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The study presents and describes the different Generalized Autoregressive
COﬂdi‘iO".al Heteroskedasticity (GARCH) models. These models are cither symmetric or
asymmetric lpodels. The purpose of the study is to compare between the different equations
for the equations of the forecasting the conditional mean and conditional variance. Models
investigated are:  GARCH (1,1), GARCH-M, EGARCH, QGARCH, GJR GARCH,
TGARCH and CGARCH. Thus the research analysis asymmetric models that can c;pturc the
often reported "leverage effect" in the volatility of asset returns.

This research used ARCH Lagrange Multiplier test (LM-test) of no ARCH effect left
in residuals, and used Q-test for testing the possible autocorrelation. The data consists of
monthly data from January 1992 to December 2004 for the Egyptian Stock Index is used.
Finally, the empirical analysis showed that the best model is CGARSH(1,1) which found to
be superior among asymmetric model.

Keywords: Symmetric GARCH, Asymmetric GARCH, Volatility, News Impact
Curve (NIC), Lagrange Multiplier test (LM-test), Q-test.

1- Introduction

Most of the time series analysis in cconomic and finance are designed to
model the conditional mean of a random variable. But the tools described in
this research differ by modeling the conditional variance, or volatility, of a
variable.

There are several reasons that make us may want to model and forecast
volatility. First, the need to analyze the risk of holding an asset or the value of
an option. Second, forecast confidence intervals may be time-varying, so that
more accurate intervals can be obtained by modeling the variance of the errors.
Third, more efficient estimators can be obtained if heteroskedasticity in the
errors is handled properly.

: Autoregressive Conditional Heteroskedasticity (ARCH) models are
Specifically designed to model and forecast conditional variances. The variance
-1-
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Within this class of models, it is almost a "stylized faCt'.' lhat_the_ sum of
the estimated coefficients in the conditional variance function is insignificantly
different from unity, especially for high-freq'uency financial data. These mode|s
were called by Engle and Bollerslev (1986) integrated GAR?H (IGARCH) and

hat shocks to the conditional variance are

these models have the characteristic t . he
persistent in the sense that current information remains important for long-term

volatility forecasts. This non-stationary behaviour is important. both from a
theoretical point of view and for the construction of long-horizon volatility

forccasts which are essential in many asset-pricing models (e.g. Poterba and

Summers, 1986).

Hornikova (2003) examined the behaviour of the Prague Stock-
Exchange ludex, Fa-30, which includes 50 leading Czech companies.
Berument et al. (2001) analyzed the dynamics of inflation uncertainty in
Turkey by using EGARCH method. They used EGARCH model because this
model enables the separate treatment of the negative and positive shocks to
inflation. Hytinnen (1999) investigated the evolution of the conditional

volatility of returns on three Scandinavian markets

Meanwhile, to capture the so-called “leverage effect”, first noted in
Black (1976), many of the proposed GARCH models include a term that can
capture correlation between returns and conditional variance. Models with this
feature are often termed “asymmetric” or “leverage” volatility models. The term
levgrage stems from the empirical observation that the conditional variance of
equity returns often increascs when returns are negative, i.e., when the financial
leverage of the firm increases. In our research, the researcher compares the
most popular symmetric and asymmetric GARCH( 1,1), GARCH in me
(GéRCH—M), Exponential GARCH (EGARCH), Quadratic GARCT{]
"(1‘(121 A;IRCH), Glosten, Jagannathan and Runkle GARCH (GJR-GARCH)

reshold GARCH (TGARCH), and Component GARCH (CGARCH). -



peteroskedasticity — (symmetric GARCH) ang asymmetric  generalized
autoregressve cf’“d’“mal hciGMkedustiCity (asymmetric GARgCH) The
ractical implications of the results are illustrated empirically using monthl
data of Egyptian stock index. The data set covers during the period fronz
January 1992 to December 2004, resulting in 156 observations. p

Specification tests are used to determine the form of the models. To test
for autocorrelation, a test developed by Richardson and Smith (1994) .is used
which is a l:ObUSt version of a standard Box and Pierce (1970) procedure, Afte;
the COHdlthI?a! mean model is deemed satisfactory, tests for possible
heteroskedasticity are performed. We utilize a robust test of no ARCH
developed by Wooldridge (1990). To test asymmetry, the researcher follows
the recommendations of Engle and Ng (1993) as well as Hagerud (1997).

