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Abstract

Bayesian infevence for threshold autoregressive moving average models (SETARMA)
is developed. Using both informative and non-inforinative prior, the posterior density
of the model coellicients is approximalted by anultivariate ¢ distribution. The posterior
Jeusity of the model precision parameler is approximated by a ganma density. The
|}1'~\|tcL:§C(l Bayesian methodology is checked via a simulation study. In addition, Lhe

new methodology is illustrated using the series of the US unemployment rates.

heywords: Poslerior distributions, U density, Monte Carlo, US unemployment.

1 Introduction

recently, quite a few nonlinear time series models have been proposed in the literature. Most
of the suggested nonlinear mnodels include some Lype of nonlinearity in the auloregressive
part. Among these models, the sell exciting threshold autoregressive (SETAR) model is
perhaps the most popular one. The SETAR model was introduced by Tong and Lim
(1980) and studied steadily in Tong (1983,1990) and Tasy (1989) among others. The dual
counterparl of the SETAR model, i.e the sell exciting threshold moving average (SETMA)
model has received less attention. The SETMA model is considered by Gooijer and Kumar
(1992) and studied in detail by Gooijer (1998). Tong (1990) and Brockwell et al. (1992)
introduced the sell exciting threshold autoregressive moving average (SETARMA) model.
Stramer (1996) discussed the estimalion of the conditional moments of SETARMA model.

Unfortunately most of the reported work on threshold models in the literature is focused
on non Bayesian analysis. However, Kheradmandnia (1991) introduced Bayesian analysis of
threshold autoregressive models. Unaware of KKheradmandnia’s work, Broemeling and Cook
(}9921 and Gewcki and Terui (1993) proposed Bayesian analysis of Lhreshold auloregressive
models. Chen and Lee (1995) employed Gibbs sampling approach to develop a Bayesian
analysis for SETAR models. Chen (1998) extended Chen and Lee's (1995) SETAR Bayesian



analysis to a generalized SETAR model where exogeneous variables are added and ),
Uhreshold is allowed to be a function in an exogeneous variable. On the other hand, Bayesia,,
analysis of SETARMA models is not known.

Bayesian analysis ol moving average models is dillicult even for linear models since {}e
likelihood function is highly nonlinear in the paramelers, which cause problems in prior
specification and posterior analysis. Thus, the integrations involved in Bayesian analysis
must be done numerically. Obviously Bayesian analysis for nonlinear Lime series models is
much harder simply because the likelihood function is more complicated. A possible solution
to the problem is Quasi Conjugate Analysis, where any constrains on the model coellicients
are ignored and moving average Lerms are replaced by sensible estimates. The advantage of
using the quasi conjugate approach is that it leads Lo nice standard distribution results for the
posterior densities which facilitates the calculations required for inference. Quasi Conjugate
Analysis is used by several authors including Broemeling and Shaarawy (1988), Chen (1992)
and Ismail (1994) among others and it is going Lo be employed in this paper. The objective
of this paper is to develop an approximate non numerical Bayesian inferential technique
for SETARMA models. The approximate posterior densities for the model coellicienls and
precision in each regime are derived. Both of informative and non informative prior are used.
The adequacy of the proposed technique is checked via a Monte Carlo study and a real dala

sel.

This paper is organized as follows. Section 2 introduces and explains the sell exciting
threshold auloregressive moving average maodel. "The posterior analysis is developed in
Section 3. Section 4 illustrates the methodology using a simulation study and a real data
sel. Section b is conclusions.

