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ABSTRACT 

PET radiomics can reveal a lot of clinical 

information but with many technical and 

physical variables to be tackled. The aim of 

this study was to find out the most 

reproducible and robust PET radiomics that 

can be used as benchmark for future 

clinical studies. Materials and Methods: 

Two phantom datasets were retrieved from 

the large Cancer Imaging Archive 

repository (NIH, USA) and employed for 

further radiomics feature extraction (i.e. 

108 features) and analysis including 

calculation of coefficient of variation (CV) 

and percent deviation. Further testing was 

carried out to investigate effect of sphere 

size and contrast level as well as imaging 

scanner on feature reproducibility. Feature 

correlation with tumor TNM stage was also 

performed using Spearman correlation and 

Kendall tau statistical tests. Principle 

component analysis was used to reduce the 

large feature number to principle 

components using the eigen vector and 

eigen value. Results: The (CV) and percent 

deviation revealed 56 features out of 108 

that have less than or equal to 10% 

variability. When features were compared 

in terms of high and low image contrast, 

there was 46 features that showed less 

sensitivity to different concentrations. 

Inter-scanner variability testing has 

reduced the number of features to 36 out of 

the 46 features. Analysis of PCA results 

showed that 4 components can account for 

90.3%, namely, SUV max, inverse 

difference moment normalized; size zone 

non-uniformity normalized, and short run 

low gray level emphasis. When correlating 

the 108 features with patient status, two 

features only showed significant 

correlation with tumor stage namely 

maximal correlation coefficient and 

flatness.  
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Conclusions: The 108 features were 

reduced to a lower percentage of features 

while maintaining large percentage of data 

variance and feature reproducibility.  

The combination of texture feature of 

robust technical qualifications to those of 

clinical value would finally improve the 

clinical decision model. 

Key words: PET/CT Radiomics, Texture Features, Reproducibility & Dimensionality 

Reduction. 
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INTRODUCTION: 

Cancer remains one of the most influential 

disease on different aspects of human life 

(1)
.  Imaging cancer biomarkers have been 

increasing in the last two decades due to 

recent advances in imaging sciences and 

technologies 
(2, 3)

. Tumor heterogeneity has 

been recently identified as one important 

aspect that reflects the degree of tumor 

aggressiveness, drug resistance and plays 

an important role in patient management 
(4)

. 

Nuclear medicine provides unique 

opportunities in diagnosing patient with 

several malignancies using F18-

Flurodeoxylucose (F18-FDG) and positron 

emission tomography combined with 

computed tomography (PET/CT) imaging 

systems. The recent advances in data 

analysis, modeling algorithms and 

computational tools have permitted the 

introduction of a new term called 

“radiomics” and “radiogenomics” 

analogous to new developments in 

genomics, proteomics, transcriptomic and 

other “omics” sciences.   

Radiomics is an emerging computational 

field that deals with extracting statistical 

and physical features of the images beyond 

physician perceptive and recognition 

capabilities 
(5)

. There are wide range of 

features that researchers and scientists were 

able to derive from different imaging 

modalities including, PET, CT and 

magnetic resonance imaging data. 

However, the scientific community has 

recently released a standardized framework 

that enables uniform guidelines to be 

followed called “Image biomarker 

standardization initiative, IBSI” providing 

definitions, benchmark data and values as 

well as calculation methodologies for high 

throughput imaging biomarkers extraction 

(6)
. Several studies have been conducted to 

select those features of high stability, 

reproducibility and reliability.  
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At the top of that, the pathological/clinical 

correlation of these features with patient 

diagnosis, prognosis as well as 

stratification must be defined and properly 

addressed. 

On the technical or physical side, there 

several parameters and variables that 

hindered the prompt implementation of 

radiomics into clinical routine including 

variation of acquisition, reconstruction, and 

image analysis in addition to variables 

associated with inter-scanner and system 

specific characteristics 
(7,8)

. Moreover, 

vendor specific parameters add more 

complexity to this process which become 

even more with end-user specific 

preferences. In multicenter clinical trials, 

all the physical and technical issues must 

be harmonized in order to reduce variation 

among the contributing clinical centers. 

When the physical and technical variables 

are addressed, then the modeling algorithm 

need to be carefully designed through 

robust clinical studies. A number of reports 

have investigated the utility of radiomics 

with potential results in application to 

patient diagnosis and prognosis with 

documented varieties of patient survival 

and risk stratifications 
(9,10)

. 

Despite of the large records of publication 

and literature on radiomics data analysis, 

there is no consensuses on which of those  

 

features are the most reproducible and 

repeatable with direct use in the clinic.  

However, there are few studies that dealt 

with radiomics feature variability and 

accuracy in phantom studies.  

In a recent systematic report, there were 6 

phantom radiologic studies that comprised 

5 CT and only 1 phantom PET study 
(11)

. 

Moreover, no observed pattern was 

detected for PET texture features among 

the several studies included in the analysis. 

Therefore, the aim of this study was to 

search for the most appropriate features of 

PET data that provide less variation and 

deviation as well those features that are 

clinically relevant through standard 

phantom datasets.  