This research is organized as follows; Section 2 contains overview of
GARCH models. Sectlo.n 3 testing for GARCH effects. Section 4 mentions
about the empirical application of the models. F inally, in section 5 contain the

conclusions.

2- OVERVIEW OF GARCH MODELS

2.1 Symmetric GARCH Models
2.1.1 GARCH Model with Normally Distributed Residuals

GARCH model is the generalized ARCH model. By assuming that the
residuals have a normal distribution and p and q, the order of the polynomial,
are both equal to 1, which is the simplest GARCH (p,q) model Bollerslev,

- 1986). It is often found that such simplification does not affect the preciseness
of the outcomes much. In developing an ARCH model, we must have to
provide two distinct specifications- one for the conditional mean and one for

the conditional variance.

The standard GARCH (1,1) specification can be written in two forms.
First, the mean equation is specified as AR(p) process:

p
I, =g+ Y 0; +€ (D
i=1
8= \/}_‘_t_ (2)
z,~iid N(0,1) &)

The first form, a convenient way, is to assume that the conditional
variance is generated by:

h,=a +agl, +Bh,, 4)
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weighted average of all of the lagged squared residuals:

h,:i—‘-ﬂ-+u}%’f5"“'ef_1 (5)
. g

» The error in the squared returns is given by v =z, -h,.
e variances in the variance equation and
del in terms of the errors:

(6)

may aid in

Substituting for th
rearranging terms we c¢an write our mo
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Higher order GARCH models, denoted GARCH(p,q), can be estimated

by choosing either p or q greater than 1. The representation of the GARCH(p,q)

variance is,
ht'—"m"'iaislz—i +£1: Bih.; (7)
):

i=)

= +oL)e; + B(L)h, 8)
where p is the order of the GARCH terms and q is the order of the ARCH term.

2.1.2 GARCH-in-mean (GARCH-M) Model

As 'the degree of uncertainty in asset returns varies over time, the
compensation required by risk-averse economic agents for holding these as,sets
. npt;(st alsg‘be varying. Time series of asset prices must therefore both mcasurc:
lrrl; r‘;:lnd its x;:ovement over time, and include it as a determinant of price. Any
se 1n the expected rate of return of an asset as it becomes riskier will be

identified as a risk premium.

: The key postulate in Engle, Lili i
time varying premia on differentg te,mn ilien and Ro‘l;zs bi | 32’]71) Iﬁzgznl'e;vzs tl.la‘:
e sgfonsdin $ 1is
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prcmia where the risk is due to unanticipated interest rate movements and is
measured by the conditional variance of the one period holding yield. Based on
it, they established GARCH (p,q)-in-mean (GARCH-M) model. Setting the
parameters p and q to one has been found to give a good adaption to most
financial data. The GARCH (1,1)-M model has the following form:

=X, B+h y+g, 9)

h =o+as,+Bh, (10)

Where I and h, are defined as before and x,, is a vector of additional
explanatory variables. The residual g can be decomposed as:

£, =2, yh, a1

Where: z, is /id normal with zero mean and unit variance. In this model a
change in the conditional variance (which represents a measure of endogenous
volatility) has therefore a direct effect on the conditional mean of the dependent
variable. Hence, this modeling strategy is particularly well suited to obtain the
relationship between risk (i.e., the endogenous volatility) and expected return.

2.2 Asymmetric GARCH Models

The leverage effect was found, when analyzing the stock returns. This
called for a need for asymmetric models. Pagan and Schwert (1990) and Engle
and Ng (1993) were the first to develop a useful tool to show how shocks affect
conditional volatility. They plotted the surprise (revisions) in conditional
volatility against shock and called the graph the news impact curve (NIC). .