2  Threshold Autoregressive Moving Average Models

A Lime series y, is said to follow a SELTARMA of order (1 pi, v, Pay 42, 5 Pony i), 3L
salislies .
) L) O ) 6) S ) )
p= el + Zﬁf’i Y-t Zai Ely Ti-1 S Yd ST (1)
i=1 i=1
where j = 1, -+, m, d is a positive integer commonly referred Lo as the delay of Lthe model,

: : _1
i), 0U) are constants. The m sequences e\9) salisfy EP} = 7; *€,, where g, ~ N1D (0, 1) and
where 0 < 7; = ;—'}, < o0, (j =1, -+, m). The real numbers r; (called thresholds) salisly
—o0 =1y <7} <+ < Ty =00 and form a partition of the space of 1,4 and the partition

Tj-1 < Y—a < 1j forms the j** regime of the SETARMA model.

Model (1) is said to be selfl exciting because changes in the model parameters are generated
by past values of y, itsell. The model equation (1) reduces to the defining equation for an
ARMA(p,q) when m=1. In Lhis paper, we shall take up the case where m = 2 in detail. Let
pt = p = 0 for simplicity, the SETARMA(Z;E,% E,ql may be expressed as
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pauations (2. a) and (2.b) are sometimes called the lower regime and upper regime, respec-

pvely.

3 Posterior Analysis

31 The Conditional Likelihood Function

Suppose S = (Y1, V2 -+, Un) is a realization of SETARMA(2; py, 1,12, §2) process. In Lhis
study we employ the concept of arranged autoregression where the cases (observalions) are
rearranged according to the threshold variable y,_4. The autoregression approach was used
by Tsay (1989), Lee and Chen (1996) for SETAR model and by Chen (1998) for generalized

SETAR model.
Bmploying the arranged auloregression approach the SETARMA(2; py, g1, pa, q2) given by
(2) can be wrilten as

" (n (1 ; 1 _(1) (1) .
! =1 f) U! -3 T le 0; )En,-l-:l'—j -+ E?l,“lﬂ‘ 1 S 5

Ynitd =
3. bt )r;;f v )1(2) f,”, u-j t€siqa Otherwise

» 1 »
where s satisfics ys, < 7 < ¥nyp1, 7" = (¢{'] i, 0\ oM. . 03:))’ A2 =
(42,42,

P2 0“’,0.32’, . -Ug)). The inilial errors €,_,,€,, -+, €9 where ¢q = max(qy, ¢2)
are n.%mncd zeros. Let m; be Lhe index of the i-th smallest observation of {yy,y2, -, Yu-a}

Ppa s
and 7 = (d, 7). The condilional Jikelihood function of (’}’“},’7{2),7|,Tg, 1;) is given by

n=s s - . n-d
(A [ 8,) o e xexp{_gz(gsw)tg > (gsﬂ)"’}

i=1 i=sh1
3 m *

) n—3 ‘rl

- TI?T2T X exp g Z (ynﬂd - Z ‘,btl)J;{rILd_J Z 0“) LI)M_J‘)

i=l i=1 j=1

IS (), (2) (2),(2) :

_.E Ymitd — Z: ¢J Ywidd—j — Z 0 Exi+d—j (3)
i=s+1 i=1

It is clear that the likelihood is a complicated nonlinear function in the parameters qbfi), 0;-") 1=

L2; | =1,2--,p;i j=1,2-,q. Suppose the errors €},7 = 1,2 are estimmated by
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nonlinear least squares ¢}, 1 = 1,2 as follows.

- AR L A
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where ¥y, ST< Ynn, 4 and 0;,d, T are nonlinear least squares estimates found by minimizing

n—d-—s
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with respect to ¥, v?, d, r
1,2 in the conditional hikeliliood [unction

conditional likelihood function

Substituting the estimated errors i =
L (.}(1} 7{"-) Ti,T2,7) | 5") resulls 1in an dplnmclllhll(‘

L ('y“], B 1,72, 9',,) which may be written in the form :

- b - 2 n-a-d ‘.r! "* nos—d
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where,
" yﬂ,+d)T is the observations of the [urst regune,

(1} = .
y = (ym-l‘d':y?rz-l'dr

T 2 _
) is the observations of the second regime,

)
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A X(')TX(') B = x 7 y( i) i=1,2. (6)



Note that XOAO BO = 1,2 are functions in ) = (d,7) however, the arguments are

c.uppn\aqmi for simplhicily.

