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Abstract 

Due to the technological advancement in Today’s manufacturing systems, a large amount of data is 

generated in different volume, velocity, and variety of kinds. Extracting information from these data and make a 

real-time decision is a big challenge to the current manufacturing systems. This study presents a novel model that 

converts the iFactory learning facility into a fully Industry 4.0 (I4.0) manufacturing system. To achieve this 

purpose, we utilized the cyber physical system (CPS) components and sensors, the Internet of Things (IoT), deep 

learning methods, and cloud computing to fully meet the I4.0 enablers. Cloud computing is utilised in two phases: 

(1) during the model training phase to hold a large amount of product image data collected from the inspection 

station, and (2) during the execution of the model.   

  The core learning model is based on a convolutional neural network (CNN) that is trained from the 

captured product images in the production line to predict the defective items in the line. The model was initialized 

by Resnet method and optimized to improve the learning rate and reduced loss function. The supervised learning 

model achieved high accuracy prediction performance up to 96.75% in the real-time decision making process. 

The model was able to extract the feature map of the normal non-detective product and use it to improving the 

accuracy and reducing the traffic between iFactory station and the cloud server. The model exploits the parallel 

computing big-data framework to achieve a real time decision making. The model can be applied to the current 

system and adopted as with all it is functionalities for the newer systems. 

 

Keywords: Big Data; CPS; IoT; Cloud Computing; Smart Manufacturing; Industry 4.0; Machine Learning; 

Deep Learning; Convolutional Neural Network. 
 

 

1- Introduction 

In today’s competitive manufacturing environment, manufacturers are facing 

challenges related to dealing with big data, such as how to rapidly make decisions to improve 

productivity, quality, and system sustainability[1],[2], [3]. Manufacturing facilities are not 

ready to manage and obtain the advantages of big data due to a lack of decision making built-

in metho [4]. These advantages are seen in Fig. 1. Manufacturers realizes the importance to 

adopt smart decision making methods for big data, and also respond and adapt to the continuous 

technological developments, dynamic markets, and demand fluctuations [5]. Recent 
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technological manufacturing developments are encouraging the use of CPS, whereby 

information is gathered from all related sources. It started with a project that is funded by the 

German government for advanced manufacturing ideas in 20 [3]. The paradigm of the fourth 

industrial revolution is based on CPSs[1], [2] , so it will entail new sorts of complexity, namely, 

the complexity of structure, data, products, and interaction. The new revolution involves using 

new technologies, including CPSs, cloud computing, big data, and the IoT, which is sometimes 

referred to as the internet of services (IoS). 

Big data analytics is a relatively new research area and a key enabler of Industry 4.0. 

The IoT and cloud computing are highly recommended to be utilised in the manufacturing 

decision making processes. Big data research is currently concentrated on capturing, pre-

processing, processing, and analysing big data [6] rather than other aspects that have relatively 

less value, such the traditional storage techniques [7]. 

Current manufacturers are not fully utilising the scale of big data or engaging in real-

time decision making, which limits success [8], and there are still significant challenges 

associated with the implementation of big data [9]. In [10] suggested that researchers should 

focus on big data algorithms development for manufacturing operations. 

 

Fig. 1. Typical Process Improvements [8]. 

The sharing of components and services is vital to cloud computing and significantly 

contributes to Industry 4.0 [11]. The concept of cloud computing is that everything, even 

processing resources, such as CPUs and graphics processing units (GPUs), can be shared as 

services. 

 

In [12] applied a CPS model to an automated electric vehicle by applying a machine-

learning approach. The method involved optimising various CPS parameters to improve 

various performance objectives, such as drivability and energy, dynamic vehicle performance, 

along with differing driving styles. The results validate the effectiveness and feasibility of the 

proposed CPS-based approach for three driving styles: conservative, moderate, and aggressive 

[12] . Fig. 2 shows the structure of a CPS system with all enablers. 

• 5% decrease in batch
cycle time.

• 10% improvement in
machine reliability.

• 10% reduction in
water consumption.

• 5% reduction in
energy costs.
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Fig. 2 CPS system with all enablers [13]. 

