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Abstract 

The ordinary least square estimates of multiple regression parameters is characterized by low 
bias and large variance leading to poor performance in both prediction and interpretation of the 
regression model under study. Penalized regression techniques represented in ridge, lasso and 
elastic net were used to improve the ordinary least square estimates performance. Categorical 
regression algorithm provides efficient procedure for computing the regression coefficients of 
ridge, lasso, and elastic Net models. The statistical analysis was done on ten single nucleotide 
polymorphisms simulated data with strong linkage disequilibrium as predictors of a continuous 
phenotypic trait. The coefficients were 39%, 34%, 29% and 28% for ridge, elastic net, lasso and 
stepwise multiple regression methods, respectively. The current study finished that ridge 
regression followed by elastic net regression performed better than the other regression methods. 

Keywords: Ridge, Lasso, Penalization, Regression, Elastic net. 

Introduction 

Predicting response variable using the 
predictors is the most important objective of 
the model building. It is good to have a model 
that is reasonably easy to construct and 
interpret and predicts in a good way. So, the 
assessment of performance and goodness of fit 
of a predictive model is of a practical 
importance. The multiple linear regression 
models were used extensively in many 
scientific and biological fields. Ordinary least 
square (OLS) estimates of the regression 
parameter have low bias with arge variance 
leading to poor performance in both prediction 
and interpretation. Penalization and shrinking 
techniques were introduced to improve OLS 
estimates [1].  Single nucleotide 
polymorphisms (SNPs) could be highly 
correlated as linkage disequilibrium and the 
standard multiple regression analysis did not 
fit with these data due to their high 
dimensionality and correlation structure. 
Recently, penalized regression methods were 
used in the analysis of high dimensional 
data [2]. The penalization methods also called 

shrinkage methods that introduce a penalty on 
the size of the regression coefficients. Ridge, 
lasso and elastic net regression techniques are 
of the continuous penalization methods, but 
there are many other types of regression with 
the discrete penalization methods [3]. Ridge 
regression provides a means of addressing the 
problem of collinearity without removing 
variables from the original set of independent 
variables and it was used in a large scale data 
analysis scenarios, including marker selection, 
expression data analysis and genetic 
association studies when SNPs were in high 
linkage disequilibrium [2,4]. Ridge regression 
minimizes the residual sum of squares subject 
to a penalty of the ℓ2-norm on the regression 
coefficients [1]. The lasso is not robust to high 
correlations among predictors and will choose 
one and ignore the others and break down 
when all predictors are identical. The lasso 
regression estimator uses the ℓ1 penalized 
least squares parameter on regression 
coefficient. Lasso penalty expects many 
coefficients close to zero, and only a small 
subset to be larger and none zero [5]. Whether 
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there are a group of variables with high 
multicollinearity, lasso will select only one 
variable without caring which one is selected 
[6]. Elastic net simultaneously selects the 
variables automatically with continuous 
shrinkage and has the property to select groups 
of correlated variables. It shrinks the 
regression coefficients by combining L1-norm 
penalty and L2-norm penalty together. The 
elastic net identify a higher number of 
correctly influential variables than the lasso 
technique, and has lower false positive rate 
than ridge regression [6,7]. The instability of 
the lasso regression technique when 
independent variables are highly correlated as 
in SNPs in high linkage disequilibrium is 
overcome using the elastic net that was 
proposed for analyzing high dimensional data 
[5]. An important progress in the analysis of 
multidimensional data was the optimal 
assignment of quantitative values to qualitative 
scales. This type of optimal quantification 
(scaling or scoring) is a general approach to 
treat multivariate categorical data [8]. 
Categorical regression algorithm provides 
efficient procedure for computing the 

regression coefficients in the models of ridge 
regression, lasso and elastic Net [9]. This 
study aimed to assess the performance of 
penalized categorical regression techniques 
comparing to ordinary least square multiple 
regression performance based on coefficient of 
determination (R

2
), root mean square error 

(RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE) and Theil’s 
U statistic.  

Materials and Methods 

Data source 

A simulated data was obtained from a 
previously published study [10]. The 
researcher used Windows QTL Cartographer 
programme version 2.5 for simulation. The 
parameters setting used in data simulation 
showed in Table (1). Dependent variable 
defined as  yi ~ N (120, 1.23), represented 
quantitative trait of interest and the 
independent variable defined as SNP 
genotypes, where 2, 1 and 0 were used to 
denote AA, Aa and aa genotypes, respectively.  

