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Abstract

This paper discusses the problem of estimating the parameters of the
truncated Extreme-value distribution when individual sample data are not
available and one can only work with grouped relative frequency data.
Considering the individual observation falling in a particular group follows a
truncated Extreme-value distribution with scale and location parameters. Three
procedures are presented here to estimate the scale and location parameters; the

maximum likelihood, the least squares and the minimum Chi-square.

Kev words: Truncated Extreme-Value Distribution, Actuarial Data,

Grouped and Censored Data.

1- Introduction

Actuarial and mortality data has some characteristics not found in the
other applications (Grenander; 1956). These characteristics attained for
different reasons. First, for the differing in insurance ages, the
observations may consist of lives whose ages at death are independent
but not identically distributed. Second, since a person life is only
observed to the age at which the period of observation expires, the ages
at deaths may not be observed for all sample observations. Hence, the
distribution has different truncation points. Third, the data may be

grouped with only frequencies of deaths recorded.

Data with such characteristics are found in the study of income
distributions by (Salem & Mount 1974). The studies of wildlife
Population subject to migration. The studies based on clinical trials with
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treatments beginning at different ages and ending before death The
incomplete follow up studies to determine ages at death occurring after
the trial period by (Bowers et. al.; 1997).

Usually group frequency data that available for the mortality data,
measured by its location parameters (the midpoint of that group). But
using the midpoints of the groups would therefore tend to concentrate
the sample data within each group but disperse the group mean more thap,

would be theoretically desirable.

(El-Bolkiny 1989 & 1990) considered the case of the initial ages s,
are equals, i.e. $;=S for i=1,2,3...k. where S=to<t;<t><...tx < oo delimit

k+1 age intervals. The generalization of this paper allows for different

S, S as well as withdrawals (and censoring) prior to death. The ages;

s;=s for i=1,2,3,... k. are restricted to set of group limits, to<t;<t2< ..ty,
which they are considered the withdrawal ages. This is a reasonable
restriction in life insurance and annuity applications, since insureds and

annuitants are generally assigned as “insuring age”, which is typically
integral at the inception of the contract. If #’s are integers; then the

integral “insuring ages” scale is integer. Records are generally based on

“insuring age” and a policy year. So these records lend themselves

naturally to the analysis described in this paper.

Considering the underlying distribution of life at birth is extreme-

value distribution with distribution function; F(x):

F(x) = 1- exp[- exp [-(x—p)/c]; (1.1)

where; — < £ <o and o>0 are location and scale parameters,

respectively.

In this paper; section 2 deals with the maximum likelihood estimator
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eedure using grouped and censored data is first formulated. It is
pl(t

difficult 1o

mnm-‘t‘lt‘-i"I

find solution for the parameter estimates in closed form, thus
method is used to find a solution. Alternative procedure based
on least- -squares estimates and its generalization is presented in section 3.

A minimum Chi-square 18 given in section 4. Finally, numerical examples

given in the last section before the summary and concluding remarks.

2- Maximum Likelihood Estimation

are

Choi and Wette (1969) discussed the problem of the maximum
likelihood estimation MLE in the case of Gamma distribution. However;
the Gamma distribution in Johnson and Kots (1970) belongs to the
exponential family distribution with limited type, and the Extreme-value
distribution belongs to the same family with unlimited type.

Let e; denote the number of new insureds (or new entrants) at age t;,
k. Also, let n; denote the number of deaths occurs in the i

i=0,2,3, ...k.
interval, i=1,2,3, ..k+1. Let w; the number of withdrawalsat t;
i=0,1,2, ...k. Of course w,=0. The likelihood function is the product of

two factors depends on the sample member. For a sample member
initially observed at age t.(age at contracting) and withdrawn at age t.,
(age at withdrawal) before death, the factor is: [1-F(tw)]/[1-F(tc)]. For a
sample member initially observed at age te, for whom death accurs in the
d® interval, the factor is: [F(ts )—F(ta.1))/[1-F(te)]. Hence; the natural

logarithms of the two factors are:
In[1-F(ty)] — [In(1-F(t.)] and In[F(ts)-F(ta-1)] — In[1-F(te)].