 
MATERIALS AND METHODS: 

Datasets: Quantitative Imaging network 

(QIN) PET Phantom Collection contains 

PET phantom scans originally utilized by 

the Quantitative Imaging Network PET 

Segmentation Challenge to assess the 

variability of segmentation methods and 

image quantitative analysis results 
(12)

. 

These images were acquired using NEMA 

IEC Body Phantom Set Model PET/IEC-

BODY/P and thus the ground truth of 

sphere volume and injected activity are 

known and defined in prior.  
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The phantom was scanned at 2 medical 

institutions using different imaging systems 

namely Biograph (Siemens Medical 

Solutions) and Discovery STE (GE 

Healthcare, Inc.) in University of Iowa and 

University of Michigan respectively. The 

source files are called “TCIA_QIN_PET” 

(13)
. Phantoms: The NEMA IEC PET 

phantom provides several opportunities for 

measuring the robustness of the radiomics 

feature. The size variation of the sphere 

volumes is one important aspect such that 

one can look at the degree of correlation of 

different image features with lesion 

volume/size. The repeated measurements 

(here was 10 identical measures) provides 

also an opportunity to elaborate on the 

ensemble variance and how this could 

impact feature stability and/or 

reproducibility. The list mode data 

acquisition was also helpful to reconstruct 

the whole data set into one time points of 

30 min providing reconstructed data of 

high statistical quality with minimal noise 

and being reference for other low statistical 

data measures. Therefore, the test-retest 

data analysis can be measured for 

individual feature metrics. Table (1) 

describes the physical phantom used in 

data acquisition. It is worth noting that the 

spheres have various dimensions and size 

including spherical and ellipsoidal 

geometry in both axial and horizontal 

directions. In high and low contrast scans, 

the phantom was filled up with an activity 

ratio of almost 10:1 and 4:1 respectively.  

 

Table (1): Diagrammatic representation and phantom characteristic used in data acquisition.    

It should be noticed that the same phantom was used in the two institutions.  

 Shape and orientation Diameter/size (mm) Volume (ml) 

Sp1 Sphere 28 11.49 

Sp2 Ellipsoid, axial 34x17x17 5.14 

Sp3 Ellipsoid, axial 26x13x13 2.30 

Sp4 Ellipsoid, horizontal 26x13x13 2.30 

Sp5 Sphere 13 1.15 

Sp6 Ellipsoid, Horizontal 20x10x10 1.04 

“Sp” stands for sphere 
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Acquisition: Data were identically 

acquired with the two different contrasts 

each with 30 min total time using list mode 

acquisition.  The 30 min data acquisition 

was then divided into 10 scans each with 3 

min to provide a clinically relevant data 

acquisition. And the 30 min acquisition 

provided a more stable and high statistical 

certainty in quantitative measurements 

while the later 3 min sequential 

acquisitions were used to mimic clinical 

scans with equivalent noise and imaging 

characteristics and also offered an 

opportunity to investigate the associated 

scan reproducibility.  
 
Image Reconstructions: Images were 

reconstructed using diverse reconstruction 

parameters to create PET data of 

challenging properties versus radiomics 

feature extraction and analysis. Raw data 

revealed from the Siemens biograph was 

reconstructed using 7 mm Gaussian post-

filter while the other data produced by GE 

Discovery was reconstructed with a sharper 

cut-off value of 3 mm using the same filter. 

In both reconstructions, the iterative 

ordered-subset expectation maximization 

(OSEM) was used  
(14)

. The former 

provides images with high smoothing 

characteristics while the later filtering was 

applied to give images with high spatial 

resolution.  

This is again to increase data diversity 

providing an opportunity to derive the most 

robust features that able to maintain 

stability and data reproducibility.  

Standardized uptake Value (SUV):  SUV 

max and SUV mean have been extensively 

used in literature for patient diagnosis, 

prognosis and response monitoring. The 

acquired TCIA_QIN_PET data provided 

several opportunities to investigate the 

impact of different scanning systems with 

different noise texture and resolution 

capabilities (Discovery STE vs. Biograph) 

of different manufacturers, inter-scan 

repeatability (i.e. 10 scans were acquired 

each with 3 min), reconstruction 

parameters (3 mm vs. 7 mm FWHM, 

Gaussian filter), as well as providing 

reference images of high statistical quality 

(30 min data acquisition) at high and low 

contrasts. The results of the SUV max and 

SUV mean were reported to confirm the 

consistency of the values with the injected 

radioactivity.   

Sphere/Lesion segmentation: Lesion or 

sphere segmentation was performed using a 

semi-automated approach that transform 

the segmentation process into graph based 

optimization problem recently reported 
(15)

. 

The PET segmentation extension plugin 

was used to segment the 6 different spheres 

of each acquisition of the two clinical sites.  
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The process starts by locating the center of 

the sphere and the algorithm then 

determines the sphere contours through a 

built-in cost function that provide lesion 

surface. It has also the capability to 

encounter situations when lesion has 

numerous heterogeneity as well as features 

to refine the lesion contours whenever 

necessary 
(15)

.  