 

The iFactory was utilised in this research. It is a state-of-the-art learning factory located 

in an intelligent manufacturing system laboratory that is one-of-a-kind in North America [14], 

as shown in Fig. 3. It simulates the innovative physical integration of varying production 

lifecycle phases: iDesign, iPlan and iFactory. iFactory is a modular manufacturing system that 

can be reconfigured to have a different line of production structure. The main goal of this study 

to transfer the iFactory to be fully adopting the Industry 4.0 revolutionary enablers by using 

IoT devices such as cameras and sensors, these devices must be able to stream reading data 

into the cloud for real-time decision making based on machine learning. Based on the proposed 

method, with the help of Artificial Intelligence (AI), we improved iFactory skills to monitor 

any unusual events, continuously learning from the available and newly generated data, and 

take a decision such as predict the defective product.  

 

Fig. 3 iFactory. 
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2- Materials and Methods 

Using the current inspection method, the iFactory inspection station camera targets 

whether the positioning of each product is correct or incorrect. This is done currently in the 

iFactory using the PLC programming unit. The objective of this study is to utilise capabilities 

of I4.0 by implementing all its enablers. This process is performed using a big data analytics 

platform with the guidance of the I4.0 concepts. The process involves capturing images of the 

product and transferring them to a big data platform on a supercomputer. Image pre-processing 

and decision making is done remotely on the supercomputer. Then the results are instantly 

transferred to the product station. Utilizing a big data platform has become a necessity due to 

the increased volume of data and the urgency of taking real-time decisions. 

The product quality is manually classified into two main classes: a “normal” class in 

which the image of the product does not have any evidence of a defect, and a “bad” class in 

which the image explains some defects in the product. A CNN based on TensorFlow was 

utilised as an efficient classification tool for making such decisions. Moreover, due to the fine 

details and similarities in the dataset, transfer learning was used based on the Resnet-50 pre-

trained model by uploading its weight matrix to our model [15]. 

Fig. 4 shows the high-level IDEF0 graphical function model for smart manufacturing 

systems. It depicts the main activities of the proposed method including all the inputs, outputs, 

mechanisms, and controls. The inputs include multiple big data sources, such as system data, 

log files, and sensor data. While the outputs include quality assurance, the error corrections, 

and the decision support actions. The functionalities include big data tools, utilizing 

supercomputer resources, CPS capabilities, and IoT techniques. 

 

 

 

Fig. 4 High-level IDEF0 graphical function model for smart manufacturing systems. 

The details about the IDEF0 used for this part of the research are shown below in Fig. 

5. It starts with data mining to analyse the input data, such as sensor data, historical data and 

log files. The system uses product status (i.e., acceptable or defective) to detect and label the 
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classes (i.e., defective labelled as 0 and non-defective products labelled as 1) using the captured 

product images. The inspection station camera captured a few thousands of images which is 

still not enough for proper training. Therefore, Augmentation pre-processing on these images 

was essential to increase the number of images from 5,000 to 20,000 (10,000 images of each 

class). The Augmentation consists of rotating, scaling, and resizing the captured images. The 

next step is transfer learning using CNN that is built on resnet-50 and a 3x3 kernel matrix. The 

activation function s of CNN are ReLU and Softmax, and the result of this step is to extract the 

discriminative feature map. We used Sickitlearn library based on TensorFlow to build the fully-

connected layers network. Running the classification for predicting the classes. 

 

The classification or the prediction model, as shown in Fig. 6 below, consists of the 

training step by splitting the samples into 70% for training, 20% for validation, and 10% for 

testing the model. The training phase changes the weight of the fully connected CNN 

throughout the forward/backward propagation process to improve the learning rate. Then the 

model is tuned by grid-search the batch size and the number of epochs. The model is optimized 

using the ADAM method [16] followed by model regularisation using different rates of 

dropout. Validating the model, then testing is the final stage to ensure the proper performance 

with no under-fitting or over-fitting in previous stages. The testing phase is a classification 

process on the never seen samples in the learning phase. 