The volatility feedback effect (Campell and Hetschel (1992)) has been
used to exnlain the presence of conditional left skewedness observed in stock
~ returns through an increase in future volatility following all kinds of news.
However, markets amplify the impact of bad news but dampen the impact of
good news on returns. This typically results in the conditional left skewedness
of returns. The news impact curve (NIC) of such an asset price series is thus
asymmetric. Several extensions of the GARCH model - e.g. EGARCH,
QGARCH, GJR_GARCH, TGARCH, or CGARCH- catch this specific
stylized fact of financial time series.

2.2.1 EGARCH Model (Exponential GARCH)

The EGARCH or Exponential GARCH model was proposed by Nelson
(1991). This model allows the asymmetric effects between the positive and
negative asset returns. The specification for the conditional variance is:

ln(ht)=®+ﬁlnht—1+aZt-1+Y(|Zt—1“E|Zt—1|) (12)
€t _ &t

Where, z,=—=—F—

& Loy Vhy

z,is iid N (0,1) and o, B, a, Y are constant parameter to be estimated.
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2.2.3 GJR_GARCH Model
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Runkle, which is a modified GARCH-M model originally allo
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e Seasonal patterns in volatility;
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- positive and

conditional volatility;

conditional varian : )
ce. This is accomplished by introducing a dummy variable or

indicator function into condjt;
t i :
ey M following fo; r:]o.nal variance equation. The GJR-GARCH (1.1)

) p
t =90 +i)=:l¢)i+t:t (16)

fe=2h, (17)

z,~iid N(0,1)

s 2 .
h,—y+as,_,+mS,_,e[2_,+Bh,_| (18)

‘Where equation (16) specifies the conditional mean equation (17)
presenis error term from the conditional mean equation as’a discrete-time
stoch‘a.stlc process with innovations in the latter being iid. Equation (18) is the
conditional variance equation, where S~ denotes an indicator function that
takes the value one when ¢, is greater or equal to zero and takes the value zero

“otherwise.

2.2.4 TGARCH Model (Threshold GARCH)

A Threshold GARCH model, proposed by Zakoian (1994), treats the
conditional standard deviation as a linear function of shocks and lagged
standard deviations. Thus, instead specifying the conditional variance equation,
TGARCH model specifies an equation for conditional standard deviation. For

TGARCH (1,1) this equation takes the following form:

h:/2=y+a+sf_, +a's{_,+[3h:ff (19)

ef =max(g,,0) and g =min(g,0)

To meet the needs concerning the non-negativity constraints, all the

coefficients are hypothesized to be positive, except o, which should be
ymmetric, the effect of a

ncgative. If the distribution of z in equation (18) is s . fect
shock on the present volatility is proportional to the difference a -o .gnd
negative returns innovations increase predictable volatility more than positive

tivity constraints on the

ones (Rabemananjara et al, 1993). The non-nega
.,



arameters make this model linear and statlolfl'z;r(l-?‘;iL [fé? be analyzeq ‘
P;tationarity that estimation of the parameters O i I mode] |
.covariancc stationarity and it enables to analyze whether shocks (g v

persistent or not. |
Note, that equation (19) can be reparameterized as:

- 1/2
h{’2=y+a|€1_|‘+°°51-l‘3t-~|+Bh1—l (20)

Mposeg |

With S~ denoting the same indicator function as in QJR-GARCH and
thus the conditional standard deviation has the same functional form the
conditional variance in GJR model in equation (18).

2.2.5 CGARCH Model (Component GARCH )

The conditional variance in the GARCH(1,1) model (Ding and Granger,
1996; Engle and Lee, 1999):

hy=Bral -B)+ph-B) @D

shows'mean reversion to @ which is a constant for all time. By contrast,
the component model allows mean reversion to a varying level q,, modeled as:

hy-q, = D+a(ef,-®)+p(h,_ - ) (22)
Q¢ =0+p(qy; —0)+d(e2, —h,_) (23)

Where fll is still the volatility, while q, takes the place of ® and is the
time varying long run volatility. The first equation describes the transitory
component, hi-q,, which converges to zero with powers of (a+B). The second

equation describes the long run component q,, which converges to @ with
powers of p .

~You can include exogenous variables in the conditional variance
equation of compgnem models, either in the permanent or transitory equation
(or both). The variables in the transitory equation will have an impact 0D the

short.run movements in volatility, while the variables in the permanent
equation will affect the long run levels of volatility.