3.2 Prior Information

Priov specification is an important step in developing any IBaycsinn':umlysis. Both proper and
pmproper prior distributions are use(.l Lo represent prior mﬁ?rfnatmn ‘a.l:’oul. the paxmngtgrs.
In both cases n = (d,r) is treated as independent of the coellicients Y9 (i=1,2) and precision
parameters 7,1 = 1,2, Thus, a suitable choice for the proper prior distribution for the model
parameters v and 7; is a normal gamma distribution.

Ihat is
I m) o~ Nu®, ot v,
C(r) ~ T(aj,b)
The approximate conditional likelihood function (5) for each regime, as a funclion in the
parameters Y, 7 given d, r is a normal gamma density.

Hence the joint prior of v, 7; nay be written as:

(v, ) 'r‘g'gr'i?"‘i""exp{_g [ 20 + (v = W NTY () _ “‘m)] } )

where VO is o square positive definite matrix of order p; 4 ¢;, a; > 0 | b > 0. The
marginal prior for 1), namely ¢ (n) could be any distribution. S0, the joint prior of the

model parameters, ¢ (7“), v Ty, Ty, 7;) may he written as:
{ 2
| 2 i
C(v R R e ) HC(’Y”IT-')C(T-')
i=l

2 (mitegizeg, T, . s o :
o« CoNIIn T t‘-xp{—g' [ 25’:"*‘('7(')—ﬂ{'))”/mﬁ‘m“Iim)] }
i=1

(8)

This class of prior is flexible enough Lo be used in a lot of applications. It also, facilities
the mathematical calculations. It is, at least conditionally, the conjugate prior for Lhe
approximate conditional likelihood since the approximate likelihood given by (5) conditioning
on 1 = (d,r), is a normal gamma function, which is the same form as ¢ (v, 7) given by (7).
“.O\Vl'aver, the use of the proposed prior distribution (8) is not a necessily and any other
distribution could be used provided we are prepared to use numerical integration.

} If one has little information about the hyperparameters, or are unwilling to determine
Lhem, one hay use the improper Jellreys’ prior, namely

(1) (2) .
C('}' Y :TI:TQ)O(TIT2 (9)
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Jeffreys’ prior distribution is a special case of the normal gamina class when b; = 0, Vi) — 0,

i
Q; = — (ﬂ.a_?!)‘

3.3 Posterior Analysis

Multiplying the approximate conditional likelihood function, L*(v,7,m | Sn), given by (5)
by the prior distribution, {(v{", 4, 7,73, 7), given by (8) results in the approximate joint
posterior distribution which may be written as:

2b; + YWy ) _

i B nitpite +2e, | T
¢ A rmml ) o« ([T T ) GXP{——'[
=1

[ . . - . - l l-
2907 B () ()7 VO (40 — })] }

where n; is the number of observations in the ith regime.

In principle, the marginal posterior distribution of ) for example can be found from

¢ (’l’“} | Su) = [,m/, /T /']C' (7“},7“},7.,%3,17 { S,,)) d']'('z)dT|ded?f

It is not diflicult to show that the marginal posteriors of v 42 7 7 and 7) are all non-
standard. So, all exact Bayesian inferences must be done munerically. However, Lhe [ollowing
two theorems show that the approximate postenior distributions of 4 and 7, given 73 are
standard.

Theorem 3.1 Given n observations S, = (W1, y2, - - - yn) from the SETARMA (2; vy @1, 172, 42)
model qiven by (2), u conditional likelihood Junclion approzimated by (%) and a prior distri-
bution given by (8), then the approzimnate condilional marginal posterior distribution of ()

giwen 1 is a 1, . distribution with n+2a degrees of freedom, location veclor I2 ('}vm | &5, u)

and precision matriz 1 (’y“} -5 1;)
where,

r ('ym | S,l,n) — (flm + V{ﬂ)_l (B g lxti)”ﬁ))
9 15) = (222) (0 v

Ci = i+ YO y® 4 607 @ 6 _ (B9 4+ v pm)’" 5
(A+V)™ (BD 4 V0,60

and X0, AD, BO) are defined in (6).