Summing over all members of the sample results; then the likelihood

function is;

F IkI[‘ = (to)]w [F(td)—F(fd—l)]ni @.1)

U -F(e) 1-F(te)
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The natural logarithm of the likelihood function InL=1/ 1n (2.1) will be:

k
= N w; In[1-F@;)+ Z”z In[£(t; )~ F(ti-1)]

—

=1 j=]
k
. z e; In[1- F(t;)]+constant (2£
i=1 .
k k
= Z(wi - ej)ln[l - F(ti)] + Zn,- ln[F(t,-) — F(t,‘_l)]
=1 =l
+ constant. (2.3)
Using the F(x) in (1.1) then [ in (2.2) will be:
k+1 k+1
=€ Z (w; —e;)gi—hi/2)—c¢ Z”zgz + an In(2shin(ch; /2)
1—0 =) _1
+ constant. (2.4)

where, ¢ = exp(-p/o) , g = [exp(ti/o) + exp(ti_1/c)]/2 and

h; = exp(t; /o)—exp(ti _1/0) ;1=1,2,...x+1. Differentiate (2.3) with

respect to ¢ and ¢ instead of L and ¢ then;

s ;O(ni +W —€)gj — Z‘i(wi —ej)hj/2+ > njhj cothch;/2)/2
= = i=l

(2.5)
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k-l koo k
’@{_ - ( [ Z(”’ -4- ]VI --(,])v] . Z(Wl — € ))77‘( /2 Zﬂzml COth(C‘/?, /2)/2]
oo (t)'7 i=0 = =

(2.6)

where,

= [tiexp(ti/c)ﬂi-]exp(ti-l/c)]/Z
and ;= t.exp(ti/c) — ti.1exp(ti1/c). for interval time t.1)=0.

To obtain the maximum likelihood estimators (MLE) for the

parameters |4 and o, we have to solve equations’(2.4) and (2.5) jointly for

the ¢ and o; respectively.

3- Least-gquares estimation

The least squares estimators (LSE) are minimizes the sum of the

squared deviations S, for;

§ = Z(—-pl . (3.1)

where e; represents the number of lives at the beginning of the i interval,
fori= L23, . ky+1 and;

= [ e, = fexptenpl T — exp( 2= L) "
g (o)

l-l

=plenp( ) -exp(‘LL) - explexp(C—4) - exp( L)) (3.2)

A §
fiumerical method may be used to search for p and o that
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minimizes (3.1). Consider ¢ = exp(-p/o) and d = exp(s/o); then the tw
0

conditions for a minimum Chi-square are;

(‘S -‘-‘-\ n C?p
,__..-_.::2 — ) RO 4 :O 3
Pk Y bal DA (3.3)
aS LS | ap,

ﬁz ——e . ----———-1—=0 3
2523 Bnoc 5 69

Using p; in (3.2) then;

5;11: =p. (d g, )+exp{c(d e, )}{2005‘:1'1(‘:'}2 /2)}{h /2} (3-5)
% _ expic(d — g,)}{2cosh(ch, / 2)}{c'h, + ch;}12 (3.6)

Since each group under truncated Extreme-value distribution then the
above result may not have a common variance. We may improve the

efficiency of the above result by the generalized least-squares GLS.
Rewrite (3.1) in matrix notation;

S=(Y-P) (Y-P) (3.7)

where;

Y = (n,/e,n,/e,,ny/es,. ... N, /€)=, Y, Y. Y,,,) and P =(p1, P2

k+1

D3, .- pre) for D p, =1. We notice that;

i=l
Y=P+U; (3.8)
where U = (uj, uz, us, ....... . uk+1) is the vector of errors. We assume that;
E (U) = 0; (3.9)
E (UU)=Q (3.10)

and each u; is multinomially distributed. The covariance structure is
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S)h-l‘\*ﬂ -

- pk-l-l pl
n

k+1

Due to the fact that Y. p, =1, the covariance matrix Q

i=]

PP "

pz(l'pz) "

- pk+1 P>
€,

wo TPy Pyy
ekrl
n  “P2 Pyw
Crii
3 » (3.1 1)