3- Testing for GARCH effects

3.1 Lagrange Multiplier Test for ARCH Effects

This is a Lagrange ot | bt diti
heteroskedasticity (%\R(%H multiplier (LM) test for autoregressive €Ol

i ) t’S nlll
hypotbesis is thee (o o n the residuals (Engle 1982). The tes ARCH

oﬂ’dl

additional ARCH. If the vari

|d be
no ARCH effect left in the g

ance equation is correctly specified there shou
tandardized residuals.
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The squared  series o2 g
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heteros 'Ll - . 'i,*d :,n, o = i = M 18 the residual of the ARMA model For
check.m;', «.eroskedasticity, the LM-test is used. This test is equivalent Lo usual
[ statistics test. The null hypothesis is; ! W

HO: o — 02 = . =0y =0 (24)
In the linear regression
2 2
al=0g+ 0B L + . + Ol te, t=m4l.. T (25)

Wherc_‘cl df:,"f?ws,lhe error term, m is a specified integer and T is the
sample size. F-statistics is asymptotically distributed as chi-square distribution
with m degrees of freedom,

(S8R, -SSR,)

Mo m i
TS, )
(T=2m-1)
T 2 T
SSRo= }(a, -w) SSR,= Y'é&? (27)
t=m-+l t=m+l

Where W is the sample mean of a? and ", is the lcast squares residual
of the linear regression.

3.2 Ljung-Box Statistics

Ljung-Box statistics and their p values arc used to check the adequacy of
the mean equation. The null hypothesis is there is no autocorrelation up to
order k. If the series are white noise, Q statistics should not be significant.

We use the Ljung-Box statistics of 3. in order to check the validity of

the volatility equation. The validity of the distribution assumption is checked
by the skewness, the kurtosis and quantile-to-quantile plot (i.c. QQ plot) of &,
Kurtosis is the measure of the magnitude of the extremes. If returns are
normally distributed, then the kurtosis should be three. If the kurtosis is high,
there is strong evidence that extremes are more substantial than would be
expected from a normal random variable. If the rgturns are normally
distributed, the QQ plot should lie on straight line and will have an s-shape if

there are more extremes.

4- Empirical Application
4.1 Description of the Data

This research used The Egyptian stock index daFa. These data set covers
the period from January 1992 to December 2004, resulting in 156 observations.

e two different graphs of the

‘v 1 Figure 1,2 contains th
ot ¢ 992 to 2003. The upper plot

Egyptian +-yck index using monthly data from 1
: e



lot displays the trend of the fjp.

d of the level data, the lower p | irst

sl}t?fws tl;:dtf;;a In Figure 1, it is easy to note that the data follow's a randoy,.
di le:enrocess So the data are nonstationary Wlthout any unit root teg
work p . S0, d data in Figure 2 are stationary, the data exhibjy high

the difference & & ey ‘
ﬁfggﬁfyh Therefore, we can see that this kind of data is not easy to lorecasg

using traditional forecasting methods.

.4.2 Estimation’ )

The estimated results of the ARIMA(1,1,0)(1,1,0);; model are
summarized in appendix 2 in Table 1. First of all lhe.AI.{( 1) and Seasona|
SAR(1) terms in the ARIMA(1,1,0)(1,1,0)12 model are significant because the
t-Ratio is 3.72 and -8.30 respectively.

According to the correlograms in appendix 1 in Figures (3,4). Note tha
significant of the parameter model, but the residual model shows that the
seasonal part is a large part of the ACF and PACF at lag 12.

The estimated results of the different models are summarized in
appendix 2 in Tables (2-6). In Table (2) the estimates of the parameters in
GARCH(1,1) modcl are positive for all series and significant for all parameters,
But we can not say that GARCH(1,1) model is a good choice, except when
comparing it with the difference types of model.