Feature Extraction: The 3D slicer 

software package was used in sphere 

segmentation to calculate the various 

features of the PET data described earlier. 

The following extension/plugins were used 

in importing the data sets: dicom-plugin, 

dicom scalar volume, multivolume 

importer, dicom longitudinal PET/CT, 

dicom PET SUV and dicom slicer data 

bundle plugins. These modules enabled to 

obtain the appropriate measures of SUV as 

exactly measured and calculated on the 

original scanners and processing 

workstations. Morphological, shape, first 

and higher order statistical features were 

calculated using the pyradiomics modules 

installed as extension plugin in the 3D 

slicer version 4.10.2.  

Since these matrices are calculated based 

on voxel intensity, location, neighborhood 

and spatial arrangement with other voxels, 

let us define some variables used in various 

feature formula: Let X be a set of Np 

voxels of the region of interest under 

investigation, P(i) defined as the histogram 

of the first order matrix with Ng being 

defined as discrete intensity. The latter is 

the number of bins which have non-zero 

value and limited by the bin width preset in 

the 3D slicer software package. The bin 

number selected was 0.5 as recommended 

in previous reports.  P(i) is the normalized 

first order histogram and defined as P(i)Np. 

Here is a summary of some examples taken 

from every radiomics matrix used in 

features extraction. 

First order features: This type of features 

is concerned with voxel count distribution 

in each region of interest. An example of 

first order statistics is the energy and 

defined as  

Energy = ∑      
  
     

Where c is an optional parameter to shift 

values in X to positive values. Another 

important feature is entropy and defined as  

Entropy = - ∑                 
  
    

Other features are described in table 2 and 

their exact mathematical expressions are 

outlined in reference 
(5,6)

. 
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Shape features: Shape features are special 

set that mainly describe the ROI shape 

characteristics including sphericity, 

eccentricity, diameter and other geometric 

conformations that tumor mass may have. 

One example of the shape feature set is the 

volumetric measure and defined as  

Vi = 
              

 
 

Where Vi is the mesh volume and 

calculated from the triangle of the region of 

interest such that the face i (defined by the 

points ai, bi an ci) of the tetra-hedron 

circumvented by that face and image origin 

is computed 
16

. 

Gray Level Dependence Matrix (GLDM) 

Features (GLDM): This matrix finds out 

the relationship between a given voxel with 

gray level intensity i with its neighborhood 

voxel j to construct the gray level 

dependence matrix P(i,j). One example of 

GLDM is the Small Dependence Emphasis 

(SDE) defined as  

     
∑ ∑

      
  

  
   

  
   

  
 

Greater emphasized values of SDE reflect 

small dependences and textures of low 

homogeneity.  

Gray Level Co-occurrence Matrix 

(GLCM): This matrix reflects how 

frequently two voxels with specific values 

and within specific spatial correlation are 

repeated within the region of the interest to 

build what is called gray level co-

occurrence matrix. Autocorrelation is one 

important example and defined as  

                 ∑∑        

  

   

  

   

 

Autocorrelation reflects fineness and 

coarseness of the lesion 

Gray Level Run Length Matrix 

(GLRLM): The GLRLM matrix focuses 

on the length over which the voxel 

intensity is frequently repeated. In 

constructing the P(i,j|φ) matrix, the element 

(i,j) refers to the number of segments with 

gray intensity that takes place in the region 

of interest along the angle φ (phi). Short 

run emphasis belongs to GLRLM matrix 

and defined as  

     

∑ ∑
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When the lesion contains large frequency 

of short repeated gray intensity levels, the 

SRE is increased reflecting fine textures of 

the tumor.  

Gray Level Size Zone Matrix (GLSZM): 

This is an additional matrix that reflects 

how small a zone of the region of interest is 

frequently occurred such that the 

constituent voxels have the same gray 

intensity. Gray level Non-Uniformity is 

one form that belongs to the GLSZM and 

defined as  

    
∑  ∑          

   
  
   

  
 

The GRN with lower magnitude is 

indicative of more tumor homogeneity.  

Neighbouring Gray Tone Difference 

Matrix (NGTDM): The NGTDM 

measures the difference between a given 

voxel and the neighboring voxel within a 

tolerance distance. Coarseness is one 

famous example derived from the NGTDM 

matric and mathematically described as  

           
 

∑     
  
   

 

Coarseness is a measure of intensity 

change over neighboring voxels and greater 

values reflects localized tumor uniformity.  

Radiomics module in the 3D slicer was 

then used to extract the features of each 

sphere and tabulated for further analysis 

(17)
.  

The images of high-count statistics were 

used as references for images acquired with 

short time intervals (i.e. 3 min). The 10 

reframed 3 min reconstructed images were 

used to measure the reproducibility of 

features under normal and clinically 

relevant noise conditions. A number of 108 

features were extracted from each sphere 

including high and low count statistics as 

acquired using GE discovery STE and 

Siemens Biograph. 