" "

pk+l (l-pkﬂ)

ek+l

(k+1)x(K +1) 18

singular and its inverse does not exist. Thus for generalized least-squares,

we minimize the sum of squares S+,

S.=(Y+-Ps) Q7 (Y. -Py)

where;
4 ket
P1 Pxs
Ck+1
1 Pr+1
Y "
Ck+
Pr+
for Y.

oooooooooooooo

(3.12)

(3.13)

is Y with the last element deleted, P.is the mean vector and Q. is
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the dispersion matrix; the asterisks denote the last dimension of P apg4 0
deleted (Salem & Mount; 1974). The expand of S.may be writtep ,,

follows:

1

k k 0.
=0 Y@ -p) ()@, -p) (3.14)

=1 =l Pi  Pks

where &ij is the kronecker delta (Judje et. al. ; 1988), which is equal tg |
when i=] and zero otherwise. S+ it can be further reduced to the

following:

S. = n[z » -p,-)-I;]_—Z 5; (v -pj)+Z(yi -P;)

LS, -p))

k+1 )=

k 1
= n[z (y, ‘P,)%()’j 'pj)+(yk+1 'pk+|)—_(yk+l _pk+l)]

k+1

k+1

ZHZ (yi - Pi)° /pi. (3.15)

4- Minimum chi-square Estimation

Since the chi-square goodness of fit test is often employed to test
the closeness of the estimated distribution to a given sample distribution,
we may directly use minimum Chi-square as a decision criterion. To test '
the fittness of the observed and theoritical frequencies n; and e;p;, for

i=1,2,3, ...k+1. The following Chi-square statistic may be used;

k+1 3
2
x*= . (nj-¢pi)° /e pj . (4.1)

1=1

The statistic x° in (4.1) has a Chi-square distribution with k degrees
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f freedom The above x* expression in (4.1) can be written as;
of fre |

l\Z‘]‘J(e—-—’- p.)* e/p,. (4.2)

nj
Clearly; (4.2) 18 identical to (3.15) since y; = =
In short the generalized least square estimates of x and o are also

the minimum Chi-square estimators. The Chi-square estimators can be

obtained by solving the following two conditions:

k+l p2 3 5
(- pi ) Ply =0 (4.3)
2
—1
and
k+1 n? P
> (e pi) (50 =0 (4.4)
=1 <1 Pi
I p; Jp; : . ,
where —— and -5—— are defined in (3.5) and (3.6); respectively.
c o

Again it is difficult to solve (4.3) and (4.4) in closed form, thus a

numerical solution method is recommended.

5- Numerical Results of Mortality Distribution

Using data shown in Table (1) and a procedure of numerical analysis
given by (Robston; 1965), the root of the equations (2.4) and (2.5) can
only be found numerically. The desired equations involves simultaneous

solutions in two unknowns L and c. Thus, the likelihood equations may

be represented by f=f(n,0)=0and g=g (n,0)=0.Letf), £, g1, g be
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and second order derivatives of fand g with respect to W ang

be the values of the | apprOXImat:ont

the first
respectively, and let 1y , O
(o). A solution of f(n,0)=0 and g(p,0)=0 may be obtained using th,

Newton-Raphson method in two variables.

%l
Hin | _ M, o B ) f, l_g
O g, £, f,

g+l
o g,

If the value of the first approximation (fL,,0,) is not sufficiently close
to the roots, the procedure may diverge. A first approximation may be
obtained by treating all deaths occurring in the intervals as having

occurred at the midpoint of the interval and using the methods for the

complete sample.

Table (1): Observed Deaths by Age Groups

Groups Observed Deaths Groups Observed Deaths
10-15 2 50-55 40

15-20 . 55-60 56

20-25 6 60-65 79

25-30 6 65-70 103

30-35 8 70-75 137

35-40 11 75-80 148

40-45 17 80-85 150

45-50 16 85 and over 185

* Source: Complete life table for U.S.A. 1951-1959.

If the initial values pp =70 and oy =5 the procedure converges after

12 iterations to the mean p = 83.47745 and oo =15.151314 correct to 5

N
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decimal places. However, if the initial values 1y =120 and o, =50, the

procedure converges after 16 interactions to the roots correct to S

decimal places. The Newton-Raphson method

computations per iter

requires a lot of
ation, but it is known that if the initial values p, and

oo are sufficiently close to the roots then the Newton-Raphson method
will converge easily and quickly.