In Table (3) where the estimates of the parameters in GARCH-M(1,1)
‘model, it can be seen that the constant of the variance equation is not
sigiificant. As shown in table 4 where the estimates of the parametcrs in
TGARCH(1,1) model, the leverage' effect term, 7y, represented by
(RESID<0)*ARCH(1) is not significantly negative (even with a one-side test)
so it does not appcar to be an asymmetric effect. Once again it can be seen from
Table 5 where the estimates of the parameters in EGARCH(1,1) model, that the
leverage effect term, y, denoted as by RES/SQR[GARCH](1), is not
significantly positive, so it does not appear to be an asymmetric effect.

In Table (6) where the estimates of the parameters in CGARCH(1,1)
model, all the parameter of the model are significant, the coefficients for the
permanent equation and those labeled "Trans" correspond to the transitory
-equation. The estimate of the persistence in the long-run component is p =.944

indicating that the long-run component appears to be significantly different
from zero.

4.3 Diagnostic Checking

After estimating the correct ARIMAC(1,1,0)(1,1,0),, model, as shown in
Table (1), Akaike information criterion (AIC) and Schwarz bayesin Criterion
(SBC) are very low and the estimates are significant for all parameters. And so,

" All calculation in this research are performed in SPSS and EViews program
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After estimating the types of GARCH model, as shown in Tables (2-6) we
found that the best models are GARCH(1,1) and Cemponent GARCH(1,1)
according to AIC and SBC test, but the best one of them is the component

GARCH.

Furthermore, to find the model that performs best, we compared the
nAkaike's information Criterion (AIC)", "F-statistics" and "the probabilities to
accept that there is no ARCH effect any more" from the LM-test. So the
selected model has lowest value of AIC, F-statistic and the one with the highest

probability.

In Tables (7,8) presented some other tests procedures are helped in
comparing with the GARCH(1,1) and CGARCH(1,1). We decided that the
CGARCH(1,1) model is the best because it has both lowest F-Statistic and the
highest probability to accept the null hypothesis that there is no ARCH effect in
the model. The Q-statistics in Table (9) (Q statistics for GARCH(1,1) and
CGARCH(1,1) respectively) also showed that our decision was correct as
CGARCH(I,1) has the best p-value among the other statistics.

4.4 Forecasting

After diagnostic checking, we have to compare a forecasting ability

among the two different models. Generally, the forecast error can be evaluated .
by the root mean square error (RMSE), mean absolute percentage error
(MAPE) and Theil ’s U statistics. The Table 10 is summarized the values that
calculate a forecast error from January 2004 to December 2004. In case of
RMSE, MAPE and the Theil ’s U statistics, the model component GARCH(1,1)
shows better values that GARCH(1,1) model. Figure 5 is the plots of the ex-

- post forecast value for the Egyptian stock index over the period 2004:01 to

2004:12.

5- Conclusions

In this research, we compare between two groups of GARCH models,
which are the symmetric GARCH and asymmetric GARCH models, in order to
capture the: "leverage effect” that also presented. The models analyzed include
GARCH, GARCH-M, TGARCH, EGARCH and CGARCH, besides, (o
emphasize the effect of conditional variance on the mean equation.

The empirical analyses showed that the best model for conditional mean
with a monthly data is ARIMA(1,1,0)(1,1,0);, because of existence seasonality.
Based on, to design and forecast conditional variance equation we used both
symmetric GARCH and asymmetric GARCH. '

We show that the best model to conditional variance equation is
component GARCH(1,1), it can include exogenous variables in the conditional
variance equation of component GARCH model, either in the permanent or

-11-
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transitory equation (or both). The variables in the transitorx equation \fvill have
an impact on the short run movements in volatitity, while the variables in

permanent equation will effect the long run level of volatility.

The effect negative and positive news not exists to Egypﬁan stock index
and it is not significant in the monthly data, where non-linear r.nodcl o
conditional variance is not significant which measure effect asymmetric shoclfs
to volatility. Since that the monthly data may be the short-run movements in

volatility is not exists.