 

A. Scope and Applicability to Upgrading Existing Manufacturing Systems 

The scope of this part of the paper includes manufacturing systems with low, medium 

and high production volumes for product families and variants. It also covers big data 

concerning variety (i.e., structured, non-structured or semi-structured), volume (e.g., up to 

terabytes and zettabytes), and velocity (i.e., real-time data). This model can be used to upgrade 

the current manufacturing systems which have I4.0 limitations, and also should be used on the 

newer released manufacturing systems by equipping them with the required communication 

hardware and software CPS system, which is vital to make the IoT system parts communicate 

with the central supercomputer. The newer systems need extra hardware and software features 

such built-in IoT cameras and sensors for better communication and helped the decision 

making process These cameras and sensors can have specific filters based on the analysed 

feature mapped from the learning system to reduce the traffic and enhance real-time decision 

making. The system can also record some statistics for maintenance and overall performance 

predictability, EigenInovations is a good example of this process, as shown in  Fig. 7 [17], but 

still, there is a lake of published methods in the literature. 
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Fig. 5 Details about the IDEF0 used in this study. 
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Fig. 6 Data classification steps. 
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Fig. 7 EigenInovations’ new manufacturing system [17]. 

B. Data Acquisition 

In this phase, the camera (1,024 x 1,024 DPI resolution) is mounted to a base in the 

inspection station of the iFactory and used to capture product images. These images are in red, 

green, and blue (RGB) format. A total of 20,000 images were acquired to build a sufficient 

dataset. A supercomputer is used to split the acquired images into training, validation, and 

testing datasets. The training images are labelled using natural language processing with an 

accuracy level of 99%. After the datasets are pre-processed then they are fed as the input of the 

machine-learning model. 

Fig. 8 illustrates the two classes. The left image is for the normal class, while the right 

is for the defective one. Since the used samples are labelled in the training, this model is 

considered as a supervised machine-learning problem. The normal class is labelled as “good” 

(coded as 1 in the system), and the defective class is labelled as “bad” (i.e., coded as 0). Each 

class consists of 10,000 images which make the model be a balanced classification model. 

 

 

Fig. 8 Samples of the normal (good; 1) and defective (bad; 0) product images. 

C. Pre-processing 

The pre-processing phase prepares the images to fit within the machine-learning model 

to extract the best features quality. In this phase, the images are normalised by scaling them 

Good Bad 
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down to 512x512 pixels. Then all image channel values are normalised in the range between 0 

and 1. This is achieved by dividing all pixel values by the highest pixel value, which is 255. 

The purpose of this normalisation is to remove any variation in channel values and accelerate 

the convergence of the machine-learning model. In the second phase, image augmentation is 

applied to increase the number of images and minimise the chances of overfitting. 

Augmentation is achieved by randomly and horizontally flipping a certain proportion of images 

and rotating them by 45 degrees. The features acquired for each batch are captured by cropping 

the image from the centre and rescaling it to 224 x 224 pixels. The image labels are either 

“normal” or “bad” and represented in a one-hot encoding vector by 1 or 0, respectively. 

D. Model Architecture  

The model has three phases: first is reading the dataset that is stored on a 

supercomputer. The second phase is pre-training the model weights using the initial values that 

are generated using Resent-50. The Resnet-50 expands the machine-learning model to be 

deeper. Our model is trained from end-to-end layers (without freezing layers) to capture the 

fine details of each class that are called the discriminative features from the feature space. 

Resnet-50 consists of a convolution layer, a max-pooling layer, a ReLU activation function, as 

given in Equation 2, and uses dropout some layer as a regularization technique. The first layer 

is the input layer, and the final layer is a fully-connected class layer. The SoftMax nonlinearity 

activation function given in Equation 3 is performed with a binary cross-entropy loss function. 

The state-of-the-art method called ADAM (a method for stochastic optimisation method), a 

stochastic gradient descent method is used to optimise the loss function. Fig. 9 depicts the 

structure of the CNN layers. 

 

Fig. 9 Sample of CNN layers [18]. 

The reason for using a CNN is its feature extraction efficiency that is achieved by 

multiplying images with a particular kernel (image filter). The first layer of CNN is the 

convolution layer, which extracts the discriminative features using the dot product of the image 

with a filter matrix known as a kernel that has a specific size. The spatial information is 

preserved in the outcome of the dot product in the pooling matrix that forms the feature map. 