Theorem 3.2 Under the same :'.rlnuhtums of theorem 3.1, the approzimate condilional P0s-
terior of 7 qren 1 as a gamma distribution with parameters "% qp “

The approximate conditional posterior distribution of 7;, ¢*(r, | 1, 9,), can be used to make
inferences about 7;. Unlike v which has symmedtric ‘T distribution, 7; has a skewed distri-
bution. Quoting the mean and the variance could be misleading. Instead, an approximate
credible interval is constructed as follows. 1L is not diflicult Lo show that Citi ~ X% cau
Therefore, a (1 — ) equal tailed credible interval for 7, is given by . o

2 2
Xn.--l-'zn.-. % S T S 5’_-:_‘1_25:. I -
Ci C:'

w@

where X2, is defined so that p (x,?“ > X?:.-, ﬂ) = a.

The next two corollaries report the approximate posterior distributions of v and 7; given
» when little information about the parameters are known apriori.

Corollary 3.1 If the parameters 'y{i), 7; and 1 are assumed independent apriori and have
Jeffreys’ prior distribution (9) and the other conditions of theorem 9.1 are not changed, the
approzimate posterior disiribution of ¥%) given 1 is a T distribution with (n; —p, — q:) degrees

of freedom, location vector (AD)~'BW) and precision matriz (qu y[,.}'_"l;’_’;;:i‘m_,nm A
Corollary 3.2 Under the same set-up as corollary 3.1, the approzimale posterior distribu-

. : ; : S 7 407" g
tion of T given 1 is ganma with parameters (2-B=%) gnd T A0

3.4 Approximate posterior distribution of 7

Integrating out 4 and 7; from the approximate joint posterior function results in the
marginal posterior function of 7. It’s not difficult to show that the marginal posterior
function of 7) takes the form:

Py T T0E) oyt
n|S) o« Q(T?)I:Il \ﬁA(i)—l-V(iH(C‘)

where, C; and A" are defined as before.

If Jeffreys’ prior for ; and 7; is employed, the marginal posterior of n has the form:

ni—Pi—9j

C(TI | Sn) o C(TI) f[ r (nd:z_ ) (y(i)‘ry(i} _ B({)TA(;)-tB)“( 3

iZ1 /] A |

It’s clear that the marginal posterior of 7 is non-standard. Thus all inferences aboul 7 must
Le done nunerically.

s T



Posterior Analysis of SETARMA(2;1,1,1,] ) Model
IMirstly, the proposed Bayesian technique is demon.
Secondly, to give Lhe formulae used in calculating

3.9

The objective of this section 18 qu[nl:l

strated using SETARMA (21, 1,1) model.
results which will be introduc (‘tl in next section.

Consider the SETA RMA(2;1,1,1,1) given by :

1) (1 (n_.o (n ]
¢y O Ehhay FEpw 1S53
Ynitd = ; 2

(2), (2) QP +5£J|_d otherwise

‘16 Jnld’! 1 :r{d}

Assuming tJ"g ) pt!) ¢{?J 0 7, 7, and 5 are independent a priori and have vague prior