The potential generalizations of the simple Component GARCH model
are riumerous. To state a few: The Component Exponential GARCH(C-
EGARCH), the Component GARCH-in-mean-level (C-GARCH-M-L), the
Asymmetric Power Component GARCH (C-APGARCH), the Fractional
Integrated Component GARCH (C-FIGARCH), and finally the Multivariate
Component GARCH (C-MGARCH) models. The derivation of the moment
structure of these models and alternative models in replicating the leverage
effect in the conditional variance and in fitting the news impact curve, and
accounts for a part of the short and long-run movements in volatility is left for
future research.
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APPENDIX 2
Table 1
FINAL PARAMETERS:
Number of residuals 131
Standard error 05187921
Log likelihood 200.2993
AIC -396.59859
SBC -390.8482
Bt Anaiysis of Variance:
DF Adj. Sum of Squares Residual Variance
Residuals 129 .36026396 .00269145
Variables in the Model:
B SEB T-RATIO APPROX. PROB.
AR1 30606633  .08225456 3.7209648 .00029509
SAR1 -57130674 .06884979 -8.2978717 .00000000
Table 2
Dependent Variable: DLOG(X,1,12)
Method: ML-ARCH (Marquardt)
Date: 10/09/05 Time: 00:15
Sample (adjusted): 1993:04 2003:12
Included-observations: 129 after adjusting endpoints
Convergence achieved after 19 iterations
Variance backcast: ON
Coefficient Std. Error z-Statistic Prob.
AR(1) -0.412336 0.103131 -3.998176 0.0001
SAR(1) 0.572202 0.097419 5.873611 0.0000
Variance Equation —
c 0.000107 4.73E-05 2.268689 0.0233
ARCH(1) 0.159683 0.073205 2.181312 0.0292
GARCH(1) 0.825353 0.066992 12.32027 0.0000 N
R-squared 0.071103 Mean dependent var 0.000976
Adjusted R-squared 0.041139 S.D. dependent var 0.067297
S.E. of regression 0.065898 Akaike info criterion -2.830797
Sum squared resid. 0.538473 Schwarz criterion -2.719952
Log likelihood 187.5864 Durbin-Watson stat 1.911896 i
Inverted AR Roots .57 -.41 S
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Table 3

pependent Variable: DLOG(X,1,12)

Date: 10/09/05 Time: 00:25

sample (adjusted): 1993:04 2003:12

Included observations: 129 after adjusting endpoints
convergence not achleved after 500 iterations
Variance backcast: ON

Coefficlent
~GARCH 0.878045 §t1d §1E5:: r ZStallstic FIch.
AR(1)1 ‘-)0.354375 0.108780 gg;gf: 3‘83?‘1‘
_SAR(1) ATIS8 0101451 5.393307 0.0000
—= STES Variance Equation
ARCH(1) 0.117664 ;gﬂfﬁﬁ k970080 0.3843
GARCH(1) 0.893831 0.038875 r e 0.0054
“R-squared 0.079553 M 42.99266 0.0000
Adjusted R-squared 0.042136 STt ot vag 0.000976
S.E. of regression 0.065864 -V dependent var 0.067297
. Akaike info criterion -2.798490
Sum squared resid. 0.533575 Schwa ;
Iz criterion -2.665476
Log likelihood 186.5026 Durbin-Watson stat 1.967972
inverted AR Roots .55 35 <
Table 4 ‘
Dependent Variable: DLOG(X,1,12)
Method: ML-ARCH (Marquardt)
Date: 12/09/05 Time: 01:25
Sample (adjusted): 1993:04 2003:12
Included observations: 129 after adjusting endpoints
Convergence achieved after 31 iterations
variance backcast: ON
Coefficient Std. Error z-Statistic Prob.
AR(1) -0.396057 0.109722 -3.609632 0.0003
SAR(1) 0.553412 0.102171 5.416499 0.0000
Variance Equation
C 9.35E-05 5.05E-05 1.852849 0.0639
ARCH(1) 0.194757 0.089377 2.179039 0.0293
(RESID<0)*ARCH(1) -0.099767 0.106718 -0.934865 0.3499
GARCH(1) 0.841359 0.076764 10.96039 0.0000
R-squared 0.073424 Mean dependent var 0.000976
Adjusted R-squared 0.035758 S.D. dependent var 0.067297
S.E. of regression 0.066082 Akaike info criterion -2.822331
Sum squared resid. 0.537128 Schwarz criterion -2.689317
Log likelihood 188.0404 Durbin-Watson stat 1.904967
Inverted AR Roots .55 -.40
Table 5
Dependent Variable: DLOG(X,1,12)
Method: ML-ARCH (Marquardt)
Date: 10/09/05 Time: 02:06
Sample (adjusted): 1993:04 2003:12
Included observations: 129 after adjusting endpoints
Convergence achieved after 33 iterations
Variance backcast: ON
Coefficient Std. Error z-Statistic Prob.
AR 410447 0.083744 -4.901198 0.0000
SAg()‘I) (-)(.’582807 0.081130 7.183641 0.0000
Variance Equation
C -9.680584 0.628893 -15.39306 0.0000
[RESYSQR[GARCH](1) -0.402391 0.168375 -2.389853 0.g1 ;33
RES/SQR{GARCH](1) 0.021482 0.114414 0.187761 0.0500
EGARCH(1) -0.769566 0.095037 -8.097524 0.00
R-squared 0.071171 Mean dependent var 0.0gog;g
Adjusted R-squared 0.033413 S.D. dependent var °2-°6 9776 %
S.E. of regression 0.066163 Akaike info_cntenon -2.
Sum squared resid. 0.538434 Schwarz criterion 129536&69%1
Log likelihood 197.9962 Durbin-Watson stat :
Inverted AR Roots .58 -41
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e 0
g;apeidom Varlable: DLOG(X,1 A2)