The kernel filter slides from the left to the right of the image with one or two overlapping pixels 

or stride. We select the kernel size to be 3x3. Using different kernel values (filter) on the same 

image will generate different feature maps.  Fig. 10 shows the extracted feature map when a 

“canny” filter is used. 

Good

Bad

http://ijisd.journals.ekb.eg/


International Journal of Industry and Sustainable Development (IJISD) 

Volume 2, No.1, pp. 1- 14, January 2021, ISSN 2682-4000  

 

http://ijisd.journals.ekb.eg                                                                10 

 

Fig. 10 Product image and canny filter output. 

 

The second layer is the pooling layer, and the primary purpose of this layer is to train 

the model to identify the object, regardless of its position in the images. For example, if a max-

pooling layer is used with 2x2 for every four cells, then the maximum numerical value is 

computed and inserted into the pooled feature map. Then the activation functions, such as 

ReLU and SoftMax, minimise the produced number by the former layers. Each number which 

is generated by the activation functions at each layer are stored in the weight matrix. The 

purpose is to reach the weight matrix that best minimises the loss function, which a binary 

cross-entropy loss function is given in Equation 1:  

𝐶𝐸 =  − ∑ 𝑡𝑖 𝑙𝑜𝑔(𝑠𝑖)

𝐶′=2

𝑖=1

=  −𝑡1 𝑙𝑜𝑔(𝑠1) + (1 − 𝑡1) 𝑙𝑜𝑔(1 − 𝑠1) 

 

(1) 

 

The loss function measures the variation between the value of the sample and the 

predicted value. The activation function we utilised is Rectified Linear Unit ReLU. As shown 

in Fig. 11, ReLU is an element-wise operation (i.e., it is applied per pixel) and set all negative 

pixel values in the feature map to be zero. The purpose of using ReLU is to introduce 

nonlinearity to the CNN model due to the nature of the data in real life is being generated by 

non-linear functions and the fact that convolution is a linear function [19].  

  

output = max ( zero , input ) 

 

           (2) 

 

 

 

Fig. 11 RELU (Rectified Linear Unit). 
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The weight matrix keeps updating itself using forward and backward propagation. The 

last fully-connected layer with two classes is used with SoftMax [20], as shown in the following 

equation 

  

𝛼(𝑥𝑗) =
𝑒(𝑥𝑗)

∑ 𝑒(𝑥𝑖)
𝑖

𝛼(𝑥𝑗) =
𝑒(𝑥𝑗)

∑ 𝑒(𝑥𝑖)
𝑖

 
(3) 

Where α is the output of the activation function, xi is the weight matrix of layer j and xj is the 

output of layer i. 

The bad and good product classes are coded as 0 and 1 respectively. We used 227 layers 

for the sake of implementing transfer learning by the Resnet-50 pre-trained model. However, 

Resnet -50 was trained from scratch, and all weight matrix values were discarded for the sake 

of improved learning [15].  

E. Tuning the Model’s Hyperparameters 

In this approach, the hyperparameters are tuned by observing the accuracy of 

performance. We used the well-known “Stop Early” feature when the accuracy score achieves 

99%. The training is repeating 10 times (epochs) until the targeted accuracy have been 

completed. Different batch sizes of 20, 40 and 60 images per batch were used. The dropout rate 

value was set to be 0.2 to prevent overfitting and improve accuracy. The learning rate was 

tuned using a learning rate scheduler (a sort of grid-search method) with a base learning rate 

of 1e-7 worm up to 5 epochs (0.001) then dropped down to a minimum learning rate of 1.E-

15. However, the learning rate for which the highest accuracy level was achieved was 0.001. 

The optimiser used to minimise the loss function was ADAM. 

 

3- Results  

A supercomputer was utilised to test this application using Apache Spark, an open-

source general-purpose cluster computing framework. Spark also provides an interface for 

programming clusters with data parallelism and fault tolerance. The model was running on a 

Compute Canada supercomputer known as Cedar in a cluster with four nodes. Each node has 

16 cores and 100 GB of memory per CPU. The model was tested with batch sizes 20, 40 and 

60. The results are shown in Table 1, which shows the model’s performance measurements, 

including accuracy and loss of classification.  