Evaluation metrics: To select those 

features of low sensitivity to several 

acquisitions and reconstruction parameters, 

the coefficient of variation was computed 

to measure the degree all features described 

in table 1. The deviation of the 10 

measurements from the reference 30 min 

acquisition was also considered for 

selecting those feature that would provide 

less percent deviation. The texture features 

that achieved coefficient of variation and 

percent deviation equal to or less than 10% 

and 5% were reported and used for further 

analysis. Since the geometric features are 

not so sensitive to repeated acquisitions 

and count statistics, they were removed 

from the coefficient and percent deviation 

computation and subsequent analysis. The 

coefficient of variation was calculated 

using the following formula: 
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Table (2): The radiomics texture features used in data analysis. The major shape, first-order 

as well as higher order matrices are described with the associated features and their number.  

Shape Voxel Volume (VV), Maximum 3D Diameter (M3D), Mesh Volume (MV), 

Major Axis Length (MAL), Sphericity, Least Axis Length (LAL), 

Elongation, Surface Volume Ratio (SVR), Maximum 2D Diameter (M2D), 

Slice Flatness, Surface Area, Minor Axis Length (MAL), and Maximum 2D 

Diameter Row (M2DDR) and Maximum2D Diameter Column (M2DDC)  

14 

First-order Interquartile Range (IR), Skewness, Uniformity, Median, Energy, Robust 

Mean Absolute Deviation (RMAD), Mean Absolute Deviation (MAD), 

Total Energy (TE), Maximum, Root Mean Squared (RMS), 90Percentile, 

Minimum, Entropy, Range, Variance, Standard Deviation (SD), 

10Percentile, Kurtosis, Mean. 

19 

GLDM Gray Level Variance (GLV), High Gray Level Emphasis (HGLE), 

Dependence Entropy, Dependence Non-Uniformity (DNU), Gray Level 

Non Uniformity (GLNU), Small Dependence Emphasis (SDE), Small 

Dependence High Gray Level Emphasis (SDHGLE), Dependence Non-

Uniformity Normalized (DNUN), Large Dependence Emphasis (LDE), 

Large Dependence Low Gray Level Emphasis (LDLGLE), Dependence 

Variance (DV), Large Dependence High Gray Level Emphasis (LDHGLE), 

Small Dependence Low Gray Level Emphasis (SDLGLE), Low Gray Level 

Emphasis (LGLE) 

14 

GLCM Joint Average, Sum Average, Joint Entropy, Cluster Shade, Maximum 

Probability, Idmn, Joint Energy, Contrast, Difference Entropy, Inverse 

Variance, Difference Variance, Idn, Idm, Correlation, Autocorrelation, Sum 

Entropy, MCC, Sum Squares, Cluster Prominence, Imc2, Imc1, Difference 

Average, Id, Cluster Tendency. 

24 

GLRLM Short Run Low Gray Level Emphasis (SRLGLE), Gray Level Variance 

(GLV), Low Gray Level Run Emphasis (LGLRE), Gray Level Non 

Uniformity Normalized (GLNUN), Run Variance, Gray Level Non 

Uniformity (GLNU), Long Run Emphasis (LRE), Short Run High Gray 

Level Emphasis (SRHGLE), Run Length NonUniformity (RLN), Short Run 

Emphasis (SRE), Long Run High Gray Level Emphasis (LRHGLE), Run 

Percentage, Long Run Low Gray Level Emphasis (LRLGLE), Run Entropy, 

High Gray Level Run Emphasis (HGLRE), Run Length Non Uniformity 

Normalized (RLNUN). 

16 

GLSZM Gray Level Variance (GLV), Zone Variance, Gray Level Non Uniformity 

Normalized (GLNUN), Size Zone Non Uniformity Normalized (SZNUN), 

Size Zone Non Uniformity (SZNU), Gray Level Non Uniformity (GLNU), 

Large Area Emphasis (LAE), Small Area High Gray Level Emphasis 

(SAHGLE), Zone Percentage, Large Area Low Gray Level Emphasis 

(LALGLE), Large Area High Gray Level Emphasis (LAHGLE), High Gray 

Level Zone Emphasis (HGLZE), Small Area Emphasis (SAE), Low Gray 

Level Zone Emphasis (LGLZE), Zone Entropy, Small Area Low Gray 

Level Emphasis (SALGLE) 

16 

NGTDM Coarseness, Complexity, Strength, Contrast, Busyness 5 

 Total Number of Features        108 
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Where mean and standard deviations were 

taken for each sphere across the 10 scans. 

The percent deviation (%) was measured 

using the median of the 10 sequential 

measurements versus the images acquired 

with high statistical counts multiplied by 

100. The use of median was intentional as 

the data showed a non-normal distribution. 

Similarly, texture features that evaluated 

CV and percent deviation less than 5% and 

10% were filtered and tabulated for 

comparison. 
  
Principle Component analysis (PCA):  

One of the most commonly but potentially 

used data reduction techniques is principle 

component analysis (PCA) in which the 

algorithm creates new components that 

account for overall variation in given data 

set such that features/variables within each 

component are linearly combined and 

correlated.  

Furthermore, the other components contain 

variables that are not in correlation with 

those of the first component while able to 

explain more variance of the data. This 

mathematical technique enabled us to 

select lower number of features out of the 

108 features contained in the original 

dataset. It mainly consists of deriving the 

eigen vector (principle component) and 

eigen value. The former is used to 

determine the direction of new feature 

space while the latter determines the 

magnitude.  