quardt)
Method: ML-ARCH (A{hm!u
Date: 10/18/05 Time: 12'.2:! B
sample (adjusted): 1903:04 ! e g
included observations: 129 aftor adjusting
Convergence achleved after 23 Iterations

ce backcast: ON . Error 2-Statistic Prob. ey
— Coalt ot 150 8,306972 0:0000
AR(1) 0719460 0063791 11.27833 0.0000
SAR(1) ' Varlance Equation
003231 0.001630 1.982273 0.0474 T
Porm: C N onans 0.035085 26,86851 0.0000
Perm: [Q-C] 132534 0.050173 2,641564 0.0083
Perm: [ARCH-GARCH] i 0.035604 -6.272636 0.0000
Tran: [ARCH-Q] g L 0.106904 -5,682480 0.0000
Tran: [GARCH’Q’ 5 '006116 Moan d.p.nd«nt var 0-000976 —
et 0.042764 8.D. dependent var 0.067297
o etk i 068720 Akalke info criterion -2.927392
iy iyt 0876148 Schwarz criterion -2.772208
ng Imﬂhood 196.6166 Durbin-Watson stat 1.889130
Inverted AR Roots 22 -.68
Table 7
ARCH Test
F-statistic 3.676148 probabllity 0.060911 Lo
Obs*R-squared 3.632648 probability 0.060172 -
Test Equation e o
Dependent Varlable: STD_RESIDA2
Method: Lest Squares
Date: 10/15/06 Time: 00:15
Sample (adjusted): 1993:04 2003:12
Included observations: 128 after adjusting endpoints
White Heteroskedasticity-Consistent Standard Errors & Covarlance
_Variabla. .y Coefficient Std. Error t-Statistic Prob. o
c 1.162846 0.185591 6.265648 0.0000
STD_RESIDA2(-1) -0.166254 * 0.074165 ~-2.241971 0.0267
R-squared 0.027599 Mean dependent var 0.996727
Adjusted R-squared 0.019881 $.D. dependent var 1.665543
S.E. of regression 1.648903 Akalke Info criterion 3.853699
Sum squared resid. 3425789 Schwarz criterion 3.898162
Log likelihood -244.6303 F-statistic 3.576148
Durbin-Watson stat 1.952334 Prob(F-statistic) 0.060911
Table 8
ARCH Test
F-statistic 0.149413 probabilit
’ y
Obs*R-squared 0.151605 probabitity 8233{,32
l‘l;est Equation
ependent Variable: STp A
Method: Lest Squares Ny
Date: 10/15/05 Time: 00:21 .
f;"c'l"T d(adgusted): 1993:04 2003:12
uded observations: 128 after adjustin
White Heter, g endpoints
Vo oskedasuclty-Conslst;nt Standard Errors & Covariance
C 0::'1"0'°M Std. Error t-Statistic Prob.
STD_RESID*2(.1) o°oa44“° 0.165803 5.919318 0.0000
“R-square 234410 0.114284 '
e 0.001184 0.301088 0.7638
Adjusted R-squared .0 S Mean dependent var 1.016403
E. of regression 1 '38841443 -D. dependent var 1.383756
Sum squared resid, 2;2 88 Akaike Info criterion 3.509702
Log likelihood _225 92 Schwarz criterion 3.554265
Durbin-Watson stat 2 0166721049 F-statistic , 0' 149413
- PrOb(F'CtaﬂSﬂC) 0:599749