 
Table 1: Parameters setting for data simulation 

Trait and Population  

Replications 1 

Sample size 100 

Population F2 

Trait mean 120 

Markers  

Total chromosome number 1 

Marker Numbers for Ch1 10 

Average marker distance 10 cM 

Variations of the marker Positions (%) 0 

Marker Genotypes  

AA 2 

Aa 1 

aa 0 

QTL  

QTL No. 1 

QTL 3 cM 

cM: centimorgan is a genetic measure showed as the distance between chromosome positions                                

QTL: Quantitative trait locus. A quantitative trait locus is a region of DNA which is associated with a particular 

phenotypic trait. 
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Statistical analysis 

The simulated data was used to investigate 

the performance of penalized categorical 

regression models in prediction phenotypic 

trait from SNPs marker predictors and 

compare between their predictive efficiency 

and that for different multiple linear regression 

algorithms. 

Multiple regression analysis 

 Data were described then tested for 

independency, linearity and homoscedasticity 

of the error term using histogram, scatter plot 

and residual analysis plot. Linkage 

disequilibrium (LD) estimate (D’) among 

SNPs was calculated using Cubex online 

calculator [11]. Data were examined using 

enter, forward, backward and stepwise 

multiple regression methods. In general, 

multiple regression models is represented by 

the following equation  

 

[12]. Each model of multiple regression 

methods was evaluated after rebuilding and 

removal of non-significant SNPs. 

Penalized categorical regression analysis  

Categorical ridge, lasso and elastic net 
regression analysis were applied then the best 
shrinkage parameter that resulting in an 
optimal model that overcomes the OLS 
problems was chosen.    The predicting model 
was rebuild after removing non-significant 
SNPs, then the models performances were 
evaluated. A categorical regression version for 
ridge, lasso, and elastic net regression is 
represented as: 

 

 

 
 

Where yi is the ith observations on the 
dependent variable, xij is the ith observation for 
jth independent variables, β0 is the intercept 
coefficients, βi is the ith regression 
coefficients, λ ≥ 0 is the tuning (regularization) 
parameter which regulates the strength of the 
penalty (linear shrinkage), wl and wj are either 

+1 or −1 depending on the sign of the 
corresponding βl and βj [1,5,9]. The following 
performance measures estimate model 
performance and accuracy were used to 
evaluate and compare between different 
regression models performance. 

 

1. R
2
 =  

2. RMSE =  

3. MAE =  

4. MAPE =  

5. Theil’sU-statistic =   [1].  
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The data were statistically analyzed using 
SPSS (Statistical Package for Social Science) 
version 21 [13]. 

Results 

It is too helpful to perform regression 
diagnostic analysis as exploratory steps to 
determine the characteristics of the traits under 

the study.  The phenotypic trait is normally 
distributed, linearly related with the predictor 
SNPs and there is no heteroskadisticity in 
variance of the residuals. Examining the 
linkage disequilibrium among SNPs showed 
that D’ estimate reached to 0.8 and more 
(Table 2). 

 
Table 2: Matrix of D’ of all pairwise linkage disequilibrium between SNPs 

 

 
SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10 

SNP1 0.89 0.69 0.53 0.39 0.37 0.30 0.22 0.12 

 

  0.05 

 

SNP2  0.89 0.74 0.60 0.53 0.37 0.35 0.18 0.02 

 

SNP3 
 - 0.85 0.71 0.63 0.52 0.45 0.30 0.11 

 

SNP4 
  - 0.85 0.71 0.61 0.55 0.41 0.18 

 

SNP5 
   - 0.83 0.69 0.64 0.53 0.33 

 

SNP6 
    - 0.83 0.80 0.62 0.40 

 

SNP 7 
     - 0.89 0.75 0.49 

 

SNP8 
      - 0.86 0.60 

 

SNP9 
       - 0.80 

  SNP: Single neocleotide polymoephism 

 Each SNP consider a different marker for a phenotypic trait 

 

Multiple regression analysis results 

Regression coefficients of all SNPs 
resulting from enter method was non-
significant (P < 0.05), while stepwise and 
forward methods selected SNP1 and SNP3 that 
had significant coefficients with P value 0.002 
and 0.048, respectively. Backward method 
selected SNP1, SNP3 that were significant 
predictors and SNP9 which was non-
significant with P value 0.077 was deleted. 
Backward** (** means backward regression 
after removal of non-significant SNP9) gave a 

model including a significant SNP1 and SNP3 
with P value 0.002 and 0.048, respectively. 