1

¢ (é{l] 0(!} ¢(£J 0“) ?.“12’?}) B
T2

From results of corollaries (3.1) and (3.2) we get

. . . = Y (1)
OO Sum) ~ T [m= 2 (A%)7BY, =D A0
n; —2 G
C‘ Ti ‘9?1: 7 o [ __"_____‘ 3 _'IJ
G | 1) 3 >
where,
7 = (si,80) i=1,2
(1) _ (1) (1) (1) _ (..(1) (1 !
X - ("Xl ! I‘"I ) - X (yxr-!-d 1€ 1,}+d- r) '
(2) _— (2 | (2) (2) _ 2 T
X = (Xm+ll tnrl-llg) X (i,)rd |2 eif}ul I) ]
y“} = (y'1+dl Yagtdy " " " yqu +d) ;
5 A T
y[ [ (yﬂ'n|+i+d! yﬂ'n:+?'l‘dl ST y“n|+ng +d 1
A — Y{i)’ X{i) B = \f{iiT (¥) i=1,2.
C; = yO D _ g’ 407 g
Therefore,

E(D | San) = AOTBY =12



Var(y¥ | Sum) = (. (’") AT o g

n; - 4
. n;— 2
""(Ti | Stn”) = '_(, y 1 = |'2
: 2(n; — 2
Var(ri | Sn,n) = ( E,‘! J 1=1,2 (10)

The margimal posterior distribution of n is given by

n;—2
i i § 1 ("-?
((n]Sn) o II |(,4m);(”y - BT g~ g)” (11)

4 Illustrative Examples

In this section, the proposed methodology is illustrated with a simulation study and a real
data set. In both cases, a non informative prior is used.

4.1 Simulation

This study deals with generating 100 sets of n=200 observations from the following
SETARMA(2;1,0,0.1) model

0.7 0+l yoi <0
Ye = (12)

052, +e® y_1>0

where the delay parameter d=1, the threshold parameter r=0, g('} N (U,T[" = 2) ,
A N (U, T3 = l) a.nd e, } and {eE } are independent.

The initial values of the errors are set to zeros and using the equation (12), 400 observa-
tions are generated. The first 200 observations are deleted to remove the initialization effect.
A lower limit of 1 and upper limit of 4 are used for d. Thus, the candidate domain for d is
1,2,---,4. The candidate domain for the threshold is chosen to be Py, Py, - - - Pop where P,
is the i*" percentile of the data.

For each generated series, the least squares estimaltes are calculated and the residuals are
computed. Then, the posterior means of c;i, : E"’l, 7, and 7, are calculated using formulae
(10). The mode of the marginal posterior distribution is chosen as a Bayesian estimator for
both of d and r. The simulation results are shown in table(1). Columns 3 through 9 contains
the mean, standard deviation, minimum (Min), first quartile (Q,), median, third guartile
(@3) and maximum (Max) for 100 posterior modes of d and r and for 100 posterior means
of other parameters. The G6** and last rows of Table (1) present the previous descriptive
statistics for nonlinear least squares estimates of d and r respectively.

9.



Table (1) Sinml

‘r Paramelers

pt*!

e —

N
™
2

]
|
|
d
|
I

—_

b
éf

ation Hm““_,, for 100 simulated data sels lrom rn_odr*i(]ﬂ

True | Mean Standard r—lﬁin Q) Median Q) .‘-’Iai_}
Value Devialion N ma —

"o o676 0076 | 0434 0.619 0.673 0.734 0.806
05 | 0494 0292 |-0.291 0338 0472 0(.382 163
2 | 1914  0.392 1.088 1.619  1.908 2175 3.037 |
1 1.039  0.284 0.233  0.803  1.024 1.159 2.033 |
| 1.71 1.094 1 1 | 2 4 !

2.06 1.023 1 I 2 2.75 4 |
0 |0311  0.651 -1.45 -0.118 0.108 0.681 1.75 ['
0.866 |-2.355 -0.407 0.147  0.794 1.639

i et l 0.15

Inspection of the results in table (1) shows that the proposed Bayesian methodology gives

sound inferences for the parameters.
'he comparison of the last two rows of table (1) indicates that Bayesian estimates for r is

closer to the true value than the classical nonlinear least squares ones

Moreover, Relative Frequency distributions for posterior mode and nonlinear least squares
estimate of d for the 100 generated data sets are given in table(2). Table (2) shows that
the Bayesian technique estimates d correctly in 64 cases while the least squares method

estimmates d correctly in 34 cases only out of the 100 cases.