Statistical Analysis:  

Radiomics data analysis produces large 

amount of data and it is not necessary all 

features indicate significant tumor 

heterogeneity or correlation with clinical 

outcome. Therefore, attempts here were 

made first to look for those features which 

able to provide better reproducibility and 

stability using imaging data of the acquired 

phantom data. As highlighted in table 1, 

the spheres have different geometry, shape 

and count distributions due to their relative 

size. We have used three different 

measures to search for features that can 

resist variations in counting statistics, 

variability introduced due to short time 

scanning, image filtering, and different 

scanning systems. The coefficient of 

variation, percent deviation and finally 

principle component analysis (PCA) were 

used to estimate those features that can 

account for the most variability while 

maintain as much as possible of diagnostic 

information.  

The “prcop” function implemented in R 

statistical language was used along with 

“FactoMineR” and “FactoExtra” libraries 

to compute the PCA including eigen value, 

eigen vectors, feature as well sphere 

contribution to total variance 
(18)

.  
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Mann Whitney non-parametric test was 

used to comparing between the low and 

high contrast images acquired with high 

statistics using the two PET/CT imaging 

systems. A number of 13 patients who had 

head and neck cancer were retrieved from 

the cancer imaging archive database 
(13)

 and 

lesions were semi-automatically segmented 

using the above mentioned algorithm 

namely “just-enough interaction” graph 

based method 
(15)

. There were 21 lesions 

extracted and tabulated for further analysis. 

To find out the relationship of the texture 

feature with tumor stage of the head and 

neck patients, Spearman correlation and 

Kendall tau were used to evaluate the 

strength and significance of correlation. 

Microsoft Excel version 16 and R 

statistical software package were used in 

data plotting and analysis 

 

RESULTS: 

The average SUV max and SUV mean for 

both PET/CT scanners including high and 

low contrasts for the 6 spheres are 

summarized in Table (3). The variation and 

percent deviation of the two SUV variants 

are also reported along with the SUV mean 

and SUV max measured for each sphere of 

the NEMA phantom.  Table (4) and figure 

(2) describe those features that were able to 

achieve a measurement of CV lower 5% 

and 10%. The same was true for the 

percent deviation. This process resulted in 

smaller number of features. These selected 

features should have less variability in 

measurements and lower deviation from 

data acquired with high statistical certainty. 

They were then compared for each PET/CT 

scanner in terms of sphere contrast and also 

between the two imaging systems. 

Effect of sphere contrast: Table (5) 

shows the Mann-Whitney results for 

comparing between the low and high 

contrast images acquired with high 

statistics using the two PET/CT imaging 

systems. A number of 22 features have 

shown a non-significant difference between 

the low and high contrast data acquired 

with Siemens Biograph whereas 24 

features were obtained with GE Discovery 

STE. Therefore, a number of 46 features 

were found not to be affected by the change 

in image contrast in both imaging systems. 

Moreover, first order statistics have totally 

vanished in this test since they account for 

global estimate of tracer concentration. 

This could be clinically seen when patient 

received different range of doses, different 

imaging time after injection (early-delay 

imaging protocols), or different system 

sensitivity and/or imaging time. 
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Table (3): Results of SUV max and SUV mean which are the most commonly used 

quantitative metrics in routine practice of PET Imaging. Notice the gradual reduction of both 

values as the size decreases. This is consistent with partial volume effect phenomenon.  

 UI UW 

 Siemens Biograph Discovery STE 

 High Contrast Low Contrast High Contrast Low Contrast 

      SUV max SUV 

max 

SUV 

mean 

SUV 

max 

SUV 

mean 

SUV 

max 

SUV 

mean 

SUV 

max 

SUV 

mean 

Sp1 9.3 4.7 4.8 3.0 11.0 6.2 5.6 3.1 

Sp2 8.0 3.7 3.7 2.5 10.5 5.3 5.2 2.7 

Sp3 5.8 3.2 2.7 2.0 9.5 4.6 4.8 2.4 

Sp4 6.5 3.3 3.1 2.1 9.8 4.4 4.7 2.3 

Sp5 4.5 2.7 2.3 1.8 6.9 3.4 3.6 1.9 

Sp6 4.8 2.8 2.5 1.9 9.4 4.2 4.9 2.2 

 CV, median 

 SUV max 17.55 11.17 9.3 15.36 

 SUV mean 9.07 6.68 4.3 5.95 

 % Deviation 

 SUV max -34.47 -24.85 25.04 26.15 

 SUV mean 20.14 ± 4.42 -15.79 ± 1.84 1.11 ± 0.45 1.22 ±0.21 

 

 

 

 

 

 

 

 

 

 

Figure 2: Distribution of coefficient of variation and percent deviations of all feature 

measured using the two different scanners at two different contrasts. The CV was measured for 

median of features over the 10 repeated acquisitions 2 min each. The % deviation was 

measured of how the median values of the 10 measurements are far from the images acquired 

with high count statistics.  
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Table (4): The texture features which achieved a coefficient of variation and percent 

deviation less than or equal to 5% and 10% derived from the 4 different data acquisitions. Data 

reported for individual measurement of CV and % deviation as well as their combination due to 

the reframed 10 datasets. 