The final model size of other multiple 
regression variable selecting methods 
(stepwise, forward and backward**)  after 
removal of any non-significant SNPs included 
only 2 SNPs (SNP1 and SNP3) that is about 
20% of SNPs under the study. Regression 
coefficients of SNP1 and SNP3 corresponding 
to stepwise, forward and backward** were 
0.618 and 0.403, respectively (Table 3). 
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Table 3: Significance of SNPs Regression Coefficient in multiple regression methods 

Multiple  

regression methods 

SNPs included in 

the Model 

β regression  

coefficient 
Std. error  Significance 

 

Enter 

SNP1 

SNP2 

SNP3 

SNP4 

SNP5 

SNP6 

SNP7 

SNP8 

SNP9 

SNP10 

0.550 

0.144 

0.241 

0.163 

0.029 

0.002 

-0.008 

0.253 

-0.533 

0.109 

0.287 

0.390 

0.373 

0.355 

0.347 

0.360 

0.347 

0.352 

0.309 

0.229 

0.059 

0.770 

0.520 

0.647 

0.934 

0.995 

0.983 

0.475 

0.088 

0.636 

 

Stepwise 

 

SNP1 

SNP3 

 

0.618 

0.403 

 

0.196 

0.201 

 

0.002
* 

0.048
* 

Forward 

 

SNP1 

SNP3 

 

0.618 

0.403 

 

0.196 

0.201 

 

0.002
* 

0.048
* 

Backward 

 

SNP1 

SNP3 

SNP9 

 

0.593 

0.489 

-0.245 

 

0.195 

0.205 

0.137 

 

0.003
* 

0.019
*
 

0.077 

 

Backward ** 

 

SNP1 

SNP3 

 

0.618 

0.403 

 

0.196 

0.201 

 

0.002
* 

0.048
* 

*Significant (p-value ≤ 0.05) 

Std. error: standard error 

** After removal of non-significant SNPs 

 
 

Penalized categorical regression results 

Categorical ridge regression was 
performed, the optimal model was chosen at 
penalty parameter 0.9 at which the mean 
square error (MSE) that represents the 
variance of the regression coefficient 
decreased to the minimum (0.739) against 
other penalty parameters. The non-significant 
SNPs were deleted remaining SNP1, SNP3 
and SNP9 with P value less than 0.05 at 0.1 
penalty. 

Categorical lasso regression was also 
performed, the optimal model was chosen at 
penalty parameter 0.2 at which MSE decreased 
to the minimum (0.77) against other penalty 

parameters. The non-significant SNPs were 
deleted remaining only SNP1 with P value less 
than 0.0001 at 0.00 penalty. Elastic net (EN) is 
a combined procedure of ridge and lasso 
regression. Categorical EN was done, the 
penalty parameters at which the optimal model 
was build were 1 for ridge procedures and 0.4 
for lasso procedures. At these penalties, MSE 
decreased to the minimum (0.722) against 
other penalty parameters. The non-significant 
SNPs were deleted remaining only SNP1, SNP 
2 and SNP3 with P value less than 0.0001at 
0.8 ridge penalty and 0.3 lasso penalty. 
Significance of SNPs regression coefficient in 
penalized regression methods was illustrated 
(Table 4). 
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Table 4: Significance of SNPs Regression Coefficient in Penalized regression methods 

*Significant (p-value ≤ 0.05) 

Std. error: standard error 

 

 

Table 5: Comparative performance of multiple regression methods and penalized regression models  

 

Regression 

methods 
R

2 
RMSE        MAE MAPE 

Theil’s U-statistic  

( ×10
-4 

) 

Enter 0.31 0.92 0.76 0.63 0.6396 

Stepwise 0.28 0.94 0.77 0.64 0.6535
 

Forward 0.28 0.94 0.77 0.64 0.6535 

Backward 0.28 0.94 0.77 0.64 0.6535 

Ridge 0.39 0.79 0.66 0.55 0.5492 

Lasso 0.29 0.96 0.77 0.64 0.6674 

Elastic net 0.34 0.81 0.68 0.57 0.5657 

 

Enter method has the highest R
2
 (31%) 

against other methods of multiple regression. 
Ridge regression and elastic net models R