This may indicate that the

Bavesian approach is superior to the classical approach in estimating d in this study

Table (2): Relative Frequency distribution

for posterior mode and nonlinear
least squares estimnate of d.

Nonlinear least

d | Posterior mode
squares estimate
1 64 34
2 15 41
3 7 10
4 14 15

Figures (1) and (2) show the frequency histogram of posterior modes of r and nonlinear
Jeast squares estimates for the 100 generated data sets. The comparison of the two figures

confirm the superiority of the proposed Bayesian technique in estimnating r.

2 10 =



Figure 2: Histogram of nonlinear least squares estimates for r

4.2 Unemployment Rates

The series of US unemployment rates was analyzed by McCulloch and Tsay(1993). They
identified 2 SETAR(2;2.4) model for the changes of the series with d=1 and r=0.3. Chen and
Lee(1998) developed a Bayesian analysis of the series employing Gibbs sampling approach
to calculate the posterior densities of the parameters. A SETAR(2;2,4) model with d=1
and r=0.299 was used. Figure (3) displays the time Plot for Changes of Us Uncimployment
Rates.

Assuming a non informative prior, the proposed Bayesian methodology is applied (o the
changes of the US unemployment rates series from the second quarter of 1948 to Lhe first

11
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Figure 3: Time Plot for Changes of Us Unemployment Rates

quarler of 1993 using a SETARMA(2;0,1,0,1) model. The posterior mode of d 1s 1 which is
identical to that of McCulloch and Tsay(1993) and Chen and Lee(1998). The posterior mode
of r is 0.267 which is close to its estimates found by McCulloch and Tsay(1993) and Chen

7, the Bayesian estinales ol the coeliicients

and Lee(1998). Conditioning on d=1 and r=0.26
and precision parameter in each regime are reported in table (3).

Table (3): Bayesian Estimates of Changes in (O

Unemployment Rates with d=1 and r=0.267
9{” Tl T
0.569 11.779 144
0.093 1.394

Mean
Standard Error

2 2
o5 Ly T2 ny

0.141 0.754 4.649 34

Mean
2.374

Standard Error 0.061 0.104

It should be noted that our methodology like Chen and Lee (1998), does not need a

suifjective determination of the threshold parameter r via scatier plots. In addition, our
estimated model is more parsimoneous than SETAR models which are used in I\-‘ICCU}”OCII

and Tsay(1993) and Chen and Lee(1998).
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f Conclusion and open problems

We have shown thal a l‘-f"“l"“‘:“ “f‘l&'i‘Siﬂll irll:nrnm:u for SETARMA model is pos
o MOre Jifficult that doing swil.ulm?g'mgrnsmon. It is shown that, ¢
! | thveshold parameters, the conditional posteriors of the model
ted by a multivariate t and gamma densities.

sible and ig
onditioning on the delay
coeflicients and precision

AIN T
I'herefore, the need for numerical

are appmtima
integration 1§ avoided.

The pm;u\-cod technique is demonstrated by working out details for a SE'I'AR.MA(Z.I 1,1,1)
model. Moreover, a Monte Carlo study is conducted and the results indicate iy

: : 1 the success of
the Bayesian approach in analyzing SETARMA time series data.

We assumed that the model is identified, i.e. the model orders are known. However, the
jentification problem may be investigated by extending the parameter vector to includ; the
orders and then using the marginal posterior for the model orders Lo identily the model. In
addition, the forecasting problem may be studied by deriving the predictive density of future
observations.

Other analytic approximations such as Lindley (1980) and Tierney and Kadane (1986)
can be tried to implement a Bayesian analysis for SETARMA models. Moreover, the
relationship between Broemeling and Shaarawy's approximation and the above mentioned
approximations needs to be investigated. In addition, Monte Carlo based methods such as
Gibbs Samipling need Lo be compared with the analytic approximations.
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