models of Table 9

Autocorrelation and Partial Autocorrelation of standardized Residuals Squared

- GRCH(1,1) s
AC PAC Q-Stat Prob Ve GARCH(1,1)
1 -0.166 '0.166 3-6282 PAC Q'Stat Prob
5 0.160 0.136 7.0155 o 0.034 0.1556
3 0439 S84 12224 0.007 0.140 o134 o 0.017
4 0.017 0.015 7.2626 0.026 -0.045 -0.076 6.0067 0.050
5 -0.048 20.067 7.5824 0.055 0.087 0.051 7.0406 0.071
p 0.161 0.143 11132 0.025 -0.051 -0.058 7.4024 0.116
7 [ 4w Az 12.180 0.032 0.05 0.056 78166 0.167
8 g oy 12.221 0.057 -0.057 -0.071 8.2764 0.219
9 -0. . 14.794 0.039 -0.077 -0.069 9.1117 0.245
10 0.093 0.071 16.031 0.042 0.040 0.038 9.3349 0315
11 -0.143 -0.070 18.958 0.026 -0.106 -0.060 10.931 0.280
12 0.266 0229 29.147 6.001 0.225 0.238 18.273 0.051
13 -0.104 -0.014 30.711 0.001 -0.059 -0.068 18.781 0.065
14 0.114 0.055 32.607 0.001 0.157 0.149 22.389 0.033
15 0.190 0.259 37971 0.000 0.283 0.234 34.245 0.001
16 -0.004 0.006 37973 0.001 0.017 0.020 34.289 0.002
17 -0.050 -0.109 38.347 0.001 0.032 -0.142 34.444 0.003
18 0.062 -0.104 38.932 0.001 0.006 -0.027 34.449 0.005
19 -0.034 0.049 39.110 0.002 -0.034 -0.062 34.631 0.007
20 0.012 -0.013 39.134 0.003 0.028 0.046 34.750 0.010
21 0.010 0.022 39.150 0.004 -0.040 -0.007 34.998 0.014
22 -0.025 -0.065 39.251 0.006 0.024 -0.006 35.085 0.020
23 -0.106 -0.012 41.040 0.006 0.128 -0.052 37.686 0.014
24 0.016 0.013 41.081 0.008 -0.068 -0.076 38.424 0.016
25 -0.010 0.028 41.098 0.012 0.045 0.135 38.745 0.021
26 -0.006 -0.032 41.105 0.016 -0.019 -0.012 38.802 0.029
27 0.074 -0.037 42.013 0.018 0.099 0.002 40.431 0.026
28 0.014 0.072 42.044 0.024 0.106 0.116 42.316 0.023
29 -0.025 -0.027 42.149 0.032 0.063 0.012 42.996 0.026
30 0.178 0.135 47.573 0.012 0.091 -0.058 44.416 0.025
31 0.067 0.115 48.352 0.014 0.058 0.074 44.992 0.029
32 -0.074 -0.072 49.300 0.015 0.013 -0.044 45.023 0.038
33 0.130 0.060 52.284 0.010 0.082 0.118 46.216 0.039
34 0.014 0.066 52319 0.013 0.040 0.031 46.507 0.047
35 0.031 0.068 52.488 0.017 0.109 0.127 48.639 0.039
36 0.145 0.121 56.331 0.009 0.030 0.029 48.799 0.048
Table 10
= Models RMSE MAPE Theil 's U
GARCH(1,1) 26.346 4.609 0.0247
CGARCH(1,1) 25.457 4.423 0.0239
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