 2: Iteration of Koenig’s function for the
polynomial p(z) = z3 — z.

Proof. Let
9(2)
K,,(z) =z+ 3——,
A g'(2)
Where
_ (1>H _ Zplz _ PP”
AV p? '

a rational map R:C — C. Assume that A is not
simply connected. Then there exist in C two
disjoint domains Uy and U, intersecting A, such
that V = R(U,) = R(U,) 2 U,UT;, R(AU;) =
dVcAfori=01, VUA=C and V is
homeomorphic to a disc.

2,111

g = (1) _ 6pp'p" — 6p” —p’p
P p*

Letx, , 1 <x, <d, be the zeros of p which

are real and simple. The fixed points of K}, 4(2)

are oo, the points x,  and the zeros of the

rational map g = (%) .

From (0.3.2), we can see that g has 3d poles.
When z — oo, then p(z)~2z% and it follows that
g has a zero of order d + 2 at co. Since the
number of zeros for any rational map is equal to
the number of poles, then has 3d — (d + 2) =
2d finite zeros. Since

we have proved that 2p'2 — pp"’ > 0on R, 2d —
2 zeros of g are non-real repelling fixed

points of K, 4. Now we have

399"

KP!A' = 4’ - g,z

-2

Figure 3: Koenig’s function for the polynomial
p() = (x* - D(x* - 1/5).
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0.4 Immediate basins of Koenig’s method of
order four

In this section, we want to prove that each
component of Fatou set of Koenig’s method K, 4
is simple connected.

Lemma 04.1. ( [6]) Let A be the immediate
basin of attraction to a fixed point for

Theorem 0.4.2. The immediate basins of
attraction to the roots of any polynomial with
real coefficients and only real (and simply) zeros
Xk, 1 <k < d for Halley’s method, are simply
connected.

Proof. In [6] Feliks Przytycki has proved that the
immediate basins of attraction for N, is simply
connected. We can apply the same proof, so we
can assume that A4 is a multiply connected
immediate basin of attraction for R = H, to a
root x € R of a polynomial p. Choose z€V N
A, V given by Lemma (0:4:1), and branches
R

Figure 4: Iteration of Koenig’s function for the
polynomial p(z) = (z2 — 1)(z2 — 1/5) .

so that w; = R™1(2) € U; N A. Join z with w; by
a curve

yY € V n A. Take care additionally to have y? n
cl(Upso R™(critR)) = @. Define by induction
yP =Ry 1Y), where R™!is the extension of

the preliminary branch along the curve U?:_o1 }’ij .

Define y; = Un-o¥{* - The curve y; converges to
a fixed point {; € U; of R. The reason is that
Ryl e ..oR,, n times,n = 0,1,.., is a normal
family of functions on a neighborhood of y; with
the set of limit functions on boundary of A
which is nowhere dense. So

all limit functions are constant, hence
lim diam(y*) = 0. Therefore all limit points of

n—-oo

the sequence of curves y;* are fixed points for R.
On the other hand they must be isolated from
each other. So we actually have only one limit



point. The conclusion is that the boundary of A4
contains two different fixed points {, {3
belonging to two

different components of the boundary of A. But
the only fixed points for H,, are the roots of p
(real), the roots of p’ (real), and co. Since we
have proved that H, is continuous on R. Thus

ANR is an interval. We arrived at a contradiction.

Theorem 0.4.3. Immediate basins of attraction
of Koenig’ function Ky, 4 are simply connected,
whenever p is a complex polynomial with real
coefficients and only real and simple zeros
x,1<k<d.
Proof. We follow the same steps of proof of
theorem (0.4.2) with some changes. In this case
we work on the interval (aq,a,), where a4, a,
are two consecutive poles of K, 4 instead of the
interval (r,r,), where 7y, 1, are two repelling
fixed points of H,,.
Assume that 4 is a non simply connected
immediate basin of attraction for K, to a root
x € R of a polynomial p. We follow the same
proof of theorem (0.4.2) until we arrive to the
conclusion that boundary A contains two
different fixed points belonging to two different
components of boundary of 4. But the only
fixed points for K, , are the roots of p and oo .
We arrived at a contradiction.
Since K, 4, (where for simplicity p(z) = z3 — 2),
has non real free critical points, then we are in
the same situation of Halley’s method.
0.5 General form of Koenig’s method
The following rational map
(l)[n—z]
Kpn(2) =2+ (n— 1) F—,
(_)[n—l]
p
is the general form of K oing’s function. We end
this chapter with some general remarks describe,
without proof, the dynamics of the general form
of Koenig’s function K, 4. We will consider p be
a special polynomial of degree d > 2 which is a
complex polynomial with real coefficients and
real (and simple) zeros x,,1 <k <d, and
p'(xx) =p"(x) = 0.
Proposition 0.5.1. Let p: C = C be a polynomial
of degree d = 2. Then for anyn = 2,
(@) The rational map K,, has degree (n —
Dd-1)+1.
(b) If p has d distinct roots, then Ky, has

e i ‘g Fa ]

le.p pole zop. pole Lop

Figure 5: n=2,d = 3 (Newton), mmber of critical paints 2d — 2.

(c) The local degree of Ky, at the roots of p is
exactly n.

(d) Koenig’s method Ky, is a rational map, it
has a repelling fixed point at oo with multiplier

d-1
Proof. For details proof see [9].
In general case of the map K, ,,,n = 2and p is
special polynomial of degree d = 2 with real
coefficients and real (and simple) zeros, we have
two cases.
Case (1) If n is even, then the map K, , has nd —
2real critical points, and (n — 2)(d — 2) non-
real critical points which are distributed as
follows; each basind of x,2<k<d-1,
contains # real critical points and n — 2 non-real
critical points, symmetric to the real line; the two
basins of x; , x; each contains (n — 1)
real critical points. And there are (d — 1) real
poles of K, ,, .
Case (2) If n is odd then the map K, has
(n — 1)d real critical points and (n — 1)(d — 2)
non-real critical points, where each basin x;, 1 <
k < d, contains (n — 1) real critical points and
each basin x3,2 <k <d — 1, contains (n — 1)
non-real critical points. And there are no real
poles.
The following figures show how the critical
points (c.p) distributed around the fixed points of
the map K, ,,, where p is special polynomial.
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Figure & n=5,d =5 (Halley), number of critical points 4d — 4.

Figure 10: n=d,d = 3 (K ), mumber of critical points fd — 6.
i L] point

rep. Lp . repfp 3 rep b g

Figure 12: n=5d = 4 { Kp,s}, number of critical poiots 8d — 5.
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