The numerical method also used to find the roots of the equations
(3.12) and (3.13) also equations (4.3) and (4.4). The results, are given in
Table(2), the GLS and MLE are absolutely better than the results of LSE

in terms of minimum chi-square. The estimated mortality rates are very
close to the observed rates for GLS and MLE than for LSE.

Table (2)
Estimates LSE GLS = MLE
Ll 83.75755 83.47765
o) 15.59312 15.151314
xz 4.59195 1.08357

A surprising result is that the estimates of Hand o for GLS and

N A

MLE are equals. Calculating p; using the estimated values y and o, the

estimated number of mortality rates in each interval are given in table (3).
These results confirm our theoretical expectations.
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Fable (3): Observed and Fstimated Mortality Rateg

Estimated Mortality Rates |

Groups Observed rates LS GLS = MLE

10-15 | 0.00221 0.00399 0.00232
1520 0.0456 | 0.0648 0.00459
30-25 - 0.00618 0.00813 0.00615
25.30 0.0641 0.0843 0.00742

30358 0.00802 0.01003 0.00898 |
35-40 0.01147 0.01343 0.01195
40-45 0.01812 0.02007 0.01899
45-50 0.02869 0.03065 0.02889
50-55 0.04557 0.04751 0.04552
55-60 0.06663 0.06867 0.06665
60-65 0.10017 0.10225 0.10321
65-70 0.14463 0.14654 0.14559
70-75 0.20847 0.21051 0.20890
75-80 0.30297 0.30499 0.30309
80-85 0.44776 0.44981 0.44880
85 and over 1.00000 0.99999 0.99959

6- Summary and Concluding Remarks.

This paper dealt with the problem of estimating the parameters of the
truncated Extreme-value distribution. When individual sample data are
not available and can only work with the grouped relative frequency data.
The maximum likelihood function is formulated assuming that the
distribution of individuals falling in a particular group is a truncated
Extreme-value distribution. It is difficult to find a solution in closed form
for the explicit estimators, and an appropriate numerical solution method
is recommended. The generalized least-squares procedure is shown to
have the same objective function as minimum chi-squares. The resulting
optimality conditions are not different from those of MLE and LSE.



References

Bowers, 1., Gerber, H., Hickman, ] Jones, D. and Nesbitt, C. (1997).

“Actuarial Mathematics” The society of Actuaries, Itasca, Illinois,
U.S.A.

Choi, S.C. and Wette R. (1969). “Maximum Likelihood Estimation of the

Parameters of Gamma Distribution and Their Bias”. Technometrics,
Vol. II, No. 4, pp. 683-690.

El-Bolkiny, M.T. (1989). “The existence and uniqueness of the MLE of
the Truncated Extreme-value Distribution”. 14" International
Conference for Statistics, Computer Science, Social and
Demographic Research. Ain Shams University, Cairo, Egypt.

El-Bolkiny, M.T. (1990). “Estimation of the parameters of Extreme-

Value-Distribution from grouped observation”. The Egyptian
Journal for Commercial Studies. Vol. 14, No. 1, pp. 1-13.

Grenander, ULF (1956). “On the theory of mortality measurement”.

Skand, Aktuirietidskt. 39, Vol. I, pp. 70-96, and Vol. II, pp.125-
153.

Johnson, N.L. and Kotz, S. (1970). “Continuous Univariate
Distribution”. Vol. I1., Hougbron Miffin Company, New York.

Judje, G. Hill, R., Gviffiths, W_. Lutkepohl, H. and Lee. T. (1988).

“Introduction to theory and practice of econometrics” John Wiley
& sons, New York, U.S.A.

Robston, A. (1965). A First Course in Numerical Analysis, Mc Graw-
Hill, inc., New York, U. S. A.

Salem, A. B. and Mount,T. D.(1974).“A convenient Descriptive Model

of Income Distributions: the Gamma Density”, Econometrics, Vol.
42. No. 6, pp. 1115-1127.