Table 1 Results (Accuracy and loss) with different batch sizes, Epochs, and Drop out. 

Batch 

size 

Dropout 0.1 0.2 

# of 

Epochs 
5 10 15 5 10 15 

20 
Accuracy 55.87% 76.85% 95.84% 80.68% 96.78% 96.75% 

loss 69.35% 51.82% 0.99% 43.18% 2.17% 5.61% 

40 
Accuracy 51.27% 72.56% 93.79% 73.23% 92.45% 94.99% 

loss 69.25% 51.61% 9.09% 40.41% 10.99% 0.25% 

60 
Accuracy 48.16% 60.96% 88.91% 55.78% 62.45% 89.41% 

loss 68.95% 65.41% 14.96% 69.32% 60.87% 21.63% 
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Accuracy was determined as the percentage correctly-classified images divided by the 

total number of images while the loss was defined as the least square function that takes the 

square root of all the summed-up squared the values differences between the prediction value 

and the actual value for all classified samples. By changing the number of nodes used to 

measure the scalability of the system, additional data can be processed in less time than ever. 

A. Performance 

The performance was measured based on how many images can be processed per epoch 

per time. It was noticed that with increases in batch size, accuracy and training time decreased. 

However, using a small batch size takes a long time but results in high accuracy. When we 

used a batch size of 60 with 10 epochs, each epoch lasted approximately 7 minutes and 62.45% 

accuracy was achieved. However, when we used a batch size of 20 with the same number of 

epochs, each epoch lasted 20 minutes and 96.78% accuracy was achieved. 

B. Accuracy with different batch size and dropout  

In this experiment, accuracy was measured based on the batch size with a dropout of 

0.1. With the increase in batch size, the training time decreased and accuracy increased. The 

number of epochs was set to 5, 10 and 15. The best results (i.e., 95.84% accuracy) were 

achieved for 12 epochs with a batch size of 20. The best learning rate was 0.001. Fig. 12 depicts 

the results based on accuracy, batch size and number of epochs when the dropout rate is 0.1. 

 

Fig. 12 The accuracy of the model using a different number of epochs and different batch sizes where 
dropout is 0.1. 

In this experiment, accuracy was measured based on batch size with a dropout of 0.2. 

With increases in batch size, the training time decreased and accuracy increased. The number 

of epochs is set to 5, 10 and 15. The best results (i.e., 96.78% accuracy) were achieved when 

the number of epochs was 10 with a batch size of 20 and the same learning rate as in the 

previous experiment. Fig. 13 illustrates the results of this experiment based on accuracy, batch 

size and number of epochs when the dropout rate is 0.2. 
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Fig. 13 The accuracy of the model using a different number of epochs and different batch sizes where 
dropout is 0.2. 

 

4- Conclusion 

This research contributes to the development of a key enabler for Industry 4.0—big 

data with an AI decision making tool. The proposed method can be used to optimise 

manufacturing processes in a wide variety of industries. The successful implementation of this 

research in Canadian manufacturing facilities will positively impact the realisation of cost 

savings in these facilities and the development of feasible and sustainable green systems. This 

would significantly increase the leverage of the competitive advantages of the Canadian 

manufacturing sector. 

The process begins with training the model based on the acquired data about acceptable 

and defective products from images from the production line. The data is pre-processed and 

normalised to improve accuracy and minimize the loss. The trained data is transferred to the 

Compute-Canada Cedar supercomputer and real-time synchronised with the production station. 

The production line captures a picture of each item and sends it to the server for classification 

using the already trained machine-learning system. When an image is classified as defective, 

the server commands the production station to take the corresponding action, such as sending 

the item to the denials station. The integrated model has a high level of performance and 

achieving up to 97% accuracy in the detection of defective items. The model is implementing 

the missing I4.0 enables in iFactory facility by building a robust real-time decision making 

model, based on machine learning, CPS, and IoT. 
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