 Texture feature with coefficient of variation less than or equal to 5%   No. 

10Percentile, Dependence Entropy, Difference Entropy, Entropy, Idmn, Idn, Imc2, 

Joint Entropy, Kurtosis, Long Run Emphasis, Mean, Minimum, Root Mean 

Squared, Run Entropy, Run Percentage, Run Entropy, Run Length Non Uniformity, 

Run Length Non Uniformity Normalized, Run Percentage, Short Run Emphasis, 

Sum Entropy, Zone Entropy. 

22 

 Texture feature with % deviations less than or equal to 5%  

90Percentile, Coarseness, Contrast, Correlation, Dependence Entropy, Dependence 

Non Uniformity, Dependence Non Uniformity Normalized, Dependence Variance, 

Idmn, Idn, Imc2, Interquartile Range, Joint Entropy, Kurtosis, Large Dependence 

High Gray Level Emphasis, MCC, Mean, Median, Minimum, Robust Mean 

Absolute Deviation, Root Mean Squared, Run Entropy, Run Length Non Uniformity 

Normalized, Run Percentage, Short Run Emphasis, Small Area Low Gray Level 

Emphasis, Sum Entropy, Zone Entropy. 

28 

Texture features with percent deviations less than or equal to 10% and coefficient of 

variation less than 10% [combination of CV and % deviation] 

Inverse Difference Moment Normalized (Idmn), Inverse Difference Normalized 

(Idn) Short Run Emphasis, Dependence Entropy. 

4 

Texture features with percent deviation less than 5% and coefficient of variation less 

than 5% [combination of CV and % deviation] 

Inverse Difference Moment Normalized (Idmn) and Inverse Difference Normalized 

(Idn) 

2 

 

 

 

 

 



 
Egyptian J. Nucl. Med., Vol. 21, No. 2, December 2020 

 

93 
 

 

Table (5): Mann Whitney nonparametric test to compare between low and high contrast 

imaging data sets for both clinical sites. These features have not shown a significant difference 

(p>0.05). A number of 22 features were found for UI (Siemens Biograph) and 24 features for 

UW (GE Discovery STE) out of the 56 filtered features presented for comparisons. 

 UI (Siemens Biograph) UW (GE Discovery STE) 

Shape Feature Voxel Volume, Maximum 3D 

Diameter, Mesh Volume, Major Axis 

Length, Sphericity, Least Axis Length, 

Elongation, Surface Volume Ratio, 

Maximum 2D Diameter Slice, 

Flatness, Surface Area, Minor Axis 

Length, Maximum 2D Diameter 

Column, Maximum 2D Diameter Row  

Voxel Volume, Maximum 3D 

Diameter, Mesh Volume, 

Major Axis Length, Sphericity, 

Least Axis Length, Elongation, 

Surface Volume Ratio, 

Maximum 2D Diameter Slice, 

Flatness, Surface Area, Minor 

Axis Length, Maximum 2D 

Diameter Column, Maximum 

2D Diameter Row 

GLCM  Correlation Correlation, Idmn, Idn 

GLDM Dependence Non-Uniformity. 

Large Dependence High Gray Level 

Emphasis.  

Small Dependence Low Gray Level 

Emphasis. 

Dependence Entropy 

Dependence Non-Uniformity  

Large Dependence, High Gray 

Level Emphasis   

GLRLM Gray Level Non Uniformity. 

Run Length Non Uniformity. 

Gray Level Non Uniformity.  

Run Length NonUniformity. 

GLSZM Small Area Low Gray Level 

Emphasis. 

Small Area Low Gray Level 

Emphasis. 

NGTDM Coarseness. Coarseness. 
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Effect of sphere size: The median CV 

among the 6 spheres was also computed for 

each scanner at the two different imaging 

contrasts and then plotted in figure 3. In 

this test, we have used the acquisition with 

large count statistics in both phantoms so 

that more statistical quality is maintained. 

The range of variation due to different 

sphere sizes used in data acquisition 

yielded quite large range of CV and percent 

deviation (Figure 3).  

 

Inter-scanner comparison:  Table 

(6) shows the texture features that 

demonstrated a non-significant difference 

when compared in terms of the scanner 

used in data acquisition. A significant 

number of shape features were found due 

to the fact that sphere geometry and 

dimension should not change when 

scanned with different scanners. The 

GLRLM matrix has shown also adequate 

number of features (i.e. n = 6) with 

insignificance to alternating the scanner 

model.  

 

Figure (3): The reproducibility of the texture features due to changes in sphere/lesion size. It 

is obvious that the size remains an issue that need to be tackled due to the wide variation seen 

in all acquisition using the two PET/CT systems. The reproducibility is measured using the 

same formula for coefficient of variation.  
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Table (6): A summary of features that have not been affected by the type of the 

scanner (p>0.05). A number of 36 features out of 46 were found to be less 

affected by scanner model. 