2
 

were 39% and 34% respectively, while other 
regression models coefficient of determination 
ranged from 28% to 31%. Ridge regression 
and elastic net models RMSE were 0.79 and 
0.81 respectively, while other regression 
models RMSE ranged from 0.92 to 0.96. 
Ridge regression and elastic net models MAE 
were 0.66 and 0.68, respectively, while other 
regression models MAE ranged from 0.76 to 
0.77. Ridge regression and elastic net models 
MAPE were 0.55 and 0.57, while other 
regression models MAPE ranged from 0.63 to 
0.64. Ridge regression and elastic net models 
U- statistic were 0.5492× 10

-4
 and 0.5657 × 

10
-4

, while other regression models MAPE 
ranged from 0.6396× 10

-4 
to 0.6674× 10

-4 

(Table 5). 

 

 

Discussion 

The current research addressed an 
important problem in the field of genetics and 
biological science, concerning how to deal 
with highly correlated explanatory variables or 
predictors. Identifying the SNPs biomarkers 
significantly affect specific phenotypic trait 
was our aim to build a predictive model with 
high performance. In a previous study, it was 
reported that linkage disequilibrium D’ 
estimate of more than 0.55 represented strong 
linkage disequilibrium [14]. In this study, D’ 
reached 0.80 and more, therefore we 
considered the SNPs in strong linkage 
disequilibrium. Traditional multiple regression 
procedures are highly problematic when strong 
LD exists among the predictors and the 
multicollinearity (LD) among the SNPs 
predictors can produce misleading results and 
interpretations. Herein, traditional multiple 
linear regression with enter method resulting 
in 100% non-significant SNPs with P values 
ranged from 0.059 to 0.995. This result agreed 

Penalized categorical regression 

methods 

SNPs included in the 

Model 

β regression 

coeffecient 

Std. 

error  
Significance 

Ridge 

(penalty = 0.1) 

SNP1 

SNP3 

SNP9 

0.656 

0.319 

-0.176 

0.077 

0.079 

0.083 

0.000
* 

0.000
* 

0.013
* 

Lasso 

(penalty = 0.0) 
SNP1 0.869 0.153 0.000

* 

Elastic net 

(Ridge penalty=0.8) 

(Lasso penalty= 0.3) 

 

SNP1 

SNP2 

SNP3 

0.238 

0.203 

0.187 

0.064 

0.056 

0.057 

0.000
*
 

0.000
*
 

0.000
*
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with Malo and Coauthors [14], who found that 
multiple regression model suffering from 
multicollinearity among SNPs resulting in 
several missing coefficient values and non-
significant P value that ranged from 0.118 to 
0.914. 

The results in Table 3 show that that SNP1 
is more associated with the phenotypic trait 
more than SNP3. We decided to apply 
penalized regression procedures that overcome 
multicollinearity problems [15]. The stepwise 
selection procedures in ordinary regression are 
poorly in variable selection, regression 
coefficients estimation and its standard errors, 
especially when multicollinearity is present. 

Categorical ridge regression was 
performed. The optimal model that was chosen 
at 0.9 penalty has MSE=0.739 that was less 
than multiple regression MSE which was 0.94. 
This indicated that ridge regression decreased 
the variation in predicted error which is 
comparable with others [1]. All SNPs included 
in the model with 30% SNPs were significant. 
After deleting non-significant SNPs and 
rebuilding the model, it was found that SNP1 
has the highest regression coefficient that 
equals 0.356. 

Categorical lasso regression was also 
performed and the optimal model that was 
chosen at 0.2 penalty has MSE=0.76 that was 
also less than multiple regression MSE that 
was 0.94. This indicated that lasso regression 
decreased the variation in predicted error 
which was previously stated by others [1].  
Sixty percent (60%) of SNPs included in the 
model (SNP1, SNP2, SNP3, SNP4, SNP9 and 
SNP10) and all are non-significant except 
SNP1.  

Other SNPs coefficients were shrunk to zero 
as reported in another work [5] that the lasso 
penalty expected many  regression coefficients 
to be close to 0 and only a small subset may be 
larger (and non-zero). Categorical elastic net 
regression was also performed and the optimal 
model that was chosen at 1 and 0.4 penalties of 
ridge and lasso procedures has MSE=0.72 that 
was also less than multiple regression MSE 
that was 0.94 as documented previously [1]. 
This also indicated that elastic net regression 
decreased the variation in predicted error.  
SNP 4 was non-significant and deleted from 

the model, then it was found that SNP1 has the 
highest regression coefficient that equals 
0.238. 