Shape Features Voxel Volume, Maximum3D Diameter, Mesh Volume, 

Major Axis Length, Shape, Sphericity, Least Axis Length, 

Elongation, Surface Volume Ratio, Maximum 2D Diameter 

Slice, Flatness, Surface Area, Minor Axis Length, Maximum 

2D Diameter Column, Maximum 2D Diameter Row 

First order Median, Root Mean Squared, 90Percentile, 10Percentile, 

Mean 

GLCM Idmn, Idn, Correlation, Imc2, Imc1, MCC 

GLDM Dependence Non-Uniformity, Dependence Non Uniformity 

Normalized, Large Dependence High Gray Level Emphasis, 

Small Dependence Low Gray Level Emphasis. 

GLRLM Gray Level Non-Uniformity, Long Run Emphasis, Run 

Length Non Uniformity, Short Run Emphasis, Run 

Percentage, Run Length Non Uniformity Normalized 

GLSZM Small Area Low Gray Level Emphasis 

 

Principle Component Analysis: 

PCA analysis results in 23 principle 

components accounting for all variation 

included in the entire dataset. However, the 

first 4 principle components revealed 

approximately 90.3% variation which is 

reasonably acceptable and can be 

potentially used to reduce curse of large 

data dimensionality. The scree plots of the 

all components are demonstrated in Figure 

(4) and Table (7).  

It can be easily detected that the first 4 

components bear large percentage of data 

variability. When plotting the sphere 

contribution versus the first two 

components, it appeared that PCA was able 

to discriminate between the two scanners 

significantly especially for largest and 

smallest spheres (11 and 12 versus 13 and 

14, fig 5) that corresponds to sphere size of 

1.1 mm and 1.0 mm versus 11.49 mm and 

5.14 mm respectively. 

Table (8) shows the first 5 contributing 

features of the top 4 principle components. 

It is well known that features of the same 

component are in linear correlation. Thus, 

it could be more useful to represent the 

whole dataset by choosing additional 

features from other components to increase 

the capability in accounting for more 

variation of the investigated dataset.  
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Table (7): Results of PCA. The eigen value of each component along with percent 

cumulative and variance percent. Notice that the first 4 components account for 90.3% of the 

overall variations. 

Eigen Value Variance Percent cumulative Variance Percent 

PC.1 58.1 61.8 61.8 

PC.2 14.1 15.0 76.8 

PC.3 9.4 10.0 86.8 

PC.4 3.3 3.5 90.3 

PC.5 2.2 2.3 92.7 

PC.6 1.8 1.9 94.5 

PC.7 1.4 1.5 96.0 

PC.8 1.1 1.2 97.2 

PC.9 0.6 0.7 97.9 

PC.10 0.6 0.6 98.5 

 

 

 

 

 

 

 

 

 

 

Figure (4): Principle component analysis revealed that the first three components can 

account for approximately 90.3 % of the variation of the entire dataset.  
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Figure (5): The contribution of the different spheres/lesions to the first two components. The 

24 points refer to the 4 acquisitions performed by the two imaging systems at two different 

level of contrasts namely 4:1 and 10:1. The numbers 1-6 and 7-12 are for Siemens Biograph 

while the numbers 13-18 and 19-24 for high and low contrasts respectively. The PCA was able 

to distinguish between the spheres/lesions derived from the two scanners as shown by 

separating 13 and 14 apart from 11 and 12. The former two belongs to the Discovery STE 

while the latter two spheres belong to the Siemens Biograph.  

 

Table (8): The top 4 features revealed from the first 4 principle components (PC). Since the 

features produced in each component are in correlation with their neighbors, they don’t bear 

extra information in comparison to those features of other components and hence a single 

feature was selected from each component.  

PC1 Range Maximum SD 90 Percentile MAD 

Feature Selected Maximum (First order) 

PC2 Skewness Idmn GLNU GLNU Idn 

Feature Selected Idmn (GLCM Matrix) 

PC3 SZNUN Joint Entropy MP Coarseness Busyness 

Feature Selected SZNUN (GLSZM Matrix) 

PC4 SRLGLE LGRLE LGLE LRLGE Busyness 

Feature Selected SRLGLE (GLRLM Matrix) 

Abbreviations are described in Table (2). 
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Clinical Correlations: The above 

analytical steps resulted in most 

appropriate features that can be used to 

maintain stability, reproducibility, and less 

deviation. However, the clinical 

correlations of texture features need to also 

to be identified and sorted out. A number 

of 11 patients with head and neck cancer 

were evaluated using all features outlined 

in Table (2) versus patient staging. An 

interesting finding was that there were only 

two features (out of 108 features) which 

showed correlations with patient TNM 

staging. These features were flatness and 

Maximal Correlation Coefficient (MCC) 

with Spearman correlation of 0.366 

(p=0.044) and 0.380 (p=0.037) 

respectively. Moreover, the Kendall tau 

statistics provided close results specifically 

0.448 (p=0.042) and 0.491 (p=0.024) 

respectively.  