Ridge regression outperformed ordinary 
multiple regression followed by elastic net 
regression in the prediction of phenotypic trait 
based on SNPs predictors. A previous study 
[14] stated that ridge regression is better than 
ordinary multiple regression and traditional 
single-locus-based analyses. Several authors 
discouraged the use of stepwise algorithms and 
reported that lasso procedures performed 
better than backward and forward stepwise 
algorithm which was slightly agreed with our 
results as R

2
 of lasso, backward and forward 

stepwise algorithms were 24%, 26% and 26% 
respectively [15]. Our results were also 
supported by previously published articles 
[5,16], on which the performance of shrinkage 
ridge regression estimators is superior to lasso 
estimators when predictors are highly 
correlated. The performance parameter results 
of the current study was contrary to several 
studies [1-3] as the prediction error, elastic net 
performed better than the ordinary multiple 
regression, ridge regression and other 
regulatory regression methods, but we agreed 
the elastic net was better than lasso. The 
difference may be due to different analytical 
statistical programs, different sample size or 
different experimental units and variables. 

Conclusion 

The Ridge regression and elastic net 
technique outperformed the other methods 
ordinary multiple linear regression methods 
(forward, backward, stepwise and enter) and 
other penalized regression technique for 
predicting the quantitative phenotypic trait 
regressed on SNPs predictors with strong LD. 
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 الملخص  العزبي

 الإنحذارعلي طزق إعتمادا نمذجة البيانات البيولوجية 

انجٕٛيٙ خٛر٘ محمد
1

، انحسُٛٙ عجذ انجر راضٙ
2

، يحًٕد صلاح انطرثبَٙ
1
ْبنخ اسًبعٛم يحًٕدٔ 

1*
  

1
 جبيعخ انسلبزٚك –كهٛخ انطت انجٛطر٘  –لسى رًُٛخ انثرٔح انحٕٛاَٛخ 

2
 جبيعخ انمبْرح –ذ انذراسبد ٔانجحٕس الإحصبئٛخ يعٓ –لسى الإحصبء ٔالإلزصبد انمٛبسٙ  

 

ثٕجٕد رحٛس يُخفض ٔرجبٍٚ كجٛريًب ٚؤد٘ إنٗ  انًزعذد عًٕيب  الإَحذار رمذٚراد  انًرثعبد انصغر٘ نًعهًبد  طرٚمخ رزًٛس

يًثهخ  نجسائٙا الإَحذار رحذ انذراسّ. أسزخذيذ رمُٛبد الإَحذار فٙ كم يٍ انزُجؤ ٔانزفسٛراد انخبصّ ثًُٕرج الأداء ضعف 

ثئجراءاد فعبنخ نحسبة يعبيم ٚمٕو انفئٕ٘ الإَحذار . خٕارزيٛخ انشجكخ انًرَخٔإَحذار ، Lassoَحذار إ، َحذار انطرفإفٙ 

انزحهٛم الإحصبئٙ عهٗ ثٛبَبد يحبكٛخ نعشرح  إجراءرى  ،  حٛشانطرف، لاسٕ، ٔانشجكخ انًرَخإَحذار فٙ ًَبرج الإَحذار 

نصفخ يظٓرٚخ يسزًرِ. َسجخ  زغٛر يزُجئًكالإررجبطٙ فٙ انزٕازٌ خزلال الإراد ٕكهٕٛرٛذاد انًفردِ ٛيزغٛراد نزعذد أشكبل انُ

٪ نطرق 22٪ 22ٔكبَذ ٪ عهٗ انزٕانٙ 34ٔ٪ 39ٔانشجكخ انًرَخ كبٌ إَحذار انطرف ًَٕٔرج إَحذار يعبيم انزحذٚذ نًُٕرج 

Lasso ٔثشكم أفضم يٍ طرق عهّٛ الإعزًبد ًٚكٍ انطرف إَحذار أٌ ُزبج إسزرى  ٔعهّٛ فئَّ لذ. عهٙ انزٕانٙلاَحذار انًزعذد إ

 انشجكخ انًرَخ.إَحذار الأخرٖ ٚهّٛ رمُٛخ الإَحذار 