 

DISCUSSION: 

Radiomics features have been of particular 

interest in the last decade providing useful 

imaging biomarkers in supporting clinical 

decision making. Several reports were 

published to report the diagnostic, 

prognostic as well as patient stratification 

for proper patient management 
(16)

. 

However, the reproducibility, repeatability 

as well as stability of those feature was not 

widely investigated.  

Image noise, limited spatial resolution and 

partial volume, scanner detector 

limitations, reduced count sensitivity and 

data acquisition parameters as well as 

different reconstruction methods are among 

the most crucial variables. Therefore, the 

process of extracting information either on 

human observer basis or 

physical/mathematical basis are 

confounded by one or more of those factors 

leading to unreliable outcome and 

inconclusive results 
(19)

.  

The cancer imaging archive represent large 

but an increasing repository of 

pathological, anatomical and functional 

imaging dataset that may be accompanied 

with genomic or proteomic profiles of 

individual patients 
(13)

. It comprises a wide 

array of standard phantoms for PET, CT 

and MR imaging modalities. PET was 

found to provide superior performance in 

comparison to CT radiomics models 
(20)

. 

While PET has unique characteristics in 

providing valuable metabolic and 

physiologic information, it suffers from 

degrading factors that affect the final 

reconstructed images with variable impact 

on quality and diagnostic accuracy. 

However, radiomics provides a lot of 

information about the underlying tumor 

biology and thus can be used for tumor 

phenotyping and success tailored treatment 

(20-22)
. 
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From the 108-feature generated from the 

phantom scans, there were 56 features of 

variability and percent deviation less than 

10% in both evaluation metrics. If high 

precision measurements are required in the 

range of 5%, then the number of features is 

reduced to only two features namely 

Inverse Difference Moment Normalized 

(Idmn) and Inverse Difference Normalized 

(Idn). However, when the 56 features were 

evaluated for the influence of sphere/lesion 

contrast the number was reduced to 46 

features that are not affected by variation of 

low or high image contrast.  

Moreover, there were 36 features out of 46, 

which showed no significant differences 

due to the use of different scanners in data 

acquisition. These three tests resulted in a 

reduction of total features from 100% to 

33.3% which is highly desirable to avoid 

model over fitting.  

Results of the PCA was so interesting and 

has made a significant selection to those 

feature that could account for large 

percentage of data variation, approximately 

90.3% was obtained with the use of only 4 

texture from different matrices. They were 

the SUV max, inverse difference moment 

normalized (Idmn), size zone non-

uniformity normalized (SZNUN), and short 

run low gray level emphasis (SRLGLE). 

Those features were selected to represent 

the maximum variance of the data in 

question. The reason behind selecting the 

SUV max but not the “range” feature is due 

to the fact that SUV max is commonly used 

in routine practice of clinical oncology and 

its role has been identified in many 

malignancies. The reproducibility of the 

feature resulted in three features that are 

not largely affected by the sphere size, 

namely, Idn, Idmn and sphericity. This is 

an additional interesting finding since Idmn 

and Idn have already achieved less 

sensitivity in terms of CV, percent 

deviation, level of image contrast, scanner 

model besides sphere size. It is also 

consistent with previous reports 
(23)

. 

In the present study we have used a semi-

automated segmentation method as it was 

found to improve radiomics reproducibility 

in comparison to manual delineation 
(24)

. In 

a previous report, it was found that first 

order statistics and shape features are more 

reproducible than texture features 
(11)

. This 

is consistent with the finding presented 

here as most of features of high CV were 

those derived from texture matrices. 

Furthermore, first order statistics is less 

sensitive to image processing steps relative 

to texture features. However, the latter 

provide a more descriptive measure of 

voxels arrangement and their relative 

neighborhood to each other which is in line 

with the notion of tumor heterogeneity 
(21)

.  
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The opportunity to analyze the images 

provided by cancer imaging archive is 

unique since it allows researchers to 

harmonize their finding and reproduce the 

same results adding more evidence to the 

final conclusion. It also provides 

investigators to externally validate the 

performance of the proposed models and 

ensure stability. When correlating the 108 

features with patient status, two features 

only showed significant correlation with 

tumor stage namely maximal correlation 

coefficient and flatness. Combining the two 

features with the other features derived 

from the other analytical and 

reproducibility results should provide a 

strong platform for future clinical studies 

aiming to derive a robust radiomics-based 

clinical model. 

 

CONCLUSIONS:  

There are several factors and variables that 

interfere to affect reproducibility and 

robustness of radiomics derived from PET 

data. A lot of efforts and attention need to 

be brought to tackle all those variables in 

order to exploit radiomics information to 

the maximum extent. The 108 features 

were reduced to a lower percentage of 

features while maintaining large percentage 

of variance and reproducibility. It has 

appeared that some but few features can 

serve as potential candidates for further 

radiomics analysis and clinical 

experimentation. While there were large 

number of features that can be used for 

clinical correlation, the present study has 

obtained two features that can correlate 

with tumor stage of patients with head and 

neck cancers. The combination of texture 

feature of robust technical qualifications to 

those of clinical value would finally 

improve the diagnostic or prognostic 

clinical model.